Wound dressing, patch member and method of sensing one or more wound parameters

Information

  • Patent Grant
  • 11690570
  • Patent Number
    11,690,570
  • Date Filed
    Friday, March 9, 2018
    6 years ago
  • Date Issued
    Tuesday, July 4, 2023
    a year ago
Abstract
In some embodiments, a wound dressing includes at least one motion sensor for sensing a motion related parameter associated with motion of the wound dressing; and at least one further sensor for sensing a healing related parameter associated with wound healing at a region of tissue of a wound or proximate a wound covered by the wound dressing.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a U.S. national stage application of International Patent Application No. PCT/EP2018/055952, filed Mar. 9, 2018, which claims the benefit of GB Application No. 1703787.0, filed Mar. 9, 2017, and GB Application No. 1703790.4, filed Mar. 9, 2017.


This disclosure relates to a wound dressing, a patch member configured to be secured to a patient's body proximate to a wound, and a method of sensing at least one parameter associated with a wound or a region of tissue proximate a wound.


Wound healing is natural process performed by the human body in response to injury. The amount of time taken for a wound to heal is dependent on many different factors which include the human body's ability to heal itself and the treatments that may be applied in order to accelerate wound healing. Understanding the healing status of a wound and being able to monitor the healing process helps to inform decisions on further treatment of the wound and can also assist in the development of future wound therapies.


One factor that is known to be associated with wound healing is the amount of blood that is supplied to blood vessels, such as capillaries, within tissue at or near a wound. The process of supplying blood to blood vessels within tissue is known as blood perfusion. Oxygen and nutrients carried by blood within wounded tissue are essential for wound healing and so the amount of blood perfusion is known to correlate well with wound healing. The amount of blood perfusion is typically a measure of a parameter associated with a volume of blood that is supplied to tissue during each cardiac cycle or over a predetermined period of time. Various techniques have been developed for determining an amount of blood perfusion in tissue. For example, it is known that oxygen saturation is correlated with blood perfusion and so spectroscopy techniques such as near-infrared imaging have been developed to monitor oxygen saturation in a wound and the surrounding tissue. However, such conventional techniques require specialist equipment that is typically bulky, expensive and must be operated by an experienced operator. Therefore, when used to inspect a wound, a patient must regularly attend a clinic at which the equipment is located for assessment of wound healing. They are also susceptible to movement of a patient, which can lead to erroneous results. The techniques are therefore unsuitable for frequent periodic assessments of a patient or long-term assessments of a patient when at home.


Various techniques have been developed to monitor healing status and healing progress of a wound. Such techniques rely on specialist optical equipment that is typically bulky, expensive and must be operated by an experienced clinician. Such techniques are therefore unsuitable for frequent periodic assessments of a patient or long-term assessments of a patient when at home.


It is an aim of the present disclosure to at least partly mitigate the above-mentioned problems.


It is an aim of certain embodiments of the present disclosure to provide a means to assess wound healing at or proximate a wound that does not interfere with a patient's daily activities.


It is an aim of certain embodiments of the present disclosure to provide a reliable and accurate means to assess wound healing at or proximate a wound which is not adversely affected by motion of a patient.


It is an aim of certain embodiments of the present disclosure to provide a small, portable, easy to use, inexpensive and disposable means for monitoring wound healing.


It is an aim of certain embodiments of the disclosure to provide a means for remote automated monitoring of wound healing.


According to some embodiments, there is provided a wound dressing comprising at least one motion sensor for sensing a motion related parameter associated with motion of the wound dressing; and at least one further sensor for sensing a healing related parameter associated with wound healing at a region of tissue of a wound or proximate a wound covered by the wound dressing.


The healing related parameter may be a parameter associated with blood perfusion within the region of tissue.


The healing related parameter may be a parameter associated with oxygen saturation of blood within the region of tissue.


The wound dressing may further comprise a processing element for processing an output of the motion sensor and/or an output of the further sensor.


The processing element may be configured to determine that the output of the motion sensor satisfies a predetermined condition corresponding to a predetermined amount of motion of the wound dressing.


The predetermined condition may correspond to a rate of acceleration of the wound dressing which is less than a predetermined rate of acceleration.


The wound dressing may comprise a memory element and the processing element is configured to generate data which corresponds to an output of the motion sensor and data which corresponds to an output of the further sensor and to store said data in the memory element.


The data which corresponds to an output of the motion sensor and data which corresponds to an output of the further sensor may be generated from contemporaneous outputs from the motion sensor and the further sensor.


The processing element may be configured to retain stored data corresponding to an output of the further sensor only when the output of the motion sensor satisfies the predetermined condition corresponding to a predetermined amount of motion of the wound dressing.


The processing element may be configured to discard data corresponding to an output of the further sensor when the output of the motion sensor fails to satisfy the predetermined condition corresponding to a predetermined motion of the wound dressing.


The stored data may be associated with a trace associated with the output of the motion sensor and a trace associated with the output of the further sensor over a sample period.


The sample period may be not less than one second. The sample period may be not less than two seconds. The sample period may be not less than five seconds. The sample period may be not less than ten seconds.


The sample period may be not greater than sixty seconds. The sample period may be not greater than thirty seconds. The sample period may be not greater than fifteen seconds.


The memory element may be configured to store data representing the predetermined condition.


The wound dressing may further comprise a transmitter configured to transmit data stored in the memory element to a remote receiver.


The further sensor may be an optical sensor. The further sensor may be a pulse oximeter sensor. The motion sensor may comprise an accelerometer. The accelerometer may be a multiple axes accelerometer.


The wound dressing may be an island-type dressing having a central wound protecting portion which, in use, overlies a wound and a border portion.


According to some embodiments, there is provided a patch member configured to be secured to a portion of a patient's body proximate a wound, the patch comprising:


at least one motion sensor for sensing a motion related parameter associated with motion of the patch member; and at least one further sensor for sensing a characteristic associated with wound healing at a region of tissue of the portion of the patient's body to which the patch member is secured.


According to some embodiments, there is provided a wound monitoring method comprising the steps: sensing a motion related parameter associated with motion of a patient and a healing related parameter associated with wound healing at a region of tissue of the patient at or proximate to a wound; determining that the sensed motion related parameter satisfies a predetermined condition corresponding to a predetermined amount of motion of the patient; and storing and/or transmitting data which represents the sensed healing related parameter associated with wound healing.


The step of sensing the motion related parameter and healing related parameter may comprise the step of monitoring the motion related parameter and the healing related parameter over a sample period.


The sample period may be not less than one second. The sample period may be not less than two seconds. The sample period may be not less than five seconds. The sample period may be not less than ten seconds.


The sample period may be not greater than sixty seconds. The sample period may be not greater than thirty seconds. The sample period may be not greater than fifteen seconds.


The predetermined condition corresponding to a predetermined amount of motion of the patient may be a condition in which the acceleration of the patient or the portion of the patient comprising the region of tissue at or proximate to the wound is below a threshold value.


The motion related parameter may be a pulse frequency of pulsatile arterial blood flow through the target region of tissue and the predetermined condition corresponding to a predetermined amount of motion of the patient is a predetermined pulse frequency.


The healing related parameter may be associated with an amount of oxygen saturation at the region of tissue at or proximate to the wound.


The stored data may be data collected over a sample period in which the sensed motion related parameter satisfies the predetermined condition.


The method may further comprise a learning step in which the sample period is set based on attributes of the patient.


The predetermined condition may correspond to a predetermined amount of motion of the patient is set based on attributes of the patient.


The method may further comprise subsequently repeating the steps of sensing the motion and healing related parameters, determining that the motion related parameter satisfies the predetermined condition and storing data representing the parameter associated with wound healing to compile a plurality of records of data associated with wound healing.


The method may further comprise the step of transmitting the data comprising the plurality of records to a remote device for processing.


According to some embodiments, there is provided a wound dressing comprising at least one motion sensor for sensing a motion related parameter associated with motion of the wound dressing; at least one further sensor for sensing a healing related parameter associated with wound healing at a region of tissue of a wound or proximate a wound covered by the wound dressing; and a processing element for processing an output of the motion sensor and/or an output of the further sensor, the processing element configured to: determine if the output of the motion sensor satisfies a predetermined condition corresponding to a predetermined amount of motion of the wound dressing; in response to determining that the output of the motion sensor satisfies the predetermined condition, retain data corresponding to the output of the further sensor; and in response to determining that that output of the motion sensor fails to satisfy the predetermined condition, discard the data corresponding to the output of the further sensor.


According to some embodiments, there is provided a wound monitoring method comprising the steps: sensing a motion related parameter associated with motion of a patient and a healing related parameter associated with wound healing at a region of tissue of the patient at or proximate to a wound; determining if the sensed motion related parameter satisfies a predetermined condition corresponding to a predetermined amount of motion of the patient; in response to determining that the sensed motion related parameter satisfies the predetermined condition, storing and/or transmitting data which represents the sensed healing related parameter associated with wound healing; and in response to determining that the sensed motion related parameter fails to satisfy the predetermined condition, discarding the data which represents the sensed healing related parameter associated with wound healing.


