Embodiments described herein relate to apparatuses, systems, and methods the treatment of wounds, for example using dressings in combination with negative pressure wound therapy.
Certain embodiments disclosed herein relate to improved wound dressings that exhibit enhanced visibility for underlying patient tissue. Such dressings may have advantages over prior art dressings, through which assessment of the condition of a tissue site underlying the dressing is difficult or not possible. Also disclosed are improved methods of use and systems for use of the same, preferably in conjunction with negative pressure wound therapy.
In one embodiment, an apparatus for negative pressure wound therapy comprises:
In some embodiments, the wound dressing comprises one or more lower layers beneath the material layer, wherein the through holes in the material layer permit viewing of tissue beneath the wound dressing through the wound cover and through the one or more lower layers when the wound dressing is applied to a patient. The one or more lower layers may comprise one or more transparent or translucent layers. The one or more lower layers may comprise a lower layer comprising one or more through holes extending vertically through a thickness of the lower layer. At least some of the vertically extending through holes in the lower layer may be positioned underneath at least some of the vertically extending through holes in the material layer. The vertically extending through holes in the lower layer may be smaller than the vertically extending through holes in the material layer. The one or more lower layers may comprise a tissue contact layer and a transmission layer over the tissue contact layer. The material layer may be an absorbent layer.
Some or all of the through holes in the material layer and in any lower layer may be circular in shape. Some or all of the through holes in the material layer and in any lower layer may be hexagonal in shape. Some or all of the through holes in the material layer and in any lower layer may be diamond-shaped. In some embodiments the apparatus may further comprise a filter in or below the port to retain wound exudate underneath the cover layer. The apparatus may further comprise a fluid collection canister for storage of fluids transported from the wound dressing. The port may be attached over a hole in the cover layer. The apparatus may further comprise a conduit connected to the port configured to supply negative pressure to the wound dressing. The apparatus may further comprise a source of negative pressure configured to supply negative pressure to the wound dressing.
In some embodiments, the wound dressing may further comprise a plug material positioned within at least some of the one or more through holes. The plug material may prevent or minimize suction blisters forming in the tissue underneath the at least some of the one or more through holes. The plug material may comprise a soft, transparent material. The plug material may comprise a soft, transparent, and hydrophobic material. The plug material may comprise silicone. In some embodiments, the one or more through holes can be configured to prevent or minimize suction blisters to the tissue by having a limited diameter. The limited diameter can be less than or equal to approximately 10 mm.
In another embodiment, an apparatus for negative pressure wound comprises:
In some embodiments, the transmission layer comprises a plurality of horizontally spaced apart through holes extending vertically through the thicknesss of the transmission layer, and the absorbent layer comprises a plurality of horizontally spaced apart through holes extending vertically through the thickness of the absorbent layer. The plurality of horizontally spaced apart through holes in the transmission layer may be distributed in a regularly spaced pattern across the transmission layer, and the plurality of horizontally spaced apart through holes in the absorbent layer may be distributed in a regularly spaced pattern across the absorbent layer. The plurality of horizontally spaced apart through holes in the transmission layer may be spaced apart by 10 mm (or about 10 mm) or less, and the plurality of horizontally spaced apart through holes in the absorbent layer may be spaced apart by 10 mm (or about 10 mm) or less. The plurality of horizontally spaced apart through holes in the transmission layer may be formed in a first pattern across an area of the transmission layer, and the plurality of horizontally spaced apart through holes in the absorbent layer may be formed in a second pattern across an area of the transmission layer.
In some embodiments, at least one through hole extending vertically through the thickness of the transmission layer is located below each through hole extending vertically through the thickness of the absorbent layer. Two or more through holes extending vertically through the thickness of the transmission layer may be located below each through hole extending vertically through the thickness of the absorbent layer. The through hole(s) extending vertically through the thickness of the absorbent layer may be larger in dimension than through hole(s) extending vertically through the thickness of the transmission layer. Some or all of the through holes in the transmission layer and/or the absorbent layer may be circular in shape. Some or all of the through holes in the transmission layer and/or the absorbent layer may be hexagonal in shape. Some or all of the through holes in the transmission layer and/or the absorbent layer may be diamond-shaped. T
In some embodiments, the one or more through holes in the absorbent layer can have a diameter of 10 mm (or about 10 mm) or less. The one or more through holes in the transmission layer can have a diameter of 5 mm (or about 5 mm) or less. The one or more through holes in the transmission layer can have a diameter of 1 mm (or about 1 mm) or less.
In some embodiments, the apparatus may further comprise a tissue contact layer positioned below the transmission layer. The cover layer may be configured to seal around a perimeter thereof to the tissue contact layer. The tissue contact may be is configured to seal directly to a patient's tissue. The transmission layer may comprise 3D fabric. The absorbent layer may comprise a non-woven material comprising a plurality of superabsorbing particles. In some embodiments, the apparatus may further comprise a fluid collection canister for storage of fluids transported from the wound dressing.
In some embodiments, the apparatus may further comprise a filter in or below the port to retain wound exudate underneath the cover layer. The port may be attached over a hole in the cover layer. In some embodiments, the apparatus may further comprise a conduit connected to the port configured to supply negative pressure to the wound dressing. In some embodiments, the apparatus may further comprise a source of negative pressure configured to supply negative pressure to the wound dressing.
In some embodiments, the apparatus may further comprise a plug material positioned within at least some of the one or more through holes. The plug material may prevent or minimize suction blisters forming in the tissue underneath the at least some of the one or more through holes. The plug material may comprise a soft, transparent material. The plug material may comprise a soft, transparent, and hydrophobic material. The plug material may comprise silicone.
In some embodiments, the one or more through holes can be configured to prevent or minimize suction blisters to the tissue by having a limited diameter. The limited diameter can be less than or equal to approximately 10 mm.
The disclosed aspects will hereinafter be described in conjunction with the appended drawings, provided to illustrate and not to limit the disclosed aspects, wherein like designations denote like elements.
Embodiments disclosed herein relate to apparatuses and methods of treating a wound with reduced pressure, including pump and wound dressing components and apparatuses. The apparatuses and components comprising the wound overlay and packing materials, if any, are sometimes collectively referred to herein as dressings.
It will be appreciated that throughout this specification reference is made to a wound. It is to be understood that the term wound is to be broadly construed and encompasses open and closed wounds in which skin is torn, cut or punctured or where trauma causes a contusion, or any other superficial or other conditions or imperfections on the skin of a patient or otherwise that benefit from reduced pressure treatment. A wound is thus broadly defined as any damaged region of tissue where fluid may or may not be produced. Examples of such wounds include, but are not limited to, abdominal wounds or other large or incisional wounds, either as a result of surgery, trauma, sterniotomies, fasciotomies, or other conditions, dehisced wounds, acute wounds, chronic wounds, subacute and dehisced wounds, traumatic wounds, flaps and skin grafts, lacerations, abrasions, contusions, burns, diabetic ulcers, pressure ulcers, stoma, surgical wounds, trauma and venous ulcers or the like. Some embodiments of the dressings described herein may be used over a tissue site susceptible to form a wound or likely to form a wound, for example a tissue site over a bony prominence susceptible to forming a pressure ulcer.
It will be understood that embodiments of the present disclosure are generally applicable to use in topical negative pressure (“TNP”) therapy systems. Briefly, negative pressure wound therapy assists in the closure and healing of many forms of “hard to heal” wounds by reducing tissue oedema; encouraging blood flow and granular tissue formation; removing excess exudate and may reduce bacterial load (and thus infection risk). In addition, the therapy allows for less disturbance of a wound leading to more rapid healing. TNP therapy systems may also assist on the healing of surgically closed wounds by removing fluid and by helping to stabilize the tissue in the apposed position of closure. A further beneficial use of TNP therapy can be found in grafts and flaps where removal of excess fluid is important and close proximity of the graft to tissue is required in order to ensure tissue viability.
As is used herein, reduced or negative pressure levels, such as −X mmHg, represent pressure levels that are below standard atmospheric pressure, which corresponds to 760 mmHg (or 1 atm, 29.93 inHg, 101.325 kPa, 14.696 psi, etc.). Accordingly, a negative pressure value of −X mmHg reflects absolute pressure that is X mmHg below 760 mmHg or, in other words, an absolute pressure of (760−X) mmHg. In addition, negative pressure that is “less” or “smaller” than X mmHg corresponds to pressure that is closer to atmospheric pressure (e.g., −40 mmHg is less than −60 mmHg). Negative pressure that is “more” or “greater” than −X mmHg corresponds to pressure that is further from atmospheric pressure (e.g., −80 mmHg is more than −60 mmHg).
The negative pressure range for some embodiments of the present disclosure can be approximately −80 mmHg, or between about −20 mmHg and −200 mmHg. Note that these pressures are relative to normal ambient atmospheric pressure. Thus, −200 mmHg would be about 560 mmHg in practical terms. In some embodiments, the pressure range can be between about −40 mmHg and −150 mmHg. Alternatively a pressure range of up to −75 mmHg, up to −80 mmHg or over −80 mmHg can be used. Also in other embodiments a pressure range of below −75 mmHg can be used. Alternatively, a pressure range of over approximately −100 mmHg, or even 150 mmHg, can be supplied by the negative pressure apparatus. In some embodiments of wound closure devices described here, increased wound contraction can lead to increased tissue expansion in the surrounding wound tissue. This effect may be increased by varying the force applied to the tissue, for example by varying the negative pressure applied to the wound over time, possibly in conjunction with increased tensile forces applied to the wound via embodiments of the wound closure devices. In some embodiments, negative pressure may be varied over time for example using a sinusoidal wave, square wave, and/or in synchronization with one or more patient physiological indices (e.g., heartbeat).
As used herein, the term “horizontal,” when referring to a wound, indicates a direction or plane generally parallel to the skin surrounding the wound. The term “vertical,” when referring to a wound, generally refers to a direction extending perpendicular to the horizontal plane. The terms “horizontal” and “vertical” may also be used to describe the components of the wound treatment system, such as layers of the wound dressing. When describing these components, these terms should not be construed to require that the structures or devices necessarily be placed into a wound in a certain orientation, though in certain embodiments, it may be preferable to do so.
I. Example Systems and Use
In some embodiments, fluid may be transported from the dressing 110 and stored in a fluid collection canister (not shown). Some embodiments, may call for fluid to be retained within the dressing such as within an absorbent material. The absorbent material may further comprise a superabsorbent polymer or a more conventional absorbent material such as cellulose.
