The present disclosure describes wound compresses, kits including wound compresses, methods of making wound compresses, and methods of using wound compresses.
In an embodiment, a wound compress may include a sealed, fluid permeable, fenestrated pouch, and a quantity of particles inside the pouch, each particles having a smallest linear dimension larger than the largest linear dimension of the pouch fenestrations.
Body tissue injuries often involve bleeding, and control of such bleeding may be an important part of initial treatment. Exsanguination from a wound is a significant source of morbidity and mortality, especially when the wound is severe. Control of bleeding within the first minutes or even seconds of a subject's receiving a wound may be essential for the subject's survival.
Bleeding control is improved by distributing the compressive force imparted by a compress to a wound surface over as much of the wound surface as possible and/or by increasing the amount of surface-area contact between the wound and the wound dressing or compress. In the case of a wound that removes tissue from a subject and leaves a cavity, the wound surface may include the surface area of the cavity, as depicted in
These two approaches may be combined by forming a wound compress from a flexible pouch containing a quantity of particles, such as depicted in
The pouch may be permeable or impermeable to liquid or air, but it should be impermeable to the particles. Put another way, if the pouch has holes, the holes should be small enough so that the particles cannot fall out of the pouch.
The pouch can be made from a wide variety of flexible materials, including fabric, mesh, netting, plastic, and/or a variety of polymers. The pouch may form a closed covering, such as if it is made with fabric, or a fenestrated opening, such as if it is made from mesh or netting. In some embodiments, the pouch is formed from a sparse netting that occupies less than 50%, 40%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1% of the surface area of the pouch (that is, the gaps between the strands of netting are larger than the strands themselves). A sparse netting allows the contents of the pouch to nestle against and closely conform to a wound surface. An example of a pouch with a sparse netting is depicted in
The pouch may be filled, completely or partially, with a particulate material. The particulate nature of the filler allows it to conform to a surface against which it is pressed. The particles may be of uniform size or may have a range of sizes. The particles may be sufficiently large that they cannot escape the pouch through holes or other openings in the pouch. For example, if a pouch defines fenestrations having a largest linear dimension of 3 millimeters, then the smallest linear dimension of the particles should exceed 3 millimeters. In some embodiments, the smallest linear dimension of the particles exceeds the largest linear diameter of the fenestrations by 10%, 20%, 30%, 40%, or 50% of one or the other dimension, as a safety measure to help ensure that particles remain inside the pouch.
The particles made be made using a wide variety of materials, including polymers, plastics, and various natural materials. In some embodiments, the particles are made with polystyrene, such as foam polystyrene, polystyrene beads, expanded polystyrene beads, and/or extruded polystyrene. The material may be so compressible as to deform against a wound surface in response to pressure applied by a user's hand or by an overwrap. The material may be so rigid as to resist deformation under such pressure. The material may be so selected as to minimize the mass or weight of the compress, so selected as to maximize the compressive effect, or so selected as to balance weight and effect. For example, expanded polystyrene beads are both lightweight and compressible by hand pressure or an overwrap. The material may be biodegradable or bionondegradable. It may be fluid- and/or gas-permeable or impermeable. It may be fluid absorbent or nonabsorbent.
The particles may include a wide variety of natural materials, such as grains, nuts, seeds, shells, hulls, etc. For example, particles can be grains (or pieces thereof) of rice, barley, and/or other grains, hulled or unhulled. Grain hulls, such as buckwheat hulls, may be used. Shells, crushed or uncrushed, may be used; one example is crushed walnut shells.
Particles may be formed with an active substance, such as a hemostatic agent, a blood coagulant, an anesthetic, an antiseptic, and/or an antibiotic. The particles may be integrally formed with or coated with an active substance. The active substance may be provided as pellets mixed with the particles. Examples of hemostatic agents include zeolite (as described in U.S. Pat. No. 4,822,349, hereby incorporated herein by reference) and chitosan (natural or synthetic).
Particles may have a wide variety of shapes, including bead, spherical, spheroid, other curved shapes, polyhedron, irregular, and/or random shapes. Curved shapes may facilitate molding the compress to conform to a wound.
An overwrap may be provided with the compress. The overwrap may be a strip or band of elastic material, such as latex rubber. The overwrap may have a length sufficient to permit its being wrapped at least once, and preferably more than once, around the body part receiving the wound. A body part may be, for example, an appendage, the torso, an/or the head. Exemplary resting lengths may range from about 50 centimeters to about 200 centimeters, although other lengths may be used. The overwrap may have a width large enough so that it can completely cover the compress when wrapped over the compress (as shown in
A compress may be provided in a sealed container, such as an airtight, vacuum-sealed, and/or sterilized container. A compress may be provided together with an overwrap in such a container.
Each material in a compress, overwrap, container, and/or kit may be sterile or sterilizable. The materials may be sterile before assembly into a compress, overwrap, container, and/or kit, sterilized during assembly, sterilized after assembly, or sterilized at more than one point before, during, and/or after assembly.
In use, a compress may be snugly fitted into a wound (
A second compress (or more) may be positioned so that it is also compressed by the overwrap. For example, a second compress may be positioned on the opposite side of the body part from where the wound and first compress are positioned. The overwrap may then be wrapped over the wound and both compresses. A second compress may cushion unwounded tissue from the overwrap's compressive force and lessen or prevent discomfort.
One or more wound compresses disclosed herein may be combined with one or more tourniquets disclosed in U.S. Provisional Application No. 60/805,391, filed Jun. 21, 2006, which is hereby incorporated herein by reference. A compress and a tourniquet may be combined into a single package or kit, optionally along with accessories. For example, a wound compress and elastic band may be packaged with a tourniquet. Such packages or kits may be issued, for example, to military personnel in combat situations. An elastic band may be included in the package or kit that is usable both a covering for a wound compress and as the elastic band for a tourniquet.
The present description is further illustrated by the following example, which should not be construed as limiting the claims in any way.
The compress and an overwrap, a rubber latex resistance band typically used for exercise and rehabilitation, are provided together in a sealed package (
This application is a division of U.S. patent application Ser. No. 11/751,948, filed May 22, 2007, which claims the benefit of U.S. provisional application Ser. No. 60/803,188, filed May 25, 2006, both of which applications are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60803188 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11751948 | May 2007 | US |
Child | 12650204 | US |