According to some embodiments, there is provided a wound dressing comprising: at least one first sensor for sensing a first parameter associated with a wound or a region of tissue proximate a wound; at least one processing element; at least one memory element, and at least one energy storage device for storing energy and supplying energy to at least one of the first sensor, the processing element and the memory element, wherein the processing element is configured to process an output of the first sensor and to store data associated with the output in the memory element.


The energy storage device may comprise a battery. The energy storage device may comprise a capacitor. The energy storage device may comprise a fuel cell.


The wound dressing may further comprise an energy generator. The energy generator may be configured to generate energy from movement of the wound dressing. The energy generator may comprise an electromagnetic energy generator arranged to generate energy from movement of the wound dressing and to store energy in the energy storage device.


The wound dressing may further comprise an accelerometer configured to sense motion of a body to which the wound dressing is secured.


The energy generator may comprise a piezo electric generator.


The energy generator may be a thermoelectric generator configured to generate electrical energy from a temperature difference between the temperature of a body to which the wound dressing is applied and ambient temperature.


The wound dressing may further comprise a transmitter for transmitting data stored in the memory element.


The first sensor may comprise a pulse sensor. The pulse sensor may comprise a pulse oximeter sensor.


The first sensor may be one of a plurality of sensors comprising the wound dressing for sensing a first parameter associated with a wound or a region of tissue proximate a wound.


According to some embodiments, there is provided a method of sensing at least one parameter associated with a wound or a region of tissue proximate a wound, comprising the steps of: securing a wound dressing comprising a wound protecting portion over a wound whereby the wound protecting portion overlies the wound such that the wound dressing is fixed with respect to the wound; sensing a parameter associated with the wound or a region of tissue proximate the wound using a sensor integral to the wound dressing; processing an output of the sensor using a processing element integral to the wound dressing; and storing data from the processing element in a memory element integral to the wound dressing.


The steps of sensing, processing and storing may be repeated to compile a plurality of records of data associated with the wound.


The method may further comprise a step of sensing motion of a body to which the wound dressing is secured using an accelerometer integral to the wound dressing.


The method may further comprise the step of generating energy using an energy generator configured to generate energy from movement of the wound dressing from movement of the wound dressing.


The energy generated by the energy generator may be stored in an energy storage device integral to the wound dressing.


According to some embodiments, there is provided a method of sensing at least one parameter associated with a wound or a region of tissue proximate a wound, comprising the steps of: sensing a parameter associated with the wound or a region of tissue proximate the wound using a sensor integral to a wound dressing, the wound dressing comprising a wound protecting portion secured over a wound whereby the wound protecting portion overlies the wound such that the wound dressing is fixed with respect to the wound; processing an output of the sensor using a processing element integral to the wound dressing; and storing data from the processing element in a memory element integral to the wound dressing.


The steps of sensing, processing and storing may be repeated to compile a plurality of records of data associated with the wound.


The method may further comprise a step of sensing motion of a body to which the wound dressing is secured using an accelerometer integral to the wound dressing.


The method may further comprise the step of generating energy using an energy generator configured to generate energy from movement of the wound dressing from movement of the wound dressing.


The energy generated by the energy generator may be stored in an energy storage device integral to the wound dressing.


According to some embodiments, there is provided a method of sensing at least one parameter associated with a wound or a region of tissue proximate a wound, comprising the steps of: sensing a parameter associated with the wound or a region of tissue proximate the wound using a sensor integral to a wound dressing, the wound dressing comprising a wound protecting portion secured over a wound whereby the wound protecting portion overlies the wound such that the wound dressing is fixed with respect to the wound; processing an output of the sensor using a processing element integral to the wound dressing; and storing data from the processing element in a memory element integral to the wound dressing, wherein the sensor comprises a pulse sensor.


According to some embodiments, there is provided a wound dressing comprising: at least one first sensor for sensing a first parameter associated with a wound or a region of tissue proximate a wound; at least one processing element; at least one memory element, and at least one energy storage device for storing energy and supplying energy to at least one of the first sensor, the processing element and the memory element, wherein the processing element is configured to process an output of the first sensor and to store data associated with the output in the memory element, wherein: the wound dressing further comprises an energy generator, the energy generator comprises an electromagnetic energy generator arranged to generate energy from movement of the wound dressing and to store energy in the at least one energy storage device, and the first sensor comprises a pulse sensor.


According to some embodiments, there is provided a wound dressing comprising: at least one first sensor for sensing a first parameter associated with a wound or a region of tissue proximate a wound; at least one processing element; at least one memory element, and at least one energy storage device for storing energy and supplying energy to at least one of the first sensor, the processing element and the memory element, wherein the processing element is configured to process an output of the first sensor and to store data associated with the output in the memory element; and an accelerometer configured to sense motion of a body to which the wound dressing is secured, wherein the first sensor comprises a pulse sensor.


Certain embodiments of the present disclosure allow for a parameter associated with wound healing to be sensed when it is determined that any motion of a body or portion of a body of a patient to which a wound dressing in accordance with certain embodiments of the disclosure is applied will not adversely affect the measurement obtained.


Certain embodiments of the present disclosure allow for wound healing to be assessed when a body or part of a body of a patient to which a wound dressing in accordance with certain embodiments of the disclosure is applied is determined to be motionless.


Certain embodiments of the present disclosure allow for wound healing to be monitored without interfering with a patient's daily activities.


Certain embodiments of the present disclosure allow for data associated with a wound or a region of tissue proximate a wound, such as data associated with wound healing, to be collected and stored by a wound dressing for processing or subsequent retrieval.


Certain embodiments of the present disclosure allow for data associated with wound or a region of tissue proximate a wound, such as data associated with wound healing, to be collected and stored by a wound dressing over a prolonged period of time or intermittent periods of time without having to be connected to an external power source or external device during the periods of time or between the intermittent periods of time.





Embodiments of the present disclosure will now be described, by way of example only, with reference to the accompanying drawings in which:



FIG. 1 is a schematic representation of apparatus comprising a wound dressing and a monitoring device in use;



FIG. 2 is a schematic representation of key components of the apparatus shown in FIG. 1;



FIG. 3 is a schematic representation of a sensor for sensing a parameter associated with wound healing;



FIG. 4 is a flow chart depicting a method of monitoring wound healing at a target region;



FIG. 5 is an example of an output produced by the apparatus shown in FIG. 1;



FIG. 6 is a further example of an output produced by the apparatus shown in FIG. 1;



FIG. 7 shows a further embodiment of an apparatus comprising a wound dressing and a monitoring device;



FIG. 8 shows a further embodiment of an apparatus comprising a wound dressing and a monitoring device;



FIG. 9 shows a wound dressing; and



FIG. 10 is a flow chart showing steps associated with use of a wound dressing.






FIG. 1 shows apparatus 2 comprising a wound dressing 4 secured to a patient's arm 6, and a monitoring device 8.


The wound dressing 4 includes a wound contact layer which extends across a whole lower surface of the wound dressing and a cover layer that likewise extends across the whole of the wound dressing 4. The wound dressing 4 comprises a central wound protecting portion 10 spaced away from an edge of the wound dressing 4, a peripheral securing portion 12 and a sensor module 14 which is formed integrally with the securing portion 12. The central wound protecting portion 10 may comprise one or multiple internal layers according to use such as, but not limited to wound exudate absorbing layers, fluid transport layers, spacer layers and/or anti-bacterial layers. The securing portion 12 has an adhesive on its lower surface for securing the wound dressing 4 to the arm 6 of the patient.


The monitoring device 8 has an integrated display 16 on which information is displayed to a user. The monitoring device 8 may be a hand-held device and may be a smartphone or tablet running a monitoring app.



FIG. 2 is a system diagram representing certain components of the apparatus 2 shown in FIG. 1. Components of the wound dressing 4 and the monitoring device 8 are enclosed, respectively, by broken lines.


The sensor module 14 comprises a first sensor in the form of a motion sensor 18 for sensing motion of the sensor 18 and a second sensor which is an optical sensor 20 for sensing a parameter corresponding to wound healing. In the example described this is a parameter associated with oxygen saturation (SpO2), at a target region of the skin tissue of the arm 6 underneath the optical sensor 20. The position of the motion sensor 18 is fixed with respect to the optical sensor 20, wound protecting portion 10, and peripheral securing portion 12 such that they move together. In the embodiment shown, the motion sensor 18 is a single-axis accelerometer and the optical sensor 20 is a pulse oximeter sensor. The sensor module 14 further comprises signal processing electronics 22 connected to the sensors 18, 20, a first controller or processor 24 configured to process an output from the signal processing electronics 22, a data storage device in the form of a memory element 26, and a transmitter 28. Outputs from the motion sensor 18 and the optical sensor 20 is received by the signal processing electronics 22 before being processed by the first processor 24.


In addition to the display 16, the monitoring device 8 comprises a second controller or processor 30 and a receiver 32 for receiving signals transmitted by the transmitter 28. The signals may be transmitted wirelessly via a short-range communication protocol.