After the skin surrounding the wound site 200 is dry, and with reference now to
With reference now to
Turning to
Treatment of the wound site 200 preferably continues until the wound has reached a desired level of healing. In some embodiments, it may be desirable to replace the dressing 110 after a certain time period has elapsed, or if the dressing is full of wound fluids. During such changes, the pump 150 may be kept, with just the dressing 110 being changed.
II. Example Dressings
The various layers used to form the wound dressing 300 or other wound dressings described in this specification may have any of a number of perimeter shapes when viewed from above, as in
As illustrated in
Some embodiments of the tissue contact layer 350 may also act as a carrier for an optional lower and/or upper adhesive layer (not shown). For example, a lower pressure sensitive adhesive may be provided on the lower surface of the tissue contact layer 350 whilst an upper pressure sensitive adhesive layer may be provided on the upper surface of the tissue contact layer 350. In some embodiments a pressure sensitive adhesive, which may be a silicone, hot melt, hydrocolloid or acrylic based adhesive or other such adhesives, may be formed on both sides or optionally on a selected one side of the tissue contact layer. In certain embodiments, the upper adhesive layer may comprise an acrylic pressure sensitive adhesive, and the lower adhesive layer may comprise a silicone pressure sensitive adhesive. In other embodiments the tissue contact layer 350 may not be provided with adhesive. In some embodiments, the tissue contact layer 350 may be transparent or translucent. The film layer of the tissue contact layer 350 may define a perimeter with a rectangular or a square shape. A release layer (not illustrated) may be removably attached to the underside of the tissue contact layer 350, for example covering the lower adhesive layer, and may be peeled off using flaps. Some embodiments of the release layer may have a plurality of flaps extending along the length of the layer. In some embodiments, the tissue contact layer 350 may comprise perforated polyurethane film. The lower surface of the film may be provided with a silicone pressure sensitive adhesive and the upper surface may be provided with an acrylic pressure sensitive adhesive, which may help the dressing maintain its integrity. In some embodiments, a polyurethane film layer may be provided with an adhesive layer on both its upper surface and lower surface, and all three layers (the upper adhesive layer, the film layer, and the lower adhesive layer) may be perforated together.
An optional layer of porous material can be located above the tissue contact layer 350. This porous layer, or transmission layer 320, allows transmission of fluid including liquid and gas away from a wound site into upper layer(s) of the wound dressing 300. In particular, the transmission layer 320 preferably ensures that an open air channel can be maintained to communicate negative pressure over the wound area even when the overlying absorbent layer 310 has absorbed substantial amounts of exudates. The transmission layer 320 should preferably remain open under the typical pressures that will be applied during negative pressure wound therapy as described above, so that the whole wound site sees an equalized negative pressure.
Some embodiments of the transmission layer 320 may be formed of a material having a three dimensional structure. For example, a knitted or woven spacer fabric (for example Baltex 7970 weft knitted polyester) or a non-woven fabric can be used. In some embodiments, the transmission layer 320 can have a 3D polyester spacer fabric layer. This layer can have a top layer which is a 84/144 textured polyester, and a bottom layer which can be a 100 denier flat polyester and a third layer formed sandwiched between these two layers which is a region defined by a knitted polyester viscose, cellulose or the like monofilament fiber. In use, this differential between filament counts in the spaced apart layers tends to draw liquid away from the wound bed and into a central region of the dressing 300 where the absorbent layer 310 helps lock the liquid away or itself wicks the liquid onwards towards the cover layer 345 where it can be transpired. Other materials can be utilized, and examples of such materials are described in U.S. Patent Pub. No. 2011/0282309, which are hereby incorporated by reference and made part of this disclosure.
Some embodiments of the transmission layer 320 may additionally or alternatively comprise a wicking or acquisition distribution material (ADL) to horizontally wick fluid such as wound exudate as it is absorbed upward through the layers of the dressing 300. Lateral wicking of fluid may allow maximum distribution of the fluid through the absorbent layer 330 and may enable the absorbent layer 310 to reach its full holding capacity. This may advantageously increase moisture vapor permeation and efficient delivery of negative pressure to the wound site. Some embodiments of the transmission layer 320 may comprise viscose, polyester, polypropylene, cellulose, or a combination of some or all of these, and the material may be needle-punched. Some embodiments of the transmission layer 320 may comprise polyethylene in the range of 40-150 grams per square meter (gsm).
Further details of example suitable materials for a transmission layer 320 are discussed below with respect to
A layer 310 of absorbent material may be provided above the transmission layer 320. The absorbent material, which can comprise a foam or non-woven natural or synthetic material, and which may optionally comprise a super-absorbent material, forms a reservoir for fluid, particularly liquid, removed from the wound site. In some embodiments, the absorbent layer 310 may also aid in drawing fluids towards the cover layer 345. The absorbent layer 310 can be manufactured from ALLEVYN™ foam, Freudenberg 114-224-4 and/or Chem-Posite™ 11C-450, or any other suitable material. Some embodiments of the absorbent layer can be constructed from hydrophilic foam, for example a hydrophilic polyurethane prepolymer such as HYPOL™. In some embodiments, the absorbent layer 310 can be a layer of non-woven cellulose fibers having super-absorbent material in the form of dry particles dispersed throughout. Use of the cellulose fibers introduces fast wicking elements which help quickly and evenly distribute liquid taken up by the dressing. The juxtaposition of multiple strand-like fibers leads to strong capillary action in the fibrous pad which helps distribute liquid.
For example, some embodiments of the absorbent layer 310 may comprise a layered construction of an upper layer of non-woven cellulose fibers, superabsorbent particles (SAP), and a lower layer of cellulose fibers with 40-80% SAP. In some embodiments, the absorbent layer 310 may be an air-laid material. Heat fusible fibers can optionally be used to assist in holding the structure of the pad together. Some embodiments may combine cellulose fibers and air-laid materials, and may further comprise up to 60% SAP. Some embodiments may comprise 60% SAP and 40% cellulose. Other embodiments of the absorbent layer may comprise between 60% and 90% (or between about 60% and about 90%) cellulose matrix and between 10% and 40% (or between about 10% and about 40%) superabsorbent particles. For example, the absorbent layer 310 may have about 20% superabsorbent material and about 80% cellulose fibers. It will be appreciated that rather than using super-absorbing particles or in addition to such use, super-absorbing fibers can be utilized according to some embodiments of the present invention. An example of a suitable material is the Product Chem-Posite™ 11 C available from Emerging Technologies Inc (ETi) in the USA.
Super-absorber particles/fibers can be, for example, sodium polyacrylate or carbomethoxycellulose materials or the like or any material capable of absorbing many times its own weight in liquid. In some embodiments, the material can absorb more than five times its own weight of 0.9% W/W saline, etc. In some embodiments, the material can absorb more than 15 times its own weight of 0.9% W/W saline, etc. In some embodiments, the material is capable of absorbing more than 20 times its own weight of 0.9% W/W saline, etc. Preferably, the material is capable of absorbing more than 30 times its own weight of 0.9% W/W saline, etc. The absorbent layer 310 can have one or more through holes 355 located so as to underlie the suction port 335.
Further details of example suitable absorbent materials are discussed below with respect to
As illustrated in
In some embodiments, some or all of through holes 315, 325 may comprise (that is, be plugged or filled using) a plug material, for example a soft, transparent and optionally hydrophobic material (e.g. silicone). Positioning such plug material within through holes 315, 325 can beneficially reduce the risk of underlying skin or tissue being sucked into voids in the dressing when the dressing is under negative pressure. Accordingly, in some examples the through holes 325 that are closest to the wound site may be filled with plug material while the through holes 315 further from the wound site may not be filled. Alternatively, the through holes 315 further from the wound site may be filled, and the through holes 325 closer to the wound site may not be filled with plug material. The plug material can additionally provide the benefit of preventing lateral swelling of super absorbent particles in the absorbent layer 310, which can cause the particles to spill out of the absorbent layer 310 material at the cut edges, thereby filling (at least partially) the through holes 315, 325. Accordingly, in some examples at least the through holes 315 in the absorbent layer may be filled with plug material. In one embodiment, an absorbent layer and an underlying transmission layer can have through holes that are aligned or substantially aligned, such that there is some visibility to the underlying patient tissue. The through holes in the absorbent layer can be filled with plug material, while the through holes in the transmission layer positioned between the absorbent layer and the wound site are not filled with plug material. Such a configuration can provide for better transmission of negative pressure to tissue underlying the plugged through holes compared to embodiments which provide plug material in a material layer positioned adjacent to the wound site.
The transparency of the plug material provides visibility through to the wound bed. As a result of the hydrophobic nature of some embodiments of the plug material, the viewing portals 330 will remain transparent throughout wear time as colored wound exudate and other substances should not be drawn into the plug material because it is hydrophobic. Some examples of the plug material are not absorbent so as to not fill with exudate. In some embodiments, larger through holes can be provided in dressing embodiments using the plug material within through holes compared to dressing embodiments without plug material, for example due to removal of size constraints for preventing patient tissue from being drawn into the holes. In some embodiments, when plugs are provided in through holes 315 of the absorbent layer 310 and optionally in the through holes 325 of the transmission layer 310, the through holes 325 of the transmission layer 320 may be the same shape and dimension as the through holes 315. In other embodiments, when plugs are provided in through holes 315 of the absorbent layer 310, no transmission layer 310 is provided.
The through holes 315 in the absorbent layer 310 may form a repeating pattern across the area of the absorbent layer 310 with the exception of the area of the absorbent layer 310 including the through hole 355 for the port 335. Here the repeating pattern is illustrated as a grid or array of through holes 315 though in other embodiments other patterns can be used. In some embodiments, the through holes 315 in the absorbent layer 310 and the through holes 325 in the transmission layer 320 may be spaced apart by 10 mm (or about 10 mm) or less. The through hole 355 underlying the port 335 is illustrated as being separate from the repeating pattern of through holes 315 and larger than the through holes 315, however in some embodiments the repeating pattern of through holes 315 can continue across the entire area (or substantially all of the area) of the absorbent layer 310 and the port can be placed over a selected one of the through holes in the array, or over a selected group of adjacent through holes in the array. In the illustrated embodiment, the transmission layer 320 has no through holes underlying the through hole 355 in the absorbent layer 310 over which the port 335 is applied. However, in other embodiments the pattern of through holes 325 in the transmission layer 320 may continue under the through hole 355 in the absorbent layer 310.
