The present invention relates to island-type wound dressings.
Island-type wound dressings comprise an absorbent region and an adhesive backing sheet covering the absorbent region and extending beyond the edges of the absorbent region to provide an adhesive margin around the absorbent region for attachment of the dressing to intact skin around the wound to be treated. The adhesive margin provides secure attachment of the dressing without the need for secondary dressings such as a bandage. The adhesive margin also reduces or prevents leakage of wound exudate from