FIG. 3 is a schematic representation of the optical sensor 20. The optical sensor 20 comprises two light emitters in the form of a first light emitting diode (first LED) 34 and a second light emitting diode (second LED) 36, and a light detector in the form of a photodiode 38.


The first LED 34 is configured to emit light in the near-infrared and/or infrared band of the visible spectrum, for example, light having a centre wavelength of 905 nm. The second LED 36 is configured to emit light in the red band of the visible spectrum, for example, light having a centre wavelength of 660 nm. Other numbers of LEDs and other suitable wavelengths could be utilised.


The photodiode 38 is configured to detect light at the wavelengths of light emitted by the first and second LEDs 34, 36.


The first and second LEDs 34, 36 and the photodiode 38 are disposed within a housing 40 and are separated by a shield 42 which is opaque to the wavelength or range of wavelengths of light detectable by the photodiode 38. The shield 42 prevents emitted light from being transmitted directly to the photodiode 38. The lower portion of the housing 40 is open or transparent so that light emitted by the first and second LEDs 34, 36 can pass through the lower portion to the skin tissue of the arm 6 and light reflected or scattered by the skin tissue of the arm 6 can pass back through the lower portion of the housing 40 to the photodiode 38. The shield 42 is spaced slightly from the skin tissue so that it does not contact the skin and so does not prevent light from passing underneath the shield 42. Light received by the photodiode 38 is therefore light which has been emitted by at least one of the LEDs 34, 36 and either reflected, scattered or absorbed and reemitted by the skin tissue of the arm 6.


A method of determining a parameter associated with an amount of skin perfusion in tissue surrounding a wound area using the apparatus 1 will now be described with reference to FIGS. 1 to 6.


In use, the wound dressing 4 is secured to the patient's arm 6 over a wound, as shown in FIG. 1, so that the lower portion of the housing 40 of the optical sensor 20, which is open or transparent, is adjacent the target area of skin tissue, as shown in FIGS. 2 and 3.


The first and second LEDs 34, 36 emit light towards the skin tissue of the arm 6 at each of their respective wavelengths. The light is then either reflected, scattered or absorbed by the skin tissue depending on the wavelength of the light and the absorption/scattering characteristics of the skin tissue and the blood within the skin tissue.


For instance, the skin tissue can be expected to contain both arterial and venous blood. The amount of venous blood within the tissue remains substantially constant throughout the duration of a cardiac cycle (or varies independently of the cardiac cycle). The arterial blood, however, varies in accordance with the cardiac cycle such that a pressure pulse of arterial blood is created each time the heart pumps blood to the tissue.


It is this pulsatile arterial blood which delivers oxygen to the wound area and so it is the amount of oxygen saturation of pulsatile arterial blood which provides an indicator of wound healing.


At least some of the light which is not absorbed by the skin tissue or the blood within the skin tissue is reflected towards the photodiode 38.


The photodiode 38 produces an output signal which represents the amount of reflected light received by the photodiode 38 from each LED 34, 36.


The signal therefore has two components: an infrared/near-infrared component (referred to hereafter as infrared component for clarity) which represents the amount of reflected light received from the first LED 34 and a red component which represents the amount of reflected light received from the second LED 36. The signal may be a time-multiplexed signal or a combined signal that comprises both components.



FIG. 5 shows traces IR, R which represent the components of the output from the optical sensor 20. Trace IR represents a component of the output from the optical sensor 20 which is indicative of the amount of infrared light emitted by the first LED 34 that is received by the photodiode 38. Trace R represents a component of the output from the optical sensor 20 which is indicative of the amount of red light emitted by the second LED 36 which is received by the photodiode 38. Each trace IR, R comprises a series of regular pulses which represent pulsation of arterial blood through the underlying tissue.


Each of the traces IR, R has a pulsatile component (which represents the amount of light absorbed by the pulsatile arterial blood) and a non-pulsatile component (which represents the amount of light skin tissue, and non-pulsatile arterial and venous blood). The peaks 5000,1,2 . . . n of the trace IR are spaced apart with a frequency dependent upon the physiology of the patient. The peaks 5200,1,2 . . . n of the R trace are also spaced apart with a same frequency as the peaks of the IR trace which is dependent on the physiology of the patient. The troughs 5100,1,2 . . . n of the IR trace and the troughs 5300,1,2 . . . n of the R trace are associated with the respective non-pulsatile components (in the absence of a pulsatile component) and therefore provide an indication of the amount of light absorbed at each frequency by the skin tissue and non-pulsatile blood.


Trace M shows a component of the output signal of the motion sensor 18 which represents acceleration of the motion sensor 18. In this instance, the trace M represents acceleration along a single axis. The components of the outputs from the motion sensor 18 and the optical sensor 20 represented by each trace IR, R, M may are isolated from the respective output signals by the signal processing electronics 22 before being processed by the first processor 24. In this sense the trace M amplitude, time variation and/or the peak to peak value can be used to determine how still a patient is.



FIG. 4 is a flow chart illustrating a process of obtaining a measurement and subsequently processing the measurement. In order to take a measurement in accordance with step S1010, the first processor 24 starts recording the outputs of the sensors 18, 20 simultaneously at time t1. Referring to FIG. 5, at time t2, after a predetermined period of time TS has elapsed, the first processor 24 stores the monitored outputs of the sensors 18, 20 obtained over the predetermined period of time TS temporarily in the memory element 26. The predetermined period of time TS defines a sampling period over which data is collected and should be set to include at least one pulse of pulsatile arterial blood within the sample data, and may be set to include a plurality of pulses of arterial blood, for example at least 2, 5 or 10 pulses. An adult typically has a heart rate of between 40 and 100 beats per minute. The predetermined period of time TS may therefore be at least one second, such as at least two, five or ten seconds. It will be appreciated that the longer the predetermined period of time TS, the greater the chance of movement of the patient and hence wound dressing 4. Consequently, the predetermined period of time TS should be not greater than sixty seconds, for example not greater than thirty seconds or not greater than fifteen seconds. In the embodiment shown, the predetermined period of time TS is ten seconds which is sufficiently to obtain a good quality data sample without a high risk of the patient moving to an extent that the quality and accuracy of the data is adversely affected. In order to improve accuracy multiple data samples could be combined. The data sampling rate for each trace IR, R, M is between several Hz and several tens of kHz.


As illustrated by step S1020, the trace M obtained over the predetermined period of time TS is analysed by the first processor 24 to determine whether the motion sensor 18, and hence the wound dressing 4, has experienced motion during the sampling period which could be expected to result in an erroneous or misrepresentative reading by the optical sensor 20. Any disturbance, noise or change in the output of the optical sensor leading to an erroneous or inaccurate reading due to the motion that is detected is known as a “motion artefact”. A motion artefact may be caused by a patient standing up, walking or carrying out a task which involves moving a part of the body to which the wound dressing 4 is secured. Different criteria can be used to determine that the motion sensor 18 has moved and hence that a motion artefact is present in the sample. In the embodiment shown, it is determined that a motion artefact is present if the amplitude of the motion trace M exceeds a predetermined threshold amplitude AMAX during the sampling period.


In the example shown in FIG. 5, the motion trace M does not contain a motion artefact. The small fluctuations shown in the trace M is associated with signal noise which may be caused sensor noise or electronics noise or by very small movements that would not be expected to adversely affect measurements. The amplitude of the trace M remains below the threshold amplitude AMAX between t1 and t2. The trace M indicates that no significant movement of the arm 6 has occurred during the sampling period. The components of the output of the optical sensor 20 are therefore processed by the processor 24 to determine the oxygen saturation value (SpO2) of the pulsatile arterial blood, as illustrated by step S1030 shown in FIG. 4.


In order to determine the amount of pulsatile blood in the target area, the pulsatile component for each of the infrared IR and red R traces is normalised with respect to the non-pulsatile component. Typically, this can be done by determining a ratio of the pulsatile component to the non-pulsatile component of the signal. Once the first and second components have been normalised, the ratio of the normalised red R component to the normalised infrared IR component is calculated. The ratio can then be used to determine an oxygen saturation value (SpO2) for the pulsatile arterial blood within the tissue at the target area. For example, the ratio can be converted into an oxygen saturation value (SpO2) value in accordance with the Beer-Lambert law, as is known in the art of spectroscopy. The oxygen saturation value is then stored in the memory 26, as illustrated by step S1040. The measurement step S1010 may then be repeated immediately or after a set period of time has elapsed, as illustrated by step S1050.



FIG. 6 shows traces IR, R, M comprising a sample period in which a motion artefact is present. A portion 600 of the motion trace M within the predetermined time period TS comprises multiple oscillations in which the amplitude of the trace M exceeds the predetermined threshold amplitude AMAX. The first processor 24 therefore determines that a motion artefact is present. In this case, the motion artefact corresponds with the patient moving his/her arm relatively rapidly for example when lifting an object. However, a motion artefact may also be identified when a patient moves his/her entire body such as walking up a stairway even when the arm does not move significantly with respect to the head, torso, etc. of the patient. In either case, the quality of the data obtained is likely to be adversely affected due to movement of the wound dressing and hence optical sensor 20 with respect to the skin tissue of the patient or because of an increase in blood flow caused by activity of the patient. The measurement is therefore discarded and the first processor 24 deletes the stored outputs from the memory element 26, as illustrated by step S1060. The process of taking a measurement (steps S1010 and S1020) may then be repeated, either immediately or after a further predetermined time, until a motion trace M is obtained in which no motion artefact is present.