The through holes 315, 325 can be cut or formed in some embodiments by punching, die cutting, or laser cutting the sheet materials used to form the absorbent layer 310 and the transmission layer 320. However, the creation of apertures, for example by hole-punching, has the disadvantages of resulting in the generation of waste and also the mechanical weakening of the material. By forming through slits in a material, these slits being capable of expanding to form apertures on extension of the material, increased visibility of the wound can be achieved without significant material waste. In this manner, it is also possible to achieve extension of the slit to form a circular hole without mechanically weakening the material. Examples of such lattice cutting techniques are disclosed in International Patent Publication No. PCT/US2007/079529, filed Sep. 26, 2007, titled “LATTICE DRESSING,” the entirety of which is hereby incorporated by reference. In some embodiments, for example embodiments in which the through holes 315 in the absorbent layer 310 and the through holes 325 transmission layer 325 are different sizes or are arranged in different patterns, the absorbent layer 310 and transmission layer 325 can be cut separately from one another by any of the previously described hole-forming processes. In some embodiments, the absorbent layer 310 and transmission layer 320 can be stacked and the through holes 315, 325 cut through the stacked layers 310, 325 at the same time by any of the previously described hole-forming processes. In some embodiments separate plug material portions can be provided to the through holes in various layers (here, absorbent layer 310 and transmission layer 320), for example as the holes are punched or cut in the layer. In some embodiments, the layers may be stacked and hole punched or cut together and accordingly a single portion of plug material can be provided extending through the holes 315, 325 of multiple layers.
Although the through holes 315 in the absorbent layer 310 and the through holes 325 in the transmission layer 320 are depicted as being centered and aligned one-to-one, other alignments can be used in other embodiments. For example, multiple smaller through holes 325 in the transmission layer 320 can be aligned with larger through hole 315 in the absorbent layer 310. Further, although the through holes 315 in the absorbent layer 310 are depicted as being larger than the through holes 325 in the transmission layer 320, in other embodiments the through holes 315, 325 may be substantially equal sizes or the through holes 325 in the transmission layer may be larger than the through holes 315 in the absorbent layer 310. In some embodiments, non-woven materials may require relatively larger holes (for example approximately 2 mm or larger) than woven materials in order for the holes to remain open under negative pressure. Depending on the amount of negative pressure applied to the dressing 300, the through holes in the layer closest to the patient tissue may be limited to a maximum diameter in order to prevent the formation of suction blisters by tissue pulled into the through holes. In some embodiments, the through holes 325 in the transmission layer 320 may have a diameter of approximately 1 mm or less to prevent the underlying tissue from being pulled into the through holes 325 when negative pressure is applied to the dressing 300, thereby preventing damage to the tissue and/or discomfort to the patient. In other embodiments, the through holes 325 may have a diameter of approximately 10 mm or less. The through holes 315 in the absorbent layer 310 can have a diameter of approximately 2 mm to approximately 10 mm in some embodiments. Although through holes 315, 325 are illustrated as being generally circular in shape, this is for purposes of illustration and other shapes can be used for through holes 315, 325 in other embodiments such as elliptical, square, rectangular, triangular, and hexagonal, to name a few.
In some embodiments, the through holes in one or both of the absorbent layer and transmission layer 320 may be susceptible to closing under negative pressure. Adhesive can be applied to the upper surface of the tissue contact layer 350 in some embodiments, and by contacting the transmission layer 320 such adhesive can assist in maintaining the openness of the through holes 325 in the transmission layer 320. Similarly, adhesive can be applied to the lower surface of the cover layer 345 in some embodiments, and by contacting the absorbent layer 310 such adhesive can assist in maintaining the openness of the through holes 315 in the absorbent layer 310. Adhesive can be applied between the absorbent layer 310 and the transmission layer 320 in some embodiments to assist in maintaining the openness of through holes 315, 325 in both layers. For example, in some embodiments the adhesive layer between the absorbent layer 310 and the transmission layer 320 may comprise an adhesive web or net. In other embodiments, the adhesive layer may comprise adhesive tape. Yet other embodiments may employ a hot melt adhesive a hot melt adhesive such as ethylene vinyl acetate (EVA). For example, EVA powder may be sprinkled over one or both of the layers 310, 320, which may then be heat bonded. Preferred embodiments of the adhesive layer are hydrophilic so as not to affect the transport of water and/or water-based solutions between the absorbent layer 310 and the transmission layer 320.
The absorbent layer 310 may be of a greater area than the transmission layer 320 in some embodiments, such that the absorbent layer 310 overlaps two or more edges of the transmission layer 320, thereby ensuring that the transmission layer does not contact the cover layer 345. This can provide an outer channel of the absorbent layer that is in direct contact with the tissue contact layer 350 that aids more rapid absorption of exudates to the absorbent layer. Furthermore, such an outer channel can ensure that no liquid is able to pool around the circumference of the wound cavity, which may otherwise seep through the seal around the perimeter of the dressing leading to the formation of leaks.
The cover layer 345 is preferably gas impermeable, but moisture vapor permeable, and can extend across the width of the wound dressing 300. The cover layer 345, which may for example be a polyurethane film having a pressure sensitive adhesive on one side, is impermeable to gas and this layer thus operates to cover the wound and to seal a wound cavity over which the wound dressing is placed. In this way an effective chamber is made between the cover layer 345 and a wound site where a negative pressure can be established. The cover layer 345 is preferably sealed to the tissue contact layer 350 in a border region 305 around the circumference of the dressing, ensuring that no air is drawn in through the border area, for example via adhesive or welding techniques. The cover layer 345 protects the wound or underlying tissue from external bacterial contamination (bacterial barrier) and allows liquid from wound exudates to be transferred through the layer and evaporated from the film outer surface. The cover layer 345 preferably comprises two layers; a polyurethane film and an adhesive pattern spread onto the film. Some embodiments may employ a polyurethane film (for example, Elastollan SP9109) or any other suitable material. For example, certain embodiments may comprise translucent or transparent 30 gsm EU33 film. An example of a cover contact layer adhesive spread is illustrated in
An orifice 365 is preferably provided in the cover layer 345 to allow a negative pressure to be applied to the dressing 300. A suction port 335 is preferably attached or sealed to the top of the cover layer 345 over the orifice 365 made or formed into the cover layer 345 to communicate negative pressure through the orifice 365. A length of tubing 340 may be coupled at a first end to the suction port 335 and at a second end to a pump unit (not shown) to allow transmission of negative pressure to the dressing 300 and, in some embodiments, to allow fluids to be pumped out of the dressing 300. The port 335 may be adhered and sealed to the cover layer 345 using an adhesive such as an acrylic, cyanoacrylate, epoxy, UV curable or hot melt adhesive. The illustrated embodiment of the port 335 can be formed from a soft polymer, for example a polyethylene, a polyvinyl chloride, a silicone or polyurethane having a hardness of 30 to 90 on the Shore A scale. However, the illustrated port 335 is intended to provide one example of a port suitable for use with the wound dressing 300 and not to limit the type of port usable with the dressing 300. In some embodiments, the port 335 may be made from a soft or conformable material, for example using the embodiments described in International Patent Application No. PCT/M2013/001469, filed May 22, 2013, titled “APPARATUSES AND METHODS FOR NEGATIVE PRESSURE WOUND THERAPY,” the entirety of which is hereby incorporated by reference.
Preferably the absorbent layer 310 includes at least one through hole 355 located so as to underlie the port 335. The through hole 355, while illustrated here as being larger than the hole through the cover layer 345, may in some embodiments be bigger or smaller than the hole 365 in cover layer 345. It will be appreciated that multiple openings could alternatively be utilized. Additionally should more than one port be utilized according to certain embodiments of the present disclosure one or multiple openings may be made in the absorbent layer 310 and the cover layer 345 in registration with each respective port. Although not essential to certain embodiments of the present disclosure the use of through holes in a super-absorbent material forming the absorbent layer 320 may provide a fluid flow pathway which remains unblocked in particular when the absorbent layer 310 is near saturation.
Accordingly, the port 335 is in direct fluid communication with the transmission layer 320 through orifice 365 and through hole 355. This allows the negative pressure applied to the port 335 to be communicated to the transmission layer 320 without passing through the absorbent layer 310, ensuring that the negative pressure applied to the wound site is not inhibited by the absorbent layer 310 as it absorbs wound exudates. In use, for example when negative pressure is applied to the dressing 300, a wound facing portion of the port 335 may thus come into contact with the transmission layer 320, which can thus aid in transmitting negative pressure to the wound site even when the absorbent layer 310 is filled with wound fluids. Some embodiments may have the cover layer 345 be at least partly adhered to the transmission layer 320. In some embodiments, the aperture 355 in the absorbent layer 310 is at least 1-2 mm larger than the diameter of the wound facing portion of the port 335. In other embodiments the aperture 355 in the absorbent layer 310 is smaller than the diameter of the wound facing portion of the port 335. In other embodiments, no aperture may be provided in the absorbent layer 310, or alternatively a plurality of apertures underlying the orifice 365 may be provided.
A filter element that is impermeable to liquids, but permeable to gases can be provided in or below the port 335 to act as a liquid barrier between the dressing 300 and the conduit 340 in some embodiments to ensure that no liquids are able to escape from the wound dressing 300. The filter element may also function as a bacterial barrier. The pore size can be approximately 0.2 μm. Suitable materials for the filter material of the filter element include 0.2 micron Gore™ expanded PTFE from the MMT range, PALL Versapore™ 200R, and Donaldson™ TX6628. Larger pore sizes can also be used but these may require a secondary filter layer to ensure full bioburden containment. As wound fluid contains lipids it is preferable, though not essential, to use an oleophobic filter membrane for example 1.0 micron MMT-332 prior to 0.2 micron MMT-323. This prevents the lipids from blocking the hydrophobic filter. The filter element can be attached or sealed to the port 335 and/or the cover layer 345 over the orifice 365. For example, the filter element may be molded into the port 335, or may be adhered to both the top of the cover layer 345 and bottom of the port 335 using an adhesive such as, but not limited to, a UV cured adhesive.
In particular for embodiments with a single port 335, it may be preferable for the port 335 to be located in an off-center position as illustrated in
Some embodiments may be manufactured without the port 335 and may include at least one area for attaching a port. For example, the port may simply be an opening in the cover layer 345 for attaching a separate port member, and the opening may be preformed in the cover layer 345 or formed by a clinician by cutting, puncturing, or tearing the cover layer 345.
In some embodiments, the tissue contact layer 350 may be flat and the cover layer 345 may be contoured over the inner layers of the dressing 300. The absorbent layer 310 may be about 1.5 times thicker than the transmission layer 320 in some embodiments.