Measurements may be taken periodically, for example on a minute-by-minute, hourly, daily or weekly basis and a record of the oxygen saturation (SpO2) values stored on the memory element 26. The stored data can then be transmitted by the transmitter 28 to the receiver 32 of the monitoring device 8 for subsequent processing by the second processor 30 and display on the display 16. For example, the repeated measurements may be used to determine trends that can be subsequently used to determine how well a wound is healing. In the embodiment shown, the monitoring device 8 is a portable handheld device such as a smartphone, tablet or bespoke device having an integrated display in the form of a screen. Alternatively, the stored data may be transmitted via a mobile or wireless network for subsequent processing. Transmission may utilise wireless protocols such as Bluetooth™ Wi-Fi™, Zigbee™, near-field communication or the like may be used. The data or data trends can be visualised, compared to previous readings or incorporated into the records of the patient and an assessment of the wound healing can be carried out.


The wound dressing 4 is compact and lightweight and so will not hinder the patient greatly. Furthermore, the wound dressing 4 need not be removed from the patient in order to inspect the wound and assess healing progress. The wound dressing 4 may be applied to other regions of a patient's body having a wound including another limb such as a leg or a torso or a head or a foot or a hand or other region.



FIG. 7 shows a further embodiment of an apparatus 102 comprising a wound dressing 104, a sensor patch 106 and a monitoring device 108. The wound dressing 104 comprises a central wound protecting portion 110 and a peripheral securing portion 112 or border. The sensor patch 106 comprises a sensor module 114 and a further securing portion 116. The securing portion 112 and the sensor patch 106 have an adhesive on respective lower surfaces for securing them to the body of a patient. The sensor module 114 is in accordance with the sensor module 14 shown in FIGS. 1 and 2. The monitoring device 108 is a handheld device having an integrated display 118. The sensor patch 106 can be secured to a patient's skin adjacent the wound dressing 104. An advantage of the arrangement is that the wound dressing 104 can be changed periodically without having to remove the sensor patch 106. In the embodiment show, the sensor module 114 is wireless and is configured to communicate with the monitoring device 108. The sensor patch 106 can be connected to the wound dressing 104 in a non-removable way or via a releasable connection such as a perforated line. Alternatively, the wound dressing 104 and the sensor patch 106 may be separate. For example, the sensor patch may comprise part of a band or cuff that can be wrapped around a portion of a patient's body, such as a limb.



FIG. 8 shows a further embodiment of an apparatus 202 comprising a wound dressing 204 and a monitoring device 206. The wound dressing 204 comprises a wound protecting portion 208, a peripheral securing portion 210 and a sensor module 214 which is formed integrally with the securing portion 210. The securing portion 210 has an adhesive on its lower surface for securing the wound dressing 204 to the arm of a patient. The monitoring device 206 comprises an integrated display 212. A lead 216 is connected to the sensor module 214 at one end and to the monitoring device 206 at the other end. The lead 216 provides a means for communication between the sensor module 214 and the monitoring device 206 and may also provide a means of supplying power to the sensor module 214. In such an embodiment, data may be transmitted directly to the monitoring device and so a processor need not be provided in the wound dressing itself.



FIG. 9 shows a wound dressing 302 comprising a wound protecting portion 304, a peripheral securing portion 306 and four sensor modules 308A, 308B, 308C, 308D. Each sensor module 308A, 308B, 308C, 308D is disposed at a respective lobe 310A, 310B, 310C, 310D of the peripheral portion 306. Each sensor module 308A, 308B, 308C, 308D comprises an optical sensor in accordance with the optical sensor shown in FIG. 3 for sensing an oxygen saturation (SpO2) value at a target region of skin beneath the respective sensor. At least one of the sensor modules 308A, 308B, 308C, 308D comprises a motion sensor which can be used to determine whether measurements taken from all of the sensors should be stored or rejected. Alternatively, the motion sensor may be separate from the other sensor modules 308A, 308B, 308C, 308D.


In an alternative embodiment, an output from the optical sensor 20 may be analysed to determine whether a patient is active, or has been active, to an extent that an unreliable measurement would be expected. An analysis, such as a Fourier analysis, can be performed on a trace obtained over the predetermined period TS for at least one of the components of the output from the optical sensor. If signals at certain frequencies not associated with the frequencies of a typical pulse pressure waveform of the patient (for example at lower frequencies) are detected at significant amplitudes which are above expected levels of noise, it is determined that a motion artefact is present. The alternative embodiment therefore does not require a separate motion sensor.


A learning process may be performed prior to operation of the apparatus 2 to establish suitable thresholds including a suitable predetermined period TS and a suitable threshold amplitude AMAX or whatever predetermined condition is used to determine the presence of a motion artefact. The thresholds can then be stored in the memory element 26 for subsequent recall by the first processor 24. The learning process may establish typical characteristics for a patient wearing the wound dressing, such as heart rate or amount of motion, for when the patient is motionless and/or resting. A flow chart depicting a method of using a wound dressing that incorporates a learning process is shown in FIG. 10. Firstly, at step S2010 the wound dressing of FIG. 1 is unpacked and then, at step S2020, the wound dressing is applied to a patient over a wound. At step S2030, an optional learning process is performed to set or adjust operational parameters such as the sample period and a threshold amplitude AMAX. At step S2040 a method of determining an amount of skin perfusion in tissue surrounding a wound area, as described above, is then performed using the wound dressing. At step S2050, the wound dressing is removed, replaced if necessary by a fresh wound dressing, and discarded.


In another embodiment of the disclosure, in order to conserve energy, rather than acquiring data continuously, the sensor module is switched off for a period of time after successfully measuring a pulse rate or SpO2 and is then woken up again at a future time by a user or a clinician or in accordance with an automated sequence to take another measurement.


In the embodiment descried above, a single axis accelerometer was used. However, in other embodiments, at least one multiple axis accelerometer could be used. It will be appreciated that at least one of the following techniques could be used to identify the presence of a motion artefact:


detection of whether the acceleration (either linear or angular) in one or more axes or a total acceleration, for example a combined acceleration in two or more axes, has exceeded a pre-determined, derived or adaptive threshold or else has deviated from a baseline by more than a multiple of a baseline noise amplitude;


detection of whether the velocity (either linear or angular) in one or more axes or a total velocity, for example a combined velocity in two or more axes, has exceeded a pre-determined, derived or adaptive threshold or else has deviated from a baseline by more than a multiple of a baseline noise amplitude;


detection of whether a displacement (either linear or angular) in one or more axes or a total displacement, for example a combined displacement in two or more axes, over the duration of the sample period or a part thereof has exceeded a pre-determined, derived or adaptive threshold or else has deviated from a baseline by more than a multiple of a baseline noise amplitude;


comparison of the standard deviation of the acceleration over the sample period or a part thereof against the typical noise level expected; this can be done for one or more axes of the coordinate system or for the total acceleration;


comparison of the standard deviation of the velocity over the sample period or a part thereof against the typical noise level expected; this can be done for one or more axes of the coordinate system or for the total acceleration and/or


comparison of the amplitude at one or more frequencies or across a band around one or more frequencies against an expected level.


It will be appreciated that other types of motion sensors could be used such as single axis and/or multiple axes gyroscopes, inclinometers or the like. In other embodiments, a non-optical sensor may be used to sense a healing related parameter associated with wound healing.


The sensor modules described above may comprise one or more batteries as a power source or energy store. Additionally or alternatively, a range of other power sources may be used to provide power to the sensor module. Such alternatives may include, but are not exclusive to, capacitors, fuel cells or energy generators, which generate energy, for example, from the movement of the wearer, e.g. based on some piezo elements or the like, from temperature differences and heat generated by the user or the environment, using, for example, thermopiles, or from light, using, for example, photovoltaic cells, or other energy generating systems, for example clockwork type mechanisms which can be charged by the user. Any battery used may be non-rechargeable or rechargeable. Recharging can occur in a number of ways known to those trained in the art, including wired or contactless charging techniques.


It will be appreciated that throughout this specification reference is made to a wound. It is to be understood that the term wound is to be broadly construed and encompasses open and closed wounds in which skin is torn, cut or punctured or where trauma causes a contusion, or any other superficial or other conditions or imperfections on the skin of a patient or otherwise that benefit from reduced pressure treatment. A wound is thus broadly defined as any damaged region of tissue where fluid may or may not be produced. Examples of such wounds include, but are not limited to, abdominal wounds or other large or incisional wounds, either as a result of surgery, trauma, sterniotomies, fasciotomies, or other conditions, dehisced wounds, acute wounds, chronic wounds, subacute and dehisced wounds, traumatic wounds, flaps and skin grafts, lacerations, abrasions, contusions, burns, diabetic ulcers, pressure ulcers, stoma, surgical wounds, trauma and venous ulcers or the like.


It will be understood that embodiments of the present disclosure are generally applicable for use in topical negative pressure (“TNP”) therapy systems, such as be incorporated into a TNP dressing. Briefly, negative pressure wound therapy assists in the closure and healing of many forms of “hard to heal” wounds by reducing tissue oedema; encouraging blood flow and granular tissue formation; removing excess exudate and may reduce bacterial load (and thus infection risk). In addition, the therapy allows for less disturbance of a wound leading to more rapid healing. TNP therapy systems may also assist on the healing of surgically closed wounds by removing fluid and by helping to stabilize the tissue in the apposed position of closure. A further beneficial use of TNP therapy can be found in grafts and flaps where removal of excess fluid is important and close proximity of the graft to tissue is required in order to ensure tissue viability. As is used herein, reduced or negative pressure levels, such as −X mmHg, represent pressure levels relative to normal ambient atmospheric pressure, which can correspond to 760 mmHg (or 1 atm, 29.93 inHg, 101.325 kPa, 14.696 psi, etc.). Accordingly, a negative pressure value of −X mmHg reflects absolute pressure that is X mmHg below 760 mmHg or, in other words, an absolute pressure of (760−X) mmHg. In addition, negative pressure that is “less” or “smaller” than X mmHg corresponds to pressure that is closer to atmospheric pressure (e.g., −40 mmHg is less than −60 mmHg). Negative pressure that is “more” or “greater” than −X mmHg corresponds to pressure that is further from atmospheric pressure (e.g., −80 mmHg is more than −60 mmHg). In some embodiments, local ambient atmospheric pressure is used as a reference point, and such local atmospheric pressure may not necessarily be, for example, 760 mmHg. The negative pressure range for some embodiments of the present disclosure can be approximately −80 mmHg, or between about −20 mmHg and −200 mmHg. Note that these pressures are relative to normal ambient atmospheric pressure, which can be 760 mmHg. Thus, −200 mmHg would be about 560 mmHg in practical terms. In some embodiments, the pressure range can be between about −40 mmHg and −150 mmHg. Alternatively a pressure range of up to −75 mmHg, up to −80 mmHg or over −80 mmHg can be used. Also in other embodiments a pressure range of below −75 mmHg can be used. Alternatively, a pressure range of over approximately −100 mmHg, or even −150 mmHg, can be supplied by the negative pressure apparatus.


In the drawings like reference numerals refer to like parts.


Throughout the description and claims of this specification, the words “comprise” and “contain” and variations of them mean “including but not limited to” and they are not intended to (and do not) exclude other moieties, additives, components, integers or steps. Throughout the description and claims of this specification, the singular encompasses the plural unless the context otherwise requires. In particular, where the indefinite article is used, the specification is to be understood as contemplating plurality as well as singularity, unless the context requires otherwise.


Features, integers, characteristics or groups described in conjunction with a particular aspect, embodiment or example of the disclosure are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of the features and/or steps are mutually exclusive. The disclosure is not restricted to any details of any foregoing embodiments. The disclosure extends to any novel one, or novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.


The reader's attention is directed to all papers and documents which are filed concurrently with or previous to this specification in connection with this application and which are open to public inspection with this specification, and the contents of all such papers and documents are incorporated herein by reference.