The absorbent layer 410 includes a number of through holes 415 arranged in a repeating pattern. The transmission layer 320 includes an additional number of through holes 425 of substantially the same size as the through holes 415 in the absorbent layer 410 and arranged in a similar repeating pattern. In some embodiments, the through holes 415 in the absorbent layer 410 and the through holes 425 in the transmission layer 420 can be aligned or substantially aligned to form viewing portals 430 through the internal layers of the dressing 400. As described above, some or all of the through holes 415, 425 may comprise a plug material. As described above, due to the transparency or translucency of the cover layer 445 and tissue contact layer 450, the viewing portals 430 can permit viewing of tissue beneath the wound dressing through the wound cover when the wound dressing is applied to a patient, for example enabling a clinician to assess characteristics of and changes in tissue underlying the dressing 400. In the illustrated embodiment, the transmission layer 420 has no through holes underlying the through hole 455 in the absorbent layer 410 over which the port 435 is applied. However, in other embodiments the pattern of through holes 425 in the transmission layer 420 may continue under the through hole 455 in the absorbent layer 410.
The material layer 510 can include a number of through holes 515 forming viewing portals 530 through the dressing. As described above, some or all of the through holes 515 may comprise a plug material. As described above, due to the transparency or translucency of the cover layer 545 and tissue contact layer 550, the viewing portals 530 can permit viewing of tissue beneath the wound dressing through the wound cover when the wound dressing is applied to a patient, for example enabling a clinician to assess characteristics of and changes in tissue underlying the dressing 500. The through holes 515 can be arranged in a repeating pattern, here illustrated as hexagonal through holes 515 forming a honeycomb pattern, across substantially all of the area of the material layer 510. The pattern can be discontinued in some embodiments in an area underlying the port 535 so that the underlying tissue contact layer 550 does not come into contact with and occlude the port 535 when negative pressure is applied to the dressing 500.
In some embodiments, a port can be placed over any of the holes in the patterns illustrated in
The absorbent layer 710 includes a number of through holes 715 arranged in a pattern including three rows of seven substantially equally sized holes 715. The transmission layer includes an additional number of through holes 725 of a substantially smaller size than the through holes 715 in the absorbent layer 710. The through holes 725 in the transmission layer are arranged in a repeating pattern. When the transmission layer and absorbent layer 710 are aligned under the cover layer, multiple through holes 725 in the transmission layer can be visible through each of the through holes 715 in the absorbent layer 710 to form viewing portals 730 through the dressing to the underlying tissue. As described above, due to the transparency or translucency of the cover layer and tissue contact layer, the viewing portals 730 can permit viewing of tissue beneath the wound dressing through the wound cover when the wound dressing is applied to a patient, for example enabling a clinician to assess characteristics of and changes in tissue underlying the dressing 700. The repeating pattern of holes 725 in the transmission layer may or may not extend under the port 735 in various embodiments. As described above, some or all of the through holes 725 may comprise a plug material.
III. Example Materials
As illustrated in the side view of
In some embodiments, the ADL material may consist of a mix of two fiber types. One may be a flat fiber which may be 20 μm to 50 μm in width, or approximately 20
μm to approximately 50 μm in width, and may comprise a cellulosic based material. The other fiber may be a two component fiber that has an inner core that is 8 μm to 10 μm in diameter, or approximately is 8 μm to approximately 10 μm in diameter, and an outer layer with a thickness of 1 μm to 2 μm, or approximately 1 μm to approximately 2μm. The two component fiber may be a mix of a polyethylene (PE) type material, and polyethylene terephthalate (PET). In some embodiments the inner core of the two component fiber may be PET and the outer layer may be PE. The PE/PET fibers may have a smooth surface morphology, while the cellulosic fibers may have a relatively rougher surface morphology. In some embodiments the ADL material may comprise about 60% to about 90% cellulosic fibers, for example approximately 75% cellulosic fibers, and may comprise about 10% to about 40% PE/PET fibers, for example approximately 25% PE/PET fibers.
The bulk of the absorbent material, comprising layers 4220, 4240, and 4250, may have a thickness of 1.7 mm, or approximately 1.7 mm, or may have a thickness in the range of 0.5 mm to 5.0 mm, or about 0.5 mm to about 5.0 mm. The bulk of the absorbent material may comprise a mix of two fiber types arranged in a fibrous network, for example the cellulosic fiber having a width of 20 μm to 50 μm, or approximately 20 μm to approximately 50 μm, and the PE/PET composite fiber, described above with respect to the ADL material. The superabsorbent particles 4230 may be irregularly shaped and varied in size, and may have a diameter of up to 1 mm, or approximately 1 mm. The superabsorbent particles 4230 may comprise a sodium acrylate type material. There may be relatively fewer superabsorbent particles in a portion of the uppermost surface of the bulk of the absorbent material (the surface of layer 4250 opposite the textured layer 4210), for example in an uppermost surface having a thickness of approximately 0.1 mm.
Layer 4220 may be a liquid absorption layer configured to draw liquid upward through the material towards layers 4240 and 4250. Layer 4240 may be a storage layer configured to hold absorbed liquid. Layer 4220 may be a liquid distribution layer configured to apply a “reverse suction” effect to the liquid storage layer 4240 in order to inhibit (or substantially inhibit) absorbed liquid from leaking back down through the lower layers of the absorbent material, a phenomenon which is commonly known as “back wetting.”
Superabsorbent particles 4230 may be distributed primarily within the storage layer, may extend partially into the absorption layer 4220 and liquid distribution layer 4250, or may be distributed evenly (or substantially evenly) throughout the layers. The layers 4220, 4240, and 4250 may overlap with a portion of adjacent layers, and may or may not be separable.
IV. Example Dressings with Plug Material
In an alternate embodiment, a dressing can include a transmission layer that is transparent, translucent, or contains more open areas (e.g., a less dense weave) with holes smaller than approximately 10 mm in diameter, and the pillars may only extend through the absorbent layer. Accordingly, the transmission layer may extend underneath the pillars of plug material in the absorbent layer, thereby providing enhanced transmission of negative pressure and/or spread of wound exudate compared to embodiments having plug material positioned within the transmission layer.
In another alternate embodiment, rather than having the plug material formed as pillars through one or more layers, a dressing may have a layer or structure of transparent or translucent material (for example, silicone) with an array of absorbent or superabsorbent material portions. For instance, the transparent or translucent layer or structure may form an interconnected frame extending across the length and width of the wound dressing, and have a matrix of holes or spaces within the frame where absorbent material can be provided to fill the holes or spaces. In some examples, the transparent or translucent layer may take the same shape as any of the embodiments of the absorbent layer previously described, and the superabsorbent material portions may take the shape of any of the embodiments of the pillars previously described. Alternatively, a dressing may comprise alternating struts, strips or bands of transparent or translucent material and struts, strips or bands of absorbent material. For example, a wound dressing layer may comprise diagonal alternating bands of transparent or translucent material and absorbent material. In any of the aforementioned embodiments, a transmission layer may be provided under the transparent or translucent material and the absorbent material for transmission of negative pressure, and a suction adapter or other negative pressure source may be provided to communicate negative pressure to a wound site, optionally through a through hole in either the absorbent material or in the transparent or translucent material.
V. Terminology
Features, materials, characteristics, or groups described in conjunction with a particular aspect, embodiment, or example are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The protection is not restricted to the details of any foregoing embodiments. The protection extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of protection. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made. Those skilled in the art will appreciate that in some embodiments, the actual steps taken in the processes illustrated and/or disclosed may differ from those shown in the figures. Depending on the embodiment, certain of the steps described above may be removed, others may be added. Furthermore, the features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure.
Although the present disclosure includes certain embodiments, examples and applications, it will be understood by those skilled in the art that the present disclosure extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and obvious modifications and equivalents thereof, including embodiments which do not provide all of the features and advantages set forth herein. Accordingly, the scope of the present disclosure is not intended to be limited by the specific disclosures of preferred embodiments herein, and may be defined by claims as presented herein or as presented in the future.
This application is a continuation of U.S. patent application Ser. No. 15/319,743, filed on Dec. 16, 2016, which is a national stage application of International Patent Application No. PCT/EP2015/063373, filed on Jun. 15, 2015, titled “WOUND DRESSING AND METHOD OF TREATMENT,” which claims priority to U.S. Provisional Application Ser. No. 62/013989 filed on Jun. 18, 2014, titled “WOUND DRESSING AND METHOD OF TREATMENT,” and U.S. Provisional Application Ser. No. 62/085774, filed on Dec. 1, 2014, titled “WOUND DRESSING AND METHOD OF TREATMENT.”