Claims
  • 1. An apparatus comprising: a wound dressing comprising a wound cover and a wound facing portion configured to be placed over a skin wound;a sensor patch releasably connected to a lateral side of the wound dressing, the sensor patch comprising at least one motion sensor configured to sense a motion related parameter associated with motion of the wound dressing;at least one further sensor configured to sense a healing related parameter associated with wound healing at a region of tissue of the wound or proximate the wound covered by the wound dressing; anda processor configured to: determine a sample period;determine that an output of the at least one motion sensor during the sample period satisfies a predetermined condition corresponding to a rate of acceleration of the wound dressing which is less than a predetermined rate of acceleration; andin response to determining that the output of the at least one motion sensor during the sample period satisfied the predetermined condition, determine the healing related parameter based on an output of the at least one further sensor during the sample period.
  • 2. The apparatus of claim 1, wherein the healing related parameter is a parameter associated with blood perfusion within the region of tissue.
  • 3. The apparatus of claim 1, wherein the healing related parameter is a parameter associated with oxygen saturation of blood within the region of tissue.
  • 4. The apparatus of claim 1, wherein: the processor is configured to process an output of the at least one motion sensor, an output of the at least one further sensor, or both.
  • 5. The apparatus of claim 4, wherein the wound dressing comprises a memory and the processor is configured to generate data which corresponds to an output of the at least one motion sensor and data which corresponds to an output of the at least one further sensor and to store said data in the memory.
  • 6. The apparatus of claim 1, wherein the sensor patch is releasably connected to the lateral side of the wound dressing via a perforation line.
  • 7. A wound monitoring method comprising: determining a sample period;sensing a motion related parameter associated with motion of a patient and a healing related parameter associated with wound healing at a region of tissue of the patient at or proximate to a skin wound, at least one of the motion related parameter or healing related parameter being sensed with a wound dressing comprising a wound cover, a wound facing portion configured to be placed over the wound, and a releasable sensor connected to a lateral side of the wound dressing;determining that the sensed motion related parameter satisfies a predetermined condition corresponding to a predetermined amount of motion of the patient; andstoring, transmitting, or storing and transmitting data which represents the sensed healing related parameter associated with wound healing.
  • 8. The method of claim 7, wherein the sensing the motion related parameter and healing related parameter comprises monitoring the motion related parameter and the healing related parameter over the sample period.
  • 9. The method of claim 8, wherein the sample period is not less than one second or two seconds or five seconds or ten seconds.
  • 10. The method of claim 8, wherein the sample period is not greater than sixty seconds or thirty seconds or fifteen seconds.
  • 11. The method of claim 7, wherein the predetermined condition corresponding to the predetermined amount of motion of the patient is a condition in which the acceleration of the patient or the portion of the patient comprising the region of tissue at or proximate to the wound is below a threshold value.
  • 12. The method of claim 7, wherein the motion related parameter is a pulse frequency of pulsatile arterial blood flow through the region of tissue and the predetermined condition corresponding to the predetermined amount of motion of the patient is a predetermined pulse frequency.
  • 13. The method of claim 7, wherein the healing related parameter is associated with an amount of oxygen saturation at the region of tissue at or proximate to the wound.
  • 14. The method of claim 7, wherein the stored data is data collected over the sample period in which the sensed motion related parameter satisfies the predetermined condition.
  • 15. The method of claim 7, wherein the predetermined condition corresponding to the predetermined amount of motion of the patient is set based on attributes of the patient.
  • 16. The method of claim 7, further comprising subsequently repeating sensing the motion and healing related parameters, determining that the motion related parameter satisfies the predetermined condition and storing data representing the parameter associated with wound healing to compile a plurality of records of data associated with wound healing.
  • 17. The method of claim 16, further comprising transmitting the data comprising the plurality of records to a remote device for processing.
  • 18. The method of claim 7, wherein the releasable sensor is releasably connected to the lateral side of the wound dressing via a perforation line.
  • 19. An apparatus comprising: a wound dressing including a wound cover and a wound facing portion configured to be placed over a skin wound on a patient;at least one motion sensor configured to sense a motion related parameter;at least one further sensor configured to sense a healing related parameter associated with wound healing at a region of tissue of the wound or proximate the wound covered by the wound dressing; anda processor configured to process an output of the at least one motion sensor, an output of the at least one further sensor, or both, the processor further configured to: set a sample period;determine if the output of the at least one motion sensor satisfies a predetermined condition corresponding to a predetermined amount of acceleration of the patient or the portion of the patient comprising the region of tissue is below a threshold value;in response to determining that the output of the at least one motion sensor satisfies the predetermined condition, retain data corresponding to the output of the at least one further sensor; andin response to determining that that output of the at least one motion sensor fails to satisfy the predetermined condition, discard the data corresponding to the output of the at least one further sensor,wherein the at least one motion sensor and the at least one further sensor are positioned on a separate portion releasably connected to a lateral side of the wound dressing.
  • 20. The apparatus of claim 19, wherein the separate portion is releasably connected to the lateral side of the wound dressing via a perforation line.
Priority Claims (2)
Number Date Country Kind
1703787 Mar 2017 GB national
1703790 Mar 2017 GB national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2018/055952 3/9/2018 WO
Publishing Document Publishing Date Country Kind
WO2018/162736 9/13/2018 WO A
US Referenced Citations (337)
Number Name Date Kind
3896802 Williams Jul 1975 A
4334530 Hassell Jun 1982 A
5090410 Saper et al. Feb 1992 A
5253654 Thomas et al. Oct 1993 A
5635201 Fabo Jun 1997 A
5642096 Leyerer et al. Jun 1997 A
5678448 Fullen et al. Oct 1997 A
5690610 Ito et al. Nov 1997 A
5836990 Li Nov 1998 A
6095992 Augustine Aug 2000 A
6178342 Borgos et al. Jan 2001 B1
6381482 Jayaraman et al. Apr 2002 B1
6517484 Wilk et al. Feb 2003 B1
6551252 Sackner et al. Apr 2003 B2
6731987 McAdams et al. May 2004 B1
7014611 Geddes et al. Mar 2006 B1
7077832 Fleischmann Jul 2006 B2
7088591 Kishimoto et al. Aug 2006 B2
7201063 Taylor et al. Apr 2007 B2
7206623 Blank et al. Apr 2007 B2
7289205 Yaroslavsky et al. Oct 2007 B2
7316652 Dalgaard et al. Jan 2008 B2
7429255 Thompson Sep 2008 B2
7520875 Bernabei Apr 2009 B2
7521292 Rogers et al. Apr 2009 B2
7569742 Haggstrom et al. Aug 2009 B2
7625117 Haslett et al. Dec 2009 B2
7687678 Jacobs Mar 2010 B2
7838717 Haggstrom et al. Nov 2010 B2
7846141 Weston Dec 2010 B2
7877866 Greenberg et al. Feb 2011 B1
7884258 Boehringer et al. Feb 2011 B2
7904133 Gehman et al. Mar 2011 B2
7922676 Daskal et al. Apr 2011 B2
7942869 Houbolt et al. May 2011 B2
7945302 McAdams May 2011 B2
8019401 Smith et al. Sep 2011 B1
8032210 Finneran et al. Oct 2011 B2
8060174 Simpson et al. Nov 2011 B2
8079247 Russell et al. Dec 2011 B2
8111165 Ortega et al. Feb 2012 B2
8116841 Bly et al. Feb 2012 B2
8182425 Stamatas et al. May 2012 B2
8207392 Haggstrom et al. Jun 2012 B2
8238996 Burnes Aug 2012 B2
8241231 Bausewein et al. Aug 2012 B2
8332053 Patterson et al. Dec 2012 B1
8333874 Currie et al. Dec 2012 B2
8366692 Weston Feb 2013 B2
8480641 Jacobs Jul 2013 B2
8579872 Coulthard et al. Nov 2013 B2