Number | Name | Date | Kind |
---|---|---|---|
3972328 | Chen | Aug 1976 | A |
4029598 | Neisius et al. | Jun 1977 | A |
4728499 | Fehder | Mar 1988 | A |
4798603 | Meyer et al. | Jan 1989 | A |
4813942 | Alvarez | Mar 1989 | A |
4834735 | Alemany et al. | May 1989 | A |
4846164 | Martz | Jul 1989 | A |
4968181 | Goldman | Nov 1990 | A |
4973325 | Sherrod et al. | Nov 1990 | A |
4988344 | Reising et al. | Jan 1991 | A |
4988345 | Reising | Jan 1991 | A |
5021050 | Iskra | Jun 1991 | A |
5037409 | Chen et al. | Aug 1991 | A |
5056510 | Gilman | Oct 1991 | A |
5065600 | Byles | Nov 1991 | A |
5124197 | Bernardin et al. | Jun 1992 | A |
5149334 | Lahrman et al. | Sep 1992 | A |
5149469 | Komatsuzaki et al. | Sep 1992 | A |
5151091 | Glaug et al. | Sep 1992 | A |
5171391 | Chmielewski et al. | Dec 1992 | A |
5175046 | Nguyen | Dec 1992 | A |
5181905 | Flam | Jan 1993 | A |
5217445 | Young et al. | Jun 1993 | A |
5236427 | Hamajima et al. | Aug 1993 | A |
5238732 | Krishnan | Aug 1993 | A |
5242435 | Murji et al. | Sep 1993 | A |
5257982 | Cohen et al. | Nov 1993 | A |
5271987 | Iskra | Dec 1993 | A |
5281208 | Thompson et al. | Jan 1994 | A |
5294478 | Wanek et al. | Mar 1994 | A |
5296290 | Brassington | Mar 1994 | A |
5314743 | Meirowitz et al. | May 1994 | A |
5318554 | Young et al. | Jun 1994 | A |
5330456 | Robinson | Jul 1994 | A |
5342336 | Meirowitz et al. | Aug 1994 | A |
5348547 | Payne et al. | Sep 1994 | A |
5356405 | Thompson et al. | Oct 1994 | A |
5360420 | Cook et al. | Nov 1994 | A |
5364382 | Latimer et al. | Nov 1994 | A |
5366451 | Levesque | Nov 1994 | A |
5368909 | Langdon et al. | Nov 1994 | A |
5368926 | Thompson et al. | Nov 1994 | A |
5374260 | Lemay et al. | Dec 1994 | A |
5382245 | Thompson et al. | Jan 1995 | A |
5387208 | Ashton et al. | Feb 1995 | A |
5397316 | LaVon et al. | Mar 1995 | A |
5401267 | Couture-Dorschner et al. | Mar 1995 | A |
5425725 | Tanzer et al. | Jun 1995 | A |
5431643 | Ouellette et al. | Jul 1995 | A |
5454800 | Hirt et al. | Oct 1995 | A |
5465735 | Patel | Nov 1995 | A |
5470326 | Dabi et al. | Nov 1995 | A |
H1511 | Chappell et al. | Dec 1995 | H |
5486167 | Dragoo et al. | Jan 1996 | A |
5500270 | Langdon et al. | Mar 1996 | A |
5505719 | Cohen et al. | Apr 1996 | A |
5509914 | Osborn, III | Apr 1996 | A |
5514120 | Johnston et al. | May 1996 | A |
5525407 | Yang | Jun 1996 | A |
5536264 | Hsueh et al. | Jul 1996 | A |
5538500 | Peterson | Jul 1996 | A |
H1585 | Ahr | Aug 1996 | H |
5545155 | Hseih et al. | Aug 1996 | A |
5549584 | Gross | Aug 1996 | A |
5549589 | Horney et al. | Aug 1996 | A |
5562107 | Lavender et al. | Oct 1996 | A |
5562646 | Goldman et al. | Oct 1996 | A |
5562650 | Everett et al. | Oct 1996 | A |
5591148 | McFall et al. | Jan 1997 | A |
5591149 | Cree et al. | Jan 1997 | A |
5603707 | Trombetta et al. | Feb 1997 | A |
5609588 | DiPalma et al. | Mar 1997 | A |
5613960 | Mizutani | Mar 1997 | A |
5614283 | Pontis et al. | Mar 1997 | A |
5614295 | Quincy, III et al. | Mar 1997 | A |
5628736 | Thompson | May 1997 | A |
5632731 | Patel | May 1997 | A |
H1657 | Hammons et al. | Jun 1997 | H |
5634915 | Osterdahl | Jun 1997 | A |
5643238 | Baker | Jul 1997 | A |
5648142 | Phillips | Jul 1997 | A |
5649915 | Chauvette et al. | Jul 1997 | A |
5649916 | DiPalma et al. | Jul 1997 | A |
5665082 | Boulanger | Sep 1997 | A |
5669895 | Murakami et al. | Sep 1997 | A |
5675079 | Gilman et al. | Oct 1997 | A |
5700254 | McDowall et al. | Dec 1997 | A |
5704905 | Jensen et al. | Jan 1998 | A |
5707499 | Joshi et al. | Jan 1998 | A |
5716703 | Payne | Feb 1998 | A |
5728084 | Palumbo et al. | Mar 1998 | A |
5728085 | Widlund et al. | Mar 1998 | A |
5733273 | Ahr | Mar 1998 | A |
5752945 | Mosley et al. | May 1998 | A |
5759570 | Arnold | Jun 1998 | A |
5762641 | Bewick-Sonntag et al. | Jun 1998 | A |
5788684 | Abuto et al. | Aug 1998 | A |
5801107 | Everhart et al. | Sep 1998 | A |
5810798 | Finch et al. | Sep 1998 | A |
5817081 | LaVon et al. | Oct 1998 | A |
5827213 | Jensen | Oct 1998 | A |
5827254 | Trombetta et al. | Oct 1998 | A |
5830202 | Bogdanski et al. | Nov 1998 | A |
5837627 | Halabisky et al. | Nov 1998 | A |
5843025 | Shaari | Dec 1998 | A |
5843064 | Koczab | Dec 1998 | A |
5852126 | Barnard et al. | Dec 1998 | A |
5855572 | Schmidt | Jan 1999 | A |
5865822 | Hamajima et al. | Feb 1999 | A |
5865824 | Chen et al. | Feb 1999 | A |
5873867 | Coles et al. | Feb 1999 | A |
5877097 | West et al. | Mar 1999 | A |
5891120 | Chmielewski | Apr 1999 | A |
5895379 | Litchholt et al. | Apr 1999 | A |
5897541 | Uitenbrock et al. | Apr 1999 | A |
5916507 | Dabi et al. | Jun 1999 | A |
5925026 | Arteman et al. | Jul 1999 | A |
5931823 | Stokes et al. | Aug 1999 | A |
5938995 | Koltisko, Jr. et al. | Aug 1999 | A |
5941863 | Guidotti et al. | Aug 1999 | A |
5947945 | Cree et al. | Sep 1999 | A |
5951535 | Fujiwara et al. | Sep 1999 | A |
5961506 | Guidotti et al. | Oct 1999 | A |
5968027 | Cole et al. | Oct 1999 | A |
5989478 | Ouellette et al. | Nov 1999 | A |
6022610 | Phan et al. | Feb 2000 | A |
6037518 | Guidotti et al. | Mar 2000 | A |
6060638 | Paul et al. | May 2000 | A |
6068620 | Chmielewski | May 2000 | A |
6071267 | Zamierowski | Jun 2000 | A |
6077526 | Scully et al. | Jun 2000 | A |
6096015 | Yeo et al. | Aug 2000 | A |
6103953 | Cree et al. | Aug 2000 | A |
6103954 | Grondin et al. | Aug 2000 | A |
6107539 | Palumbo et al. | Aug 2000 | A |
6117523 | Sugahara | Sep 2000 | A |
6127595 | Makoui et al. | Oct 2000 | A |
6168849 | Braverman et al. | Jan 2001 | B1 |
6191340 | Carlucci et al. | Feb 2001 | B1 |
6206865 | Chen et al. | Mar 2001 | B1 |
6235966 | Magnusson et al. | May 2001 | B1 |
6264776 | DiPalma | Jul 2001 | B1 |
6294710 | Schmidt et al. | Sep 2001 | B1 |
6297423 | Schoenfeldt et al. | Oct 2001 | B1 |
6344036 | Ivansson | Feb 2002 | B1 |
6362390 | Carlucci et al. | Mar 2002 | B1 |
6369292 | Strack et al. | Apr 2002 | B1 |
6372952 | Lash et al. | Apr 2002 | B1 |
6403857 | Gross et al. | Jun 2002 | B1 |
6461339 | Sugahara | Oct 2002 | B1 |
6497689 | Schmidt et al. | Dec 2002 | B1 |
6506175 | Goldstein | Jan 2003 | B1 |
6506960 | Young et al. | Jan 2003 | B1 |
6521813 | Chihani | Feb 2003 | B1 |
6534149 | Daley et al. | Mar 2003 | B1 |
6545194 | Schmidt et al. | Apr 2003 | B1 |
6551295 | Schmidt et al. | Apr 2003 | B1 |
6552244 | Jacques et al. | Apr 2003 | B1 |
6570057 | Schmidt et al. | May 2003 | B1 |
6570058 | Fuchs et al. | May 2003 | B1 |
6573424 | Raidel et al. | Jun 2003 | B1 |
6586653 | Graeme, III et al. | Jul 2003 | B2 |
6610898 | Magnusson et al. | Aug 2003 | B1 |
6610903 | Latimer et al. | Aug 2003 | B1 |
6613028 | Daley et al. | Sep 2003 | B1 |
6613953 | Altura | Sep 2003 | B1 |
6613955 | Lindsay et al. | Sep 2003 | B1 |
6626891 | Ohmstede | Sep 2003 | B2 |
6630611 | Malowaniec | Oct 2003 | B1 |
6664439 | Arndt et al. | Dec 2003 | B1 |
6683229 | Ehrnsperger et al. | Jan 2004 | B1 |
6685681 | Lockwood et al. | Feb 2004 | B2 |
6719742 | McCormack et al. | Apr 2004 | B1 |
6727403 | Ehrnsperger et al. | Apr 2004 | B1 |
6752794 | Lockwood et al. | Jun 2004 | B2 |
6762337 | Boukanov et al. | Jul 2004 | B2 |
6764459 | Donaldson | Jul 2004 | B1 |
6783837 | Creagan et al. | Aug 2004 | B1 |
6835192 | Guidotti et al. | Dec 2004 | B1 |
6838589 | Liedtke et al. | Jan 2005 | B2 |
6936037 | Bubb et al. | Aug 2005 | B2 |
6951553 | Bubb et al. | Oct 2005 | B2 |
6979324 | Bybordi et al. | Dec 2005 | B2 |
7004915 | Boynton et al. | Feb 2006 | B2 |
7049478 | Smith et al. | May 2006 | B1 |
7070584 | Johnson et al. | Jul 2006 | B2 |
7108683 | Zamierowski | Sep 2006 | B2 |
7112712 | Ancell | Sep 2006 | B1 |
7122023 | Hinoki | Oct 2006 | B1 |
7216651 | Argenta et al. | May 2007 | B2 |
7361184 | Joshi | Apr 2008 | B2 |
7381859 | Hunt et al. | Jun 2008 | B2 |
7429689 | Chen et al. | Sep 2008 | B2 |
7511187 | Kelly | Mar 2009 | B2 |
7569742 | Haggstrom et al. | Aug 2009 | B2 |
7605298 | Bechert et al. | Oct 2009 | B2 |
7612248 | Burton et al. | Nov 2009 | B2 |
7615036 | Joshi et al. | Nov 2009 | B2 |
7622629 | Aail | Nov 2009 | B2 |
7625362 | Boehringer et al. | Dec 2009 | B2 |
7699823 | Haggstrom et al. | Apr 2010 | B2 |
7700819 | Ambrosio et al. | Apr 2010 | B2 |
7708724 | Weston | May 2010 | B2 |
7718249 | Russell et al. | May 2010 | B2 |
7722582 | Lina et al. | May 2010 | B2 |
7749531 | Booher | Jul 2010 | B2 |
7759537 | Bishop et al. | Jul 2010 | B2 |
7759539 | Shaw et al. | Jul 2010 | B2 |
7775998 | Riesinger | Aug 2010 | B2 |
7779625 | Joshi et al. | Aug 2010 | B2 |
7811269 | Boynton et al. | Oct 2010 | B2 |
7838717 | Haggstrom et al. | Nov 2010 | B2 |
7838723 | Schmidt et al. | Nov 2010 | B1 |
7846141 | Weston | Dec 2010 | B2 |
7910791 | Coffey | Mar 2011 | B2 |
7922703 | Riesinger | Apr 2011 | B2 |
7959624 | Riesinger | Jun 2011 | B2 |
7964766 | Blott et al. | Jun 2011 | B2 |
7976519 | Bubb et al. | Jul 2011 | B2 |
7982087 | Greener et al. | Jul 2011 | B2 |
8021347 | Vitaris et al. | Sep 2011 | B2 |
8034037 | Adams et al. | Oct 2011 | B2 |
8062272 | Weston | Nov 2011 | B2 |
8062331 | Zamierowski | Nov 2011 | B2 |
8080702 | Blott et al. | Dec 2011 | B2 |
8092436 | Christensen | Jan 2012 | B2 |
8118794 | Weston et al. | Feb 2012 | B2 |
8147468 | Barta et al. | Apr 2012 | B2 |
8152785 | Vitaris | Apr 2012 | B2 |
8158844 | McNeil | Apr 2012 | B2 |
8162907 | Heagle | Apr 2012 | B2 |
8188331 | Barta et al. | May 2012 | B2 |
8207392 | Haggstrom et al. | Jun 2012 | B2 |
8212101 | Propp | Jul 2012 | B2 |
8235972 | Adahan | Aug 2012 | B2 |
8241261 | Randolph et al. | Aug 2012 | B2 |
8252971 | Aali et al. | Aug 2012 | B2 |
8282611 | Weston | Oct 2012 | B2 |
8298200 | Vess et al. | Oct 2012 | B2 |
8303552 | Weston | Nov 2012 | B2 |
8314283 | Kingsford et al. | Nov 2012 | B2 |
8372049 | Jaeb et al. | Feb 2013 | B2 |
8372050 | Jaeb et al. | Feb 2013 | B2 |
8399730 | Kazala, Jr. et al. | Mar 2013 | B2 |
8404921 | Lee et al. | Mar 2013 | B2 |
8425478 | Olson | Apr 2013 | B2 |
8444612 | Patel et al. | May 2013 | B2 |
8460255 | Joshi et al. | Jun 2013 | B2 |
8535296 | Blott et al. | Sep 2013 | B2 |
8540688 | Eckstein et al. | Sep 2013 | B2 |
8545466 | Andresen et al. | Oct 2013 | B2 |
8568386 | Malhi | Oct 2013 | B2 |
8628505 | Weston | Jan 2014 | B2 |
8641691 | Fink | Feb 2014 | B2 |
8663198 | Buan et al. | Mar 2014 | B2 |
8680360 | Greener et al. | Mar 2014 | B2 |
8715256 | Greener | May 2014 | B2 |
8764732 | Hartwell | Jul 2014 | B2 |
8771244 | Eckstein et al. | Jul 2014 | B2 |
8791316 | Greener | Jul 2014 | B2 |
8795243 | Weston | Aug 2014 | B2 |
8795247 | Bennett et al. | Aug 2014 | B2 |
8795800 | Evans | Aug 2014 | B2 |
8801685 | Armstrong et al. | Aug 2014 | B2 |
8808274 | Hartwell | Aug 2014 | B2 |
8814842 | Coulthard et al. | Aug 2014 | B2 |
8829263 | Haggstrom et al. | Sep 2014 | B2 |
8834451 | Blott et al. | Sep 2014 | B2 |
8834452 | Hudspeth et al. | Sep 2014 | B2 |
8956336 | Haggstrom et al. | Feb 2015 | B2 |
9061095 | Adie et al. | Jun 2015 | B2 |
9067003 | Buan et al. | Jun 2015 | B2 |
9127665 | Locke et al. | Sep 2015 | B2 |
9168330 | Joshi et al. | Oct 2015 | B2 |
9199012 | Vitaris et al. | Dec 2015 | B2 |
9220822 | Hartwell et al. | Dec 2015 | B2 |
9283118 | Locke et al. | Mar 2016 | B2 |
9302033 | Riesinger | Apr 2016 | B2 |
9327065 | Alberti et al. | May 2016 | B2 |
9375353 | Vitaris et al. | Jun 2016 | B2 |
9375521 | Hudspeth et al. | Jun 2016 | B2 |
9381283 | Adams et al. | Jul 2016 | B2 |
9427505 | Askem et al. | Aug 2016 | B2 |
9446178 | Blott et al. | Sep 2016 | B2 |
9452248 | Blott et al. | Sep 2016 | B2 |
9474653 | Luckemeyer et al. | Oct 2016 | B2 |
9669138 | Joshi et al. | Jun 2017 | B2 |
9682179 | May | Jun 2017 | B2 |
9795725 | Joshi et al. | Oct 2017 | B2 |
9808561 | Adie et al. | Nov 2017 | B2 |
9844473 | Blott et al. | Dec 2017 | B2 |
9877872 | Mumby et al. | Jan 2018 | B2 |
9962474 | Greener | May 2018 | B2 |
10016309 | Hartwell | Jul 2018 | B2 |
10046096 | Askem et al. | Aug 2018 | B2 |
10130519 | Mumby et al. | Nov 2018 | B2 |
10201644 | Haggstrom et al. | Feb 2019 | B2 |
10610414 | Hartwell et al. | Apr 2020 | B2 |
20010000795 | Bolian, II et al. | May 2001 | A1 |
20010016985 | Insley et al. | Aug 2001 | A1 |
20010018308 | Quick et al. | Aug 2001 | A1 |
20010027302 | Glaug et al. | Oct 2001 | A1 |
20010027305 | Raidel et al. | Oct 2001 | A1 |
20010044610 | Kim et al. | Nov 2001 | A1 |
20010053904 | Abuto | Dec 2001 | A1 |
20020007167 | Dan et al. | Jan 2002 | A1 |
20020007169 | Graef et al. | Jan 2002 | A1 |
20020019614 | Woon et al. | Feb 2002 | A1 |
20020026166 | Graef et al. | Feb 2002 | A1 |
20020034914 | De Leon et al. | Mar 2002 | A1 |
20020035352 | Ronnberg et al. | Mar 2002 | A1 |
20020035354 | Mirle et al. | Mar 2002 | A1 |
20020062113 | Thomas et al. | May 2002 | A1 |
20020064639 | Rearick et al. | May 2002 | A1 |
20020087136 | Widlund | Jul 2002 | A1 |
20020090511 | Smith et al. | Jul 2002 | A1 |
20020110672 | Muratore-Pallatino et al. | Aug 2002 | A1 |
20020123728 | Graef et al. | Sep 2002 | A1 |
20020133132 | Copat et al. | Sep 2002 | A1 |
20020150678 | Cramer et al. | Oct 2002 | A1 |
20020165509 | Baer et al. | Nov 2002 | A1 |
20020176964 | Koslow | Nov 2002 | A1 |
20020177831 | Daley et al. | Nov 2002 | A1 |
20020180092 | Abba et al. | Dec 2002 | A1 |
20020183704 | Fields et al. | Dec 2002 | A1 |
20030045707 | West et al. | Mar 2003 | A1 |
20030050617 | Chen et al. | Mar 2003 | A1 |
20030070780 | Chen et al. | Apr 2003 | A1 |
20030073967 | Wahlstrom et al. | Apr 2003 | A1 |
20030088229 | Baker et al. | May 2003 | A1 |
20030088231 | Yoshimasa et al. | May 2003 | A1 |
20030093044 | Wahlstrom et al. | May 2003 | A1 |
20030097101 | Schmidt et al. | May 2003 | A1 |
20030097105 | Chen et al. | May 2003 | A1 |
20030097113 | Molee | May 2003 | A1 |
20030105442 | Johnston et al. | Jun 2003 | A1 |
20030114816 | Underhill et al. | Jun 2003 | A1 |
20030114818 | Benecke et al. | Jun 2003 | A1 |
20030114821 | Underhill et al. | Jun 2003 | A1 |
20030120249 | Wulz et al. | Jun 2003 | A1 |
20030121588 | Pargass et al. | Jul 2003 | A1 |
20030124311 | Cree et al. | Jul 2003 | A1 |
20030125646 | Whitlock | Jul 2003 | A1 |
20030134559 | Delzer et al. | Jul 2003 | A1 |
20030135177 | Baker | Jul 2003 | A1 |
20030150551 | Baker | Aug 2003 | A1 |
20030157857 | Cook et al. | Aug 2003 | A1 |
20030171729 | Kaun et al. | Sep 2003 | A1 |
20030180341 | Gooch et al. | Sep 2003 | A1 |
20030208175 | Gross et al. | Nov 2003 | A1 |
20030212359 | Butler | Nov 2003 | A1 |
20030225383 | Glaug et al. | Dec 2003 | A1 |
20040019338 | Litvay et al. | Jan 2004 | A1 |
20040019339 | Ranganathan et al. | Jan 2004 | A1 |
20040019340 | McBride | Jan 2004 | A1 |
20040019342 | Nagasuna et al. | Jan 2004 | A1 |
20040024375 | Litvay | Feb 2004 | A1 |
20040033750 | Everett et al. | Feb 2004 | A1 |
20040054343 | Barnett et al. | Mar 2004 | A1 |
20040054344 | Roettger et al. | Mar 2004 | A1 |
20040057855 | Gerlach et al. | Mar 2004 | A1 |
20040065420 | Graef et al. | Apr 2004 | A1 |
20040078016 | Baker | Apr 2004 | A1 |
20040087927 | Suzuki | May 2004 | A1 |
20040111074 | Eliasson | Jun 2004 | A1 |
20040127862 | Bubb et al. | Jul 2004 | A1 |
20040177935 | Hamed et al. | Sep 2004 | A1 |
20040181199 | Moberg-Alehammar et al. | Sep 2004 | A1 |
20040204696 | Chen | Oct 2004 | A1 |
20040230173 | Barge et al. | Nov 2004 | A1 |