8644911 Panasyuk et al. Feb 2014 B1
8663106 Stivoric et al. Mar 2014 B2
8682442 McAdams Mar 2014 B2
8783948 Panda et al. Jul 2014 B2
8788009 Greene et al. Jul 2014 B2
8800386 Taylor Aug 2014 B2
8818478 Scheffler et al. Aug 2014 B2
8829263 Haggstrom et al. Sep 2014 B2
8848187 Uematsu et al. Sep 2014 B2
8894590 Lamoise et al. Nov 2014 B2
8925392 Esposito et al. Jan 2015 B2
8934957 Dias et al. Jan 2015 B2
8934965 Rogers et al. Jan 2015 B2
8943897 Beauvais et al. Feb 2015 B2
8948839 Longinotti-Buitoni et al. Feb 2015 B1
8974428 Shuler et al. Mar 2015 B2
8997588 Taylor Apr 2015 B2
9000251 Murphy et al. Apr 2015 B2
9042075 Borini et al. May 2015 B2
9192531 Wu Nov 2015 B2
9192700 Weston et al. Nov 2015 B2
9204806 Stivoric et al. Dec 2015 B2
9220455 Sarrafzadeh et al. Dec 2015 B2
9226402 Hsu Dec 2015 B2
9282897 Ross, Jr. et al. Mar 2016 B2
9314175 Jacofsky et al. Apr 2016 B2
9320473 Shuler Apr 2016 B2
9372123 Li et al. Jun 2016 B2
9378450 Mei et al. Jun 2016 B1
9386947 Johnson Jul 2016 B2
9393354 Freedman et al. Jul 2016 B2
9402988 Buchanan et al. Aug 2016 B2
9408573 Welch et al. Aug 2016 B2
9427179 Mestrovic et al. Aug 2016 B2
9439599 Thompson et al. Sep 2016 B2
9483726 Mei et al. Nov 2016 B2
9494474 Servati et al. Nov 2016 B2
9511215 Skiba Dec 2016 B2
9516758 Arora et al. Dec 2016 B2
9526439 Connelly et al. Dec 2016 B2
9554484 Rogers et al. Jan 2017 B2
9572507 Moore et al. Feb 2017 B2
9582072 Connor Feb 2017 B2
9585620 Paquet et al. Mar 2017 B2
9587991 Padiy Mar 2017 B2
9592007 Nuovo et al. Mar 2017 B2
9603560 Monty et al. Mar 2017 B2
9610388 Aceto et al. Apr 2017 B2
9613911 Rogers et al. Apr 2017 B2
9629584 Barber et al. Apr 2017 B2
9675238 Iida et al. Jun 2017 B2
9687195 Sims et al. Jun 2017 B2
9717565 Blair Aug 2017 B2
9829471 Hammond et al. Nov 2017 B2
9907103 Chen et al. Feb 2018 B2
9999711 Weston et al. Jun 2018 B2
10004643 Luckemeyer et al. Jun 2018 B2
10046096 Askem et al. Aug 2018 B2
10080524 Xi Sep 2018 B1
10086117 Locke et al. Oct 2018 B2
10117705 Chernov et al. Nov 2018 B2
10152789 Carnes et al. Dec 2018 B2
10182740 Tonar et al. Jan 2019 B2
10201644 Haggstrom et al. Feb 2019 B2
10207031 Toth Feb 2019 B2
10209213 Kang et al. Feb 2019 B2
10285620 Jung et al. May 2019 B2
10288590 Hammond et al. May 2019 B2
10321862 Dalene et al. Jun 2019 B2
10463773 Haggstrom et al. Nov 2019 B2
10857038 Zamierowski et al. Dec 2020 B2
11026847 Piotrowski et al. Jun 2021 B2
20020016536 Benni Feb 2002 A1
20020135752 Sokolov et al. Sep 2002 A1
20030033032 Lind et al. Feb 2003 A1
20030036690 Geddes et al. Feb 2003 A1
20030036751 Anderson et al. Feb 2003 A1
20030208148 Sullivan Nov 2003 A1
20030210810 Gee, Jr. et al. Nov 2003 A1
20030216630 Jersey-Willuhn et al. Nov 2003 A1
20040034293 Kimball Feb 2004 A1
20040230132 Shehada Nov 2004 A1
20050088832 Su et al. Apr 2005 A1
20050240107 Alfano et al. Oct 2005 A1
20050280531 Fadem et al. Dec 2005 A1
20050281445 Marcotte et al. Dec 2005 A1
20060052678 Drinan et al. Mar 2006 A1
20060058690 Bartnik et al. Mar 2006 A1
20060181791 Van Beek et al. Aug 2006 A1
20060234383 Gough Oct 2006 A1
20060241495 Kurtz Oct 2006 A1
20060276700 O'Neil et al. Dec 2006 A1
20070055209 Patel et al. Mar 2007 A1
20070173892 Fleischer et al. Jul 2007 A1
20070191754 Aali Aug 2007 A1
20070260421 Berner, Jr. et al. Nov 2007 A1
20070293748 Engvall et al. Dec 2007 A1
20080081973 Hoarau Apr 2008 A1
20080167535 Stivoric et al. Jul 2008 A1
20080258717 Igney et al. Oct 2008 A1
20080287747 Mestrovic et al. Nov 2008 A1
20080319282 Tran Dec 2008 A1
20080319283 Cotton et al. Dec 2008 A1
20090149800 Durand Jun 2009 A1
20090177051 Arons et al. Jul 2009 A1
20090177110 Lyden et al. Jul 2009 A1
20090209830 Nagle et al. Aug 2009 A1
20090234206 Gaspard et al. Sep 2009 A1
20090245601 Cohen et al. Oct 2009 A1
20100022990 Karpowicz et al. Jan 2010 A1
20100025831 Yamazaki et al. Feb 2010 A1
20100166252 Ahmed et al. Jul 2010 A1
20100168727 Hancock et al. Jul 2010 A1
20100268111 Drinan et al. Oct 2010 A1
20100305473 Yuzhakov Dec 2010 A1
20110004088 Grossman Jan 2011 A1
20110015591 Hanson et al. Jan 2011 A1
20110054283 Shuler Mar 2011 A1
20110092958 Jacobs Apr 2011 A1
20110130697 Nagle et al. Jun 2011 A1
20110140703 Chiao et al. Jun 2011 A1
20110190639 Peltie et al. Aug 2011 A1
20110218757 Callsen et al. Sep 2011 A1
20110242532 McKenna Oct 2011 A1
20110245682 Robinson et al. Oct 2011 A1
20110301441 Bandic et al. Dec 2011 A1
20120029306 Paquet et al. Feb 2012 A1
20120029307 Paquet et al. Feb 2012 A1
20120029410 Koenig et al. Feb 2012 A1
20120112347 Eckhardt et al. May 2012 A1
20120165717 Al Khaburi et al. Jun 2012 A1
20120166680 Masoud et al. Jun 2012 A1
20120190956 Connolly Jul 2012 A1
20120190989 Kaiser et al. Jul 2012 A1
20120265120 Beisang, III et al. Oct 2012 A1
20120271265 Langdon Oct 2012 A1
20120277559 Kohl-Bareis et al. Nov 2012 A1
20120316538 Heiser et al. Dec 2012 A1
20120330252 Stokes et al. Dec 2012 A1
20130041235 Rogers et al. Feb 2013 A1
20130064772 Swiss et al. Mar 2013 A1
20130121544 Sarrafzadeh et al. May 2013 A1
20130123722 Pratt et al. May 2013 A1
20130151223 Zamierowski et al. Jun 2013 A1
20130200268 Rafferty et al. Aug 2013 A1
20130261409 Pathak et al. Oct 2013 A1
20130271278 Duesterhoft et al. Oct 2013 A1
20130274629 Duesterhoft et al. Oct 2013 A1
20130317367 Shuler Nov 2013 A1
20140012108 McPeak Jan 2014 A1
20140018637 Bennett et al. Jan 2014 A1
20140024905 Sarrafzadeh et al. Jan 2014 A1
20140031663 Gallego et al. Jan 2014 A1
20140072190 Wu et al. Mar 2014 A1
20140075658 McGuin Mar 2014 A1
20140107495 Marinelli et al. Apr 2014 A1
20140107498 Bower et al. Apr 2014 A1
20140147611 Ackerman, Jr. et al. May 2014 A1
20140203797 Stivoric et al. Jul 2014 A1
20140206947 Isserow et al. Jul 2014 A1
20140232516 Stivoric et al. Aug 2014 A1
20140235166 Molettiere et al. Aug 2014 A1
20140243709 Gibson et al. Aug 2014 A1
20140296749 Reid, Jr. et al. Oct 2014 A1
20140298927 Allin et al. Oct 2014 A1
20140298928 Duesterhoft et al. Oct 2014 A1
20140303463 Robinson et al. Oct 2014 A1
20140324120 Bogie et al. Oct 2014 A1
20140340857 Hsu et al. Nov 2014 A1
20140343478 Brennan et al. Nov 2014 A1
20140350882 Everett et al. Nov 2014 A1
20150018792 Marsiquet et al. Jan 2015 A1
20150025343 Gareau et al. Jan 2015 A1
20150073271 Lee et al. Mar 2015 A1
20150138330 Krishnamoorthi May 2015 A1
20150141767 Rogers et al. May 2015 A1
20150148760 Dodd et al. May 2015 A1
20150150479 Yoshino et al. Jun 2015 A1
20150182166 Evans et al. Jul 2015 A1
20150223716 Korkala et al. Aug 2015 A1
20150257644 Cao Sep 2015 A1
20150265191 Harding et al. Sep 2015 A1
20150282748 Hamaguchi et al. Oct 2015 A1
20150292968 Vogt et al. Oct 2015 A1
20150313476 Pisani et al. Nov 2015 A1
20150313533 Rapp et al. Nov 2015 A1
20150327777 Kostic et al. Nov 2015 A1
20150335254 Fastert et al. Nov 2015 A1
20150335287 Neuman et al. Nov 2015 A1
20150335288 Toth et al. Nov 2015 A1
20150351970 Dagger et al. Dec 2015 A1
20150359485 Berg et al. Dec 2015 A1
20150374309 Farkas et al. Dec 2015 A1
20160015962 Shokoueinejad Maragheh Jan 2016 A1
20160022223 Grundfest et al. Jan 2016 A1
20160029900 LaPlante et al. Feb 2016 A1
20160030132 Cheung et al. Feb 2016 A1
20160038045 Shapiro Feb 2016 A1
20160038083 Ding et al. Feb 2016 A1
20160051147 Cohen et al. Feb 2016 A1
20160058380 Lee et al. Mar 2016 A1
20160066854 Mei et al. Mar 2016 A1
20160069743 McQuilkin et al. Mar 2016 A1
20160074234 Abichandi et al. Mar 2016 A1
20160081580 Bergelin et al. Mar 2016 A1
20160081601 Ballam et al. Mar 2016 A1
20160100790 Cantu et al. Apr 2016 A1
20160100987 Hartwell et al. Apr 2016 A1
20160101282 Bergelin et al. Apr 2016 A1
20160129469 Kulinsky et al. May 2016 A1
20160143534 Hyde et al. May 2016 A1
20160157779 Baxi et al. Jun 2016 A1
20160165719 Li et al. Jun 2016 A1
20160166438 Rovaniemi Jun 2016 A1
20160213269 Lam et al. Jul 2016 A1
20160228049 Nackaerts et al. Aug 2016 A1
20160232807 Ghaffari et al. Aug 2016 A1
20160242331 Park et al. Aug 2016 A1
20160249810 Darty et al. Sep 2016 A1
20160262672 Hammond et al. Sep 2016 A1
20160262687 Vaidyanathan et al. Sep 2016 A1
20160270700 Baxi et al. Sep 2016 A1
20160287177 Huppert et al. Oct 2016 A1
20160302729 Starr et al. Oct 2016 A1
20160310023 Chachisvilis et al. Oct 2016 A1
20160317057 Li et al. Nov 2016 A1
20160331263 Cailler et al. Nov 2016 A1
20160331322 Son et al. Nov 2016 A1
20160338591 Lachenbruch et al. Nov 2016 A1
20160354001 Buckley et al. Dec 2016 A1
20160367189 Aimone et al. Dec 2016 A1
20160367192 Iyengar et al. Dec 2016 A1
20160367406 Barnett Dec 2016 A1
20170000407 Saxby et al. Jan 2017 A1
20170007853 Alford et al. Jan 2017 A1
20170027498 Larson et al. Feb 2017 A1
20170079740 Hufnagel et al. Mar 2017 A1
20170086519 Vigano et al. Mar 2017 A1
20170086709 Khine et al. Mar 2017 A1
20170095208 Oberleitner et al. Apr 2017 A1