20040230184 | Babusik et al. | Nov 2004 | A1 |
20040243042 | Lipman | Dec 2004 | A1 |
20040243080 | Baer | Dec 2004 | A1 |
20040243081 | Suzuki et al. | Dec 2004 | A1 |
20040253894 | Fell et al. | Dec 2004 | A1 |
20040254552 | Mangold | Dec 2004 | A1 |
20050008825 | Casey et al. | Jan 2005 | A1 |
20050013992 | Azad et al. | Jan 2005 | A1 |
20050049566 | Vukos et al. | Mar 2005 | A1 |
20050079361 | Hamed et al. | Apr 2005 | A1 |
20050096616 | Arora et al. | May 2005 | A1 |
20050112979 | Sawyer et al. | May 2005 | A1 |
20050119631 | Giloh et al. | Jun 2005 | A1 |
20050136773 | Yahiaoui et al. | Jun 2005 | A1 |
20050165371 | Giacometti | Jul 2005 | A1 |
20050215965 | Schmidt et al. | Sep 2005 | A1 |
20050215967 | Toro et al. | Sep 2005 | A1 |
20050222547 | Beruda et al. | Oct 2005 | A1 |
20050228353 | Thomas | Oct 2005 | A1 |
20050261649 | Cohen | Nov 2005 | A1 |
20050267429 | Cohen | Dec 2005 | A1 |
20060009744 | Edrman et al. | Jan 2006 | A1 |
20060020250 | Chester et al. | Jan 2006 | A1 |
20060058750 | Di Girolamo et al. | Mar 2006 | A1 |
20060069366 | Cole | Mar 2006 | A1 |
20060069367 | Waksmundzki et al. | Mar 2006 | A1 |
20060069375 | Waksmundzki et al. | Mar 2006 | A1 |
20060122548 | Abrams | Jun 2006 | A1 |
20060122572 | Suarez | Jun 2006 | A1 |
20060153904 | Smith et al. | Jul 2006 | A1 |
20060161122 | Erdman et al. | Jul 2006 | A1 |
20060178650 | Hakannsson et al. | Aug 2006 | A1 |
20060184147 | Hamed | Aug 2006 | A1 |
20060206047 | Lampe et al. | Sep 2006 | A1 |
20060206073 | Crane et al. | Sep 2006 | A1 |
20060206074 | Bernal et al. | Sep 2006 | A1 |
20060282028 | Howard et al. | Dec 2006 | A1 |
20070003604 | Jones | Jan 2007 | A1 |
20070040454 | Freudenberger et al. | Feb 2007 | A1 |
20070055209 | Patel et al. | Mar 2007 | A1 |
20070073254 | Ponomarenko et al. | Mar 2007 | A1 |
20070100308 | Miyairi | May 2007 | A1 |
20070167096 | Scott | Jul 2007 | A1 |
20070167884 | Mangrum et al. | Jul 2007 | A1 |
20070224903 | Chakravarty et al. | Sep 2007 | A1 |
20070225663 | Watt et al. | Sep 2007 | A1 |
20070254550 | Hamed et al. | Nov 2007 | A1 |
20070270070 | Hamed | Nov 2007 | A1 |
20080004581 | Babusik et al. | Jan 2008 | A1 |
20080015532 | Waksmundzki | Jan 2008 | A1 |
20080031748 | Ihle et al. | Feb 2008 | A1 |
20080082075 | Morrell-Schwartz | Apr 2008 | A1 |
20080090050 | Seyler et al. | Apr 2008 | A1 |
20080114317 | Seyler | May 2008 | A1 |
20080119586 | Byerly et al. | May 2008 | A1 |
20080132821 | Propp et al. | Jun 2008 | A1 |
20080147024 | Potts et al. | Jun 2008 | A1 |
20080243100 | Wu et al. | Oct 2008 | A1 |
20080255533 | Wu et al. | Oct 2008 | A1 |
20080306456 | Riesinger | Dec 2008 | A1 |
20080312621 | Hundorf et al. | Dec 2008 | A1 |
20080312622 | Hundorf et al. | Dec 2008 | A1 |
20090062760 | Wright et al. | Mar 2009 | A1 |
20090076472 | Goldwasser et al. | Mar 2009 | A1 |
20090112175 | Bissah et al. | Apr 2009 | A1 |
20090125004 | Shen et al. | May 2009 | A1 |
20090157024 | Song | Jun 2009 | A1 |
20090204087 | Herfert et al. | Aug 2009 | A1 |
20090216168 | Eckstein et al. | Aug 2009 | A1 |
20090234306 | Vitaris | Sep 2009 | A1 |
20090299251 | Buan | Dec 2009 | A1 |
20090299255 | Kazala, Jr. et al. | Dec 2009 | A1 |
20090299306 | Buan | Dec 2009 | A1 |
20100010461 | Herfert et al. | Jan 2010 | A1 |
20100030171 | Canada et al. | Feb 2010 | A1 |
20100036342 | Carlucci et al. | Feb 2010 | A1 |
20100048072 | Kauscheke et al. | Feb 2010 | A1 |
20100055158 | Vitaris et al. | Mar 2010 | A1 |
20100069858 | Olson | Mar 2010 | A1 |
20100106120 | Holm | Apr 2010 | A1 |
20100121298 | Seyler et al. | May 2010 | A1 |
20100125258 | Coulthard et al. | May 2010 | A1 |
20100168695 | Robles et al. | Jul 2010 | A1 |
20100217177 | Cali et al. | Aug 2010 | A1 |
20100256545 | Aali et al. | Oct 2010 | A1 |
20100256584 | Litvay | Oct 2010 | A1 |
20100256586 | Bergstrom et al. | Oct 2010 | A1 |
20100259406 | Caso et al. | Oct 2010 | A1 |
20100262091 | Larsson | Oct 2010 | A1 |
20100305526 | Robinson et al. | Dec 2010 | A1 |
20100318047 | Ducker et al. | Dec 2010 | A1 |
20100318052 | Ha et al. | Dec 2010 | A1 |
20100324516 | Braga et al. | Dec 2010 | A1 |
20110004172 | Eckstein et al. | Jan 2011 | A1 |
20110034892 | Buan | Feb 2011 | A1 |
20110052664 | Tennican et al. | Mar 2011 | A1 |
20110059329 | Dobrawa et al. | Mar 2011 | A1 |
20110060303 | Bissah et al. | Mar 2011 | A1 |
20110118683 | Weston | May 2011 | A1 |
20110125119 | Weismantel et al. | May 2011 | A1 |
20110137222 | Masini | Jun 2011 | A1 |
20110152813 | Ellingson | Jun 2011 | A1 |
20110178375 | Forster | Jul 2011 | A1 |
20110183109 | Seyler et al. | Jul 2011 | A1 |
20110184364 | Biggs et al. | Jul 2011 | A1 |
20110184370 | Seyler et al. | Jul 2011 | A1 |
20110208145 | Zhang et al. | Aug 2011 | A1 |
20110213286 | Riesinger | Sep 2011 | A1 |
20110218509 | Dontas | Sep 2011 | A1 |
20110223413 | Herfert et al. | Sep 2011 | A1 |
20110224631 | Simmons | Sep 2011 | A1 |
20110238026 | Zhang et al. | Sep 2011 | A1 |
20110245788 | Canada | Oct 2011 | A1 |
20110247636 | Pollack | Oct 2011 | A1 |
20110257572 | Locke et al. | Oct 2011 | A1 |
20110268932 | Catalan et al. | Nov 2011 | A1 |
20120004632 | Zhang et al. | Jan 2012 | A1 |
20120041402 | Greener | Feb 2012 | A1 |
20120045639 | Whitmore et al. | Feb 2012 | A1 |
20120051945 | Orndorff et al. | Mar 2012 | A1 |
20120053547 | Schroeder et al. | Mar 2012 | A1 |
20120065664 | Avitable et al. | Mar 2012 | A1 |
20120071848 | Zhang et al. | Mar 2012 | A1 |
20120095380 | Gergley et al. | Apr 2012 | A1 |
20120095426 | Visscher et al. | Apr 2012 | A1 |
20120101465 | Mcguire, Jr. | Apr 2012 | A1 |
20120123311 | Weidemann-Hendrickson et al. | May 2012 | A1 |
20120136329 | Carney | May 2012 | A1 |
20120143158 | Yang et al. | Jun 2012 | A1 |
20120165765 | Barta et al. | Jun 2012 | A1 |
20120172778 | Rastegar et al. | Jul 2012 | A1 |
20120197229 | Buan | Aug 2012 | A1 |
20120203145 | Nilsson | Aug 2012 | A1 |
20120203189 | Barta et al. | Aug 2012 | A1 |
20120220968 | Confalone et al. | Aug 2012 | A1 |
20120238932 | Atteia et al. | Sep 2012 | A1 |
20120302440 | Theliander et al. | Nov 2012 | A1 |
20120308780 | Rottger et al. | Dec 2012 | A1 |
20120310186 | Moghe et al. | Dec 2012 | A1 |
20120310197 | Thomas | Dec 2012 | A1 |
20120330253 | Robinson et al. | Dec 2012 | A1 |
20130012902 | Rovaniemi | Jan 2013 | A1 |
20130066285 | Locke et al. | Mar 2013 | A1 |
20130066289 | Song et al. | Mar 2013 | A1 |
20130090616 | Neubauer | Apr 2013 | A1 |
20130116635 | Fleischmann | May 2013 | A1 |
20130138054 | Fleischmann | May 2013 | A1 |
20130144227 | Locke et al. | Jun 2013 | A1 |
20130144230 | Wu et al. | Jun 2013 | A1 |
20130150814 | Buan | Jun 2013 | A1 |
20130165878 | Heagle | Jun 2013 | A1 |
20130190705 | Vess et al. | Jul 2013 | A1 |
20130274688 | Weston | Oct 2013 | A1 |
20130296762 | Toth | Nov 2013 | A1 |
20130302545 | Schnelker et al. | Nov 2013 | A1 |
20130310781 | Phillips et al. | Nov 2013 | A1 |
20130331822 | Patel et al. | Dec 2013 | A1 |
20140024989 | Ueda | Jan 2014 | A1 |
20140094730 | Greener | Apr 2014 | A1 |
20140114268 | Auguste et al. | Apr 2014 | A1 |
20140200533 | Whyte et al. | Jul 2014 | A1 |
20140228791 | Hartwell | Aug 2014 | A1 |
20140316359 | Collinson et al. | Oct 2014 | A1 |
20150032035 | Banwell et al. | Jan 2015 | A1 |
20150119831 | Robinson et al. | Apr 2015 | A1 |
20150119832 | Locke | Apr 2015 | A1 |
20150119833 | Coulthard et al. | Apr 2015 | A1 |
20150159066 | Hartwell et al. | Jun 2015 | A1 |
20150182677 | Collinson et al. | Jul 2015 | A1 |
20150190286 | Allen et al. | Jul 2015 | A1 |
20150216733 | Allen et al. | Aug 2015 | A1 |
20150308994 | Hammond et al. | Oct 2015 | A1 |
20150320602 | Locke et al. | Nov 2015 | A1 |
20160000611 | Niederauer et al. | Jan 2016 | A1 |
20160136339 | Begin et al. | May 2016 | A1 |
20160144084 | Collinson et al. | May 2016 | A1 |
20160298620 | Cordoba et al. | Oct 2016 | A1 |
20160317357 | Vitaris et al. | Nov 2016 | A1 |
20170007751 | Hartwell et al. | Jan 2017 | A1 |
20170128642 | Buan | May 2017 | A1 |
20170181896 | Hartwell | Jun 2017 | A1 |
20170181897 | Hartwell | Jun 2017 | A1 |
20170368239 | Askem et al. | Dec 2017 | A1 |
20180133378 | Askem et al. | May 2018 | A1 |
20180221211 | Luckemeyer et al. | Aug 2018 | A1 |
20180235646 | Locke et al. | Aug 2018 | A1 |
20180296397 | Askem et al. | Oct 2018 | A1 |
20180318476 | Askem et al. | Nov 2018 | A1 |
20190240385 | Hartwell et al. | Aug 2019 | A1 |
20200121833 | Askem et al. | Apr 2020 | A9 |
20200139023 | Haggstrom et al. | May 2020 | A1 |
Number | Date | Country |
---|---|---|
101744688 | Jun 2010 | CN |
102038575 | May 2011 | CN |
103405846 | Nov 2013 | CN |
34 43 101 | May 1986 | DE |
20 2004 017 052 | Jul 2005 | DE |
0 257 916 | Mar 1988 | EP |
0 340 018 | Nov 1989 | EP |
0392640 | Oct 1990 | EP |
0630629 | Dec 1994 | EP |
0 549 781 | Sep 1996 | EP |
0 748 894 | Dec 1996 | EP |
0 599 871 | Apr 1997 | EP |
0 875 224 | Nov 1998 | EP |
0 941 726 | Sep 1999 | EP |
1 013 290 | Jun 2000 | EP |
1 048 278 | Nov 2000 | EP |
1 066 809 | Jan 2001 | EP |
1 139 951 | Oct 2001 | EP |
1 312 328 | May 2003 | EP |
1 452 156 | Sep 2004 | EP |
1 476 217 | Mar 2008 | EP |
1 955 887 | Aug 2008 | EP |
2 161 011 | Mar 2010 | EP |
2 263 627 | Dec 2010 | EP |
2 366 721 | Sep 2011 | EP |
2 021 046 | Mar 2012 | EP |
2 462 908 | Jun 2012 | EP |
2 529 767 | Dec 2012 | EP |
2 544 642 | Jan 2015 | EP |
2 648 668 | Jan 2015 | EP |
1 163 907 | Oct 1958 | FR |
1255395 | Dec 1971 | GB |
2355228 | Apr 2001 | GB |
2435422 | Aug 2007 | GB |
2435423 | Aug 2007 | GB |
2489947 | Oct 2012 | GB |
2496310 | May 2013 | GB |
2014-168573 | Sep 2014 | JP |
101333344 | Nov 2013 | KR |
WO 198300742 | Mar 1983 | WO |
WO 199111161 | Aug 1991 | WO |
WO 199111162 | Aug 1991 | WO |
WO 199301778 | Feb 1993 | WO |
WO 199301779 | Feb 1993 | WO |
WO 199301780 | Feb 1993 | WO |
WO 199301781 | Feb 1993 | WO |
WO 199309745 | May 1993 | WO |
WO 199311726 | Jun 1993 | WO |
WO 1994023677 | Oct 1994 | WO |
WO 199513042 | May 1995 | WO |
WO 199513776 | May 1995 | WO |
WO 199513779 | May 1995 | WO |
WO 1995014451 | Jun 1995 | WO |
WO 199516424 | Jun 1995 | WO |
WO 1995029959 | Nov 1995 | WO |
WO 1996005873 | Feb 1996 | WO |
WO 199607783 | Mar 1996 | WO |
WO 199711658 | Apr 1997 | WO |
WO 199714384 | Apr 1997 | WO |
WO 199820916 | May 1998 | WO |
WO 199822279 | May 1998 | WO |
WO 199904830 | Feb 1999 | WO |
WO 199939671 | Aug 1999 | WO |
WO 199945876 | Sep 1999 | WO |
WO 199945878 | Sep 1999 | WO |
WO 199956687 | Nov 1999 | WO |
WO 200000016 | Jan 2000 | WO |
WO 200000127 | Jan 2000 | WO |
WO 200000129 | Jan 2000 | WO |
WO 2000000130 | Jan 2000 | WO |
WO 200000131 | Jan 2000 | WO |
WO 2000040190 | Jul 2000 | WO |
WO 200042957 | Jul 2000 | WO |
WO 2000059438 | Oct 2000 | WO |
WO 2001072251 | Oct 2001 | WO |
WO 2001090465 | Nov 2001 | WO |
WO 200217840 | Mar 2002 | WO |
WO 2002024132 | Mar 2002 | WO |
WO 2002026180 | Apr 2002 | WO |
WO 2002076379 | Oct 2002 | WO |
WO 2003073971 | Sep 2003 | WO |
WO 2004043321 | May 2004 | WO |
WO 2004077387 | Sep 2004 | WO |
WO 2004098474 | Nov 2004 | WO |
WO 2005025447 | Mar 2005 | WO |
WO 2005123170 | Dec 2005 | WO |
WO 2006052839 | May 2006 | WO |
WO 2006105305 | Oct 2006 | WO |
WO 2007035038 | Mar 2007 | WO |
WO 2007040606 | Apr 2007 | WO |
WO 2007077214 | Jul 2007 | WO |
WO 2007077216 | Jul 2007 | WO |
WO 2007116347 | Oct 2007 | WO |
WO 2008039223 | Apr 2008 | WO |
WO 2009066105 | May 2009 | WO |
WO 2009124100 | Oct 2009 | WO |
WO 2009146441 | Dec 2009 | WO |
WO 2009152021 | Dec 2009 | WO |
WO 2009158128 | Dec 2009 | WO |
WO 2010032951 | Mar 2010 | WO |
WO 2010082872 | Jul 2010 | WO |
WO-2010075180 | Jul 2010 | WO |
WO 2010089448 | Aug 2010 | WO |
WO 2010139926 | Dec 2010 | WO |
WO 2010142959 | Dec 2010 | WO |
WO 2011023650 | Mar 2011 | WO |
WO 2011058311 | May 2011 | WO |
WO 2011113728 | Sep 2011 | WO |
WO 2011128651 | Oct 2011 | WO |
WO 2011135285 | Nov 2011 | WO |
WO 2011135286 | Nov 2011 | WO |
WO 2011135287 | Nov 2011 | WO |
WO 2011144888 | Nov 2011 | WO |
WO 2011152368 | Dec 2011 | WO |
WO 2012035787 | Mar 2012 | WO |
WO 2012041296 | Apr 2012 | WO |
WO 2012074512 | Jun 2012 | WO |
WO 2012106590 | Aug 2012 | WO |
WO 2012131237 | Oct 2012 | WO |
WO 2012140378 | Oct 2012 | WO |
WO 2012143665 | Oct 2012 | WO |
WO 2012150235 | Nov 2012 | WO |
WO 2012168298 | Dec 2012 | WO |
WO 2013010907 | Jan 2013 | WO |
WO 2013014317 | Jan 2013 | WO |
WO 2013029652 | Mar 2013 | WO |
WO 2013060732 | May 2013 | WO |
WO 2013064852 | May 2013 | WO |
WO 2013083800 | Jun 2013 | WO |
WO 2013090810 | Jun 2013 | WO |
WO 2013136181 | Sep 2013 | WO |
WO 2013149078 | Oct 2013 | WO |
WO 2014008348 | Jan 2014 | WO |
WO 2014014922 | Jan 2014 | WO |
WO 2014016759 | Jan 2014 | WO |
WO 2014020440 | Feb 2014 | WO |
WO 2014020443 | Feb 2014 | WO |
WO 2014108476 | Jul 2014 | WO |
WO 2014113253 | Jul 2014 | WO |
WO 2015022334 | Feb 2015 | WO |
WO 2015022340 | Feb 2015 | WO |
WO 2015031216 | Mar 2015 | WO |
WO 2015110410 | Jul 2015 | WO |
WO 2015130608 | Sep 2015 | WO |
WO 2016018448 | Feb 2016 | WO |
9605526 | Feb 1997 | ZA |
Entry |
---|
U.S. Appl. No. 61/828,604, filed May 29, 2013, Collinson et al. |
U.S. Appl. No. 61/829,187, filed May 30, 2013, Collinson et al. |
U.S. Appl. No. 61/906,865, filed Nov. 20, 2013, Collinson et al. |
U.S. Appl. No. 61/907,350, filed Nov. 21, 2013, Collinson et al. |
“Technology Watch”, May 1989, in 1 page. |
Hersle, K. et al., “Uses of Dextranomer Absorbent Pads After Cryosurgery of Cutaneous Malignancies”, The Journal of Dermatologic Surgery and Oncology, vol. 8, Jan. 1982, in 4 pages. |
International Search Report and Written Opinion, re PCT Application No. PCT/EP2015/063373, dated Sep. 2, 2015. |
International Preliminary Report on Patentability, re PCT Application No. PCT/EP2015/063373, dated Dec. 29, 2016. |
International Search Report and Written Opinion, re PCT Application No. PCT/GB2014/050786, dated Jun. 12, 2014. |
International Search Report, re PCT Application No. PCT/EP2014/071510, dated Feb. 5, 2015. |
International Preliminary Report for Patentability, re PCT Application No. PCT/EP2014/071510, dated Apr. 21, 2016. |
International Search Report and Written Opinion, re PCT Application No. PCT/EP2014/071520, dated Feb. 5, 2015. |
Kendall ULTEC Hydrocolloid Dressing (4″x4′), product ordering page, web page downloaded Jul. 13, 2014, in 1 page. |
Advantec MFS, Inc., “Membrane Filters” (catalog), accessed Jan. 29, 2016 (publication date unknown, but believed to be copyright 2001-2011), in 17 pages. URL: http://www.advantecmfs.com/catalog/filt/membrane.pdf#page=11. |
Protz, K., “Moderne Wundauflagen unterstutzen Heilungsprozess”, Wundversorgung: Indikation und Anwendung, Geriatrie Journal, Apr. 2005, pp. 3333-3339, with translation, in 17 pages. |
Smith & Nephew, “PICO Single Use Negative Pressure Wound Therapy System”, spiral booklet, Mar. 2011, in 7 pages. |
SNAP—BLUE Foam Dressing—color brochure (L22162 rev. 130429), Jun. 2013, in 2 pages. |
SNAP—Product Overview—Wound Care System, as captured on Wayback Machine on Nov. 17, 2011. |
Number | Date | Country | |
---|---|---|---|
20200297541 A1 | Sep 2020 | US |
Number | Date | Country | |
---|---|---|---|
62013989 | Jun 2014 | US | |
62085774 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15319743 | US | |
Child | 16841516 | US |