20170146474 Bedell et al. May 2017 A1
20170156594 Stivoric et al. Jun 2017 A1
20170156621 Bettinger et al. Jun 2017 A1
20170156658 Maharbiz et al. Jun 2017 A1
20170164865 Rafferty et al. Jun 2017 A1
20170164876 Hyde et al. Jun 2017 A1
20170172439 Zhu et al. Jun 2017 A1
20170202711 Cernasov et al. Jul 2017 A1
20170224271 Lachenbruch et al. Aug 2017 A1
20170231015 Jang et al. Aug 2017 A1
20170258972 Weston Sep 2017 A1
20170304510 Askem et al. Oct 2017 A1
20170319075 Homan et al. Nov 2017 A1
20170326004 Long et al. Nov 2017 A1
20170367644 Sharman et al. Dec 2017 A1
20180008177 Shimuta et al. Jan 2018 A1
20180055359 Shamim et al. Mar 2018 A1
20180055697 Mihail et al. Mar 2018 A1
20180056087 Ribiero et al. Mar 2018 A1
20180070880 Trembly et al. Mar 2018 A1
20180074547 Smadi et al. Mar 2018 A1
20180116877 Ineichen May 2018 A1
20180128681 Otsuka May 2018 A1
20180132287 Cheng et al. May 2018 A1
20180192514 Seo Jul 2018 A1
20180200414 Askem et al. Jul 2018 A1
20180206758 Feldkamp et al. Jul 2018 A1
20180235484 Mozdzierz Aug 2018 A1
20180296397 Askem et al. Oct 2018 A1
20190001032 Weston et al. Jan 2019 A1
20190021911 Askem et al. Jan 2019 A1
20190060126 Ribble et al. Feb 2019 A1
20190076298 Quintanar et al. Mar 2019 A1
20190083025 Aung et al. Mar 2019 A1
20190133812 Seres et al. May 2019 A1
20190134280 Toth May 2019 A1
20190159938 Askem et al. May 2019 A1
20190175098 Burns Jun 2019 A1
20190192066 Schoess et al. Jun 2019 A1
20190231939 Askem et al. Aug 2019 A1
20190290496 Brownhill et al. Sep 2019 A1
20200078499 Gadde et al. Mar 2020 A1
20200147407 Efremkin May 2020 A1
20200281529 Grubb et al. Sep 2020 A1
20200330258 Hansen et al. Oct 2020 A1
20220079814 Chen et al. Mar 2022 A1
Foreign Referenced Citations (107)
Number Date Country
105232229 Jan 2016 CN
105395184 Mar 2016 CN
106102322 Nov 2016 CN
10 2012 211015 Jan 2014 DE
10 2013 013013 Feb 2015 DE
2 454 990 May 2012 EP
2 565 630 Mar 2013 EP
2 574 275 Apr 2013 EP
1 734 858 Jul 2014 EP
3 231 478 Oct 2017 EP
3 409 190 Dec 2018 EP
3 499 510 Jun 2019 EP
1476894 Jun 1977 GB
2316171 Feb 1998 GB
2563602 Dec 2018 GB
2006280770 Oct 2006 JP
2009-225863 Oct 2009 JP
10 2012 0119523 Oct 2012 KR
101224629 Jan 2013 KR
10 2014 0024743 Mar 2014 KR
10 2014 0058041 May 2014 KR
10 2016 0071044 Jun 2016 KR
20190105898 Sep 2019 KR
1 027 236 Apr 2006 NL
WO 2000021433 Apr 2000 WO
WO 2000043046 Jul 2000 WO
WO-0185024 Nov 2001 WO
WO 2003067229 Aug 2003 WO
WO 2006041997 Apr 2006 WO
WO 2007030379 Mar 2007 WO
WO 2008006150 Jan 2008 WO
WO 2008010604 Jan 2008 WO
WO 2009052607 Apr 2009 WO
WO 2009120951 Oct 2009 WO
WO 2009141777 Nov 2009 WO
WO 2010020919 Feb 2010 WO
WO 2010105053 Sep 2010 WO
WO 2011082420 Jul 2011 WO
WO 2011113070 Sep 2011 WO
WO 2011123848 Oct 2011 WO
WO 2012141999 Oct 2012 WO
WO 2013026999 Feb 2013 WO
WO 2013044226 Mar 2013 WO
WO 2013155193 Oct 2013 WO
WO 2014036577 Mar 2014 WO
WO-2014116816 Jul 2014 WO
WO-2015047015 Apr 2015 WO
WO 2015112095 Jul 2015 WO
WO 2015168720 Nov 2015 WO
WO 2016025438 Feb 2016 WO
WO 2016030752 Mar 2016 WO
WO 2016058032 Apr 2016 WO
WO-2016073777 May 2016 WO
WO 2016100218 Jun 2016 WO
WO 2016109744 Jul 2016 WO
WO 2016110564 Jul 2016 WO
WO 2016187136 Nov 2016 WO
WO 2016205872 Dec 2016 WO
WO 2016205881 Dec 2016 WO
WO 2017021006 Feb 2017 WO
WO 2017021965 Feb 2017 WO
WO 2017033058 Mar 2017 WO
WO 2017037479 Mar 2017 WO
WO 2017041014 Mar 2017 WO
WO 2017041386 Mar 2017 WO
WO 2017041387 Mar 2017 WO
WO-2017041385 Mar 2017 WO
WO 2017119996 Jul 2017 WO
WO 2017205728 Nov 2017 WO
WO-2017201419 Nov 2017 WO
WO 2017214188 Dec 2017 WO
WO 2018035612 Mar 2018 WO
WO 2018060417 Apr 2018 WO
WO 2018064569 Apr 2018 WO
WO 2018115461 Jun 2018 WO
WO 2018144938 Aug 2018 WO
WO 2018144941 Aug 2018 WO
WO 2018144943 Aug 2018 WO
WO 2018144946 Aug 2018 WO
WO 2018162728 Sep 2018 WO
WO 2018162732 Sep 2018 WO
WO 2018162735 Sep 2018 WO
WO 2018162736 Sep 2018 WO
WO 2018185138 Oct 2018 WO
WO 2018189265 Oct 2018 WO
WO 2018209090 Nov 2018 WO
WO 2018210692 Nov 2018 WO
WO 2018210693 Nov 2018 WO
WO 2018211458 Nov 2018 WO
WO 2018234443 Dec 2018 WO
WO 2019020550 Jan 2019 WO
WO 2019020551 Jan 2019 WO
WO 2019020666 Jan 2019 WO
WO 2019030384 Feb 2019 WO
WO 2019048624 Mar 2019 WO
WO 2019048626 Mar 2019 WO
WO 2019048638 Mar 2019 WO
WO 2019063481 Apr 2019 WO
WO 2019063488 Apr 2019 WO
WO 2019067264 Apr 2019 WO
WO 2019072531 Apr 2019 WO
WO 2019076967 Apr 2019 WO
WO 2019096828 May 2019 WO
WO 2019140441 Jul 2019 WO
WO 2019140444 Jul 2019 WO
WO 2019140448 Jul 2019 WO
WO 2019140449 Jul 2019 WO
Non-Patent Literature Citations (23)
Entry
Hu, Fei, Hao, Qi, “Intelligent Sensor Networks: The Integration of Sensor Networks, Signal Processing and Machine Learning”, 2013, Auberach Publications, pp. 3-5 (Year: 2013).
International Search Report and Written Opinion, re PCT Application No. PCT/EP2018/055952, dated Aug. 21, 2018.
International Preliminary Report on Patentability for Application No. PCT/EP18/055952, dated Sep. 19, 2019, 11 pages.
“Little Miss Plasters”, kidstravelclub.co.uk., accessed Aug. 26, 2016, in 2 pages. URL: http://www.kidstravelclub.co.uk/little-miss-girls-childrens-plasters.
Aubakir, B. et al., “Vital Sign Monitoring Utilizing Eulerian Video Magnification and Thermography”, 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Aug. 16, 2016, pp. 3527-3530, in 4 pages.
Bandodkar, A. et al., “Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat”, Science Advances, vol. 5(1), Jan. 18, 2019, in 16 pages. URL: http://advances.sciencemag.org/content/5/1/eaav3294.
Cauwe, M. et al., “Technology development for a low-cost, roll-to-roll chip embedding solution based on PET foils”, 18th European Microelectronics and Packaging Conference (EMPC), IEEE, Sep. 12, 2011, in 6 pages.
Farooqui, M. et al., “Low Cost Inkjet Printed Smart Bandage for Wireless Monitoring of Chronic Wounds”, Scientific Reports, vol. 6, Jun. 29, 2016, in 14 pages.
Geng, Y. et al., “A Hybrid Low Power Biopatch for Body Surface Potential Measurement”, IEEE Journal of Biomedical and Health Informatics, vol. 17(3), May 1, 2013, XP011506375.
Great Britain Office Action and Search Report, re GB Application No. 1703787.0, dated Aug. 14, 2017.
Great Britain Office Action and Search Report, re GB Application No. 1703790.4, dated Jul. 18, 2017.
Iannetta, R.A. et al., “Successful case histories of polymer based circuitry on flexible film substrates”, Electro/94 International Conference Proceedings Combined Volumes, IEEE, May 10-12, 1994, XP010149465.
Jinto, G. et al., “Reliability of Plastic-Encapsulated Electronic Components in Supersaturated Steam Environments”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, vol. 5, No. 10, Oct. 2015, in 9 pages.
Lu, B. et al., “A study of the autofluorescence of parylene materials for [mu]TAS applications”, Lab on Chip, vol. 10, No. 14, Jul. 2010, pp. 1826-1834, in 9 pages.
McLeod, A. et al., “Motion Magnification for Endoscopic Surgery”, Progress in Biomedical Optics and Imaging, SPIE—International Society for Optical Engineering, Mar. 12, 2014, vol. 9036, in 8 pages.
Mostafalu, P. et al., “Wireless Flexible Smart Bandage for Continuous Monitoring of Wound Oxygenation”, IEEE Transactions on Biomedical Circuits and Systems, vol. 9, No. 5, Oct. 2015, pp. 670-677, in 8 pages.
Narusawa, H., “The corona discharge causes short destruction that had bad influence on a power switching circuit”, Adphox Corporation, Jan. 1, 2009, in 12 pages. URL: http://www.adphox.co.jp/keisokuki/ke-english-corona/CORONA_DISCHARGE_EN.pdf.
Raviglione, A. et al., “Real-Time Smart Textile-Based System to Monitor Pressure Offloading of Diabetic Foot Ulcers”, Journal of Diabetes Science and Technology, vol. 11, Sep. 2017, in 5 pages.
Rose, D. et al., “Adhesive RFID Sensor Patch for Monitoring of Sweat Electrolytes”, IEEE Transactions on Biomedical Engineering, vol. 62(6), Jun. 2015 (first published Nov. 11, 2015), in 9 pages.
Wakita, J. et al., “Variations in Optical Absorption and Fluorescence Spectra for Polyimide Thin Films Caused by Structural Isomerism”, J. Photopolym. Sci. Technol. Jan. 1, 2003, in 1 page.
Willis, B., “Conformal Coating Inspection & Coating Faults”, Vision Engineering, Jul. 21, 2016, in 35 pages. URL: http://www.visioneng.com/wp-content/uploads/2017/11/Confirmal-Coating-Inspection-and-Defects.21JUL16.pdf.
Willis, B., “Guide to Conformal Coating & Cleaning Defects Contents”, Mar. 1, 2014, in 31 pages. URL: http://coatingguide.smartgroup.org/Files%20pdf/Coating%20Defects%20V2%2014March2014.pdf.
Mehmood N., et al., “Applications Of Modern Sensors And Wireless Technology In Effective Wound Management: Modern Sensors And Wireless Technology,” Journal of Biomedical Materials Research Part B, vol. 102, May 1, 2014, XP055739544, pp. 885-895.
Related Publications (1)
Number Date Country
20200281529 A1 Sep 2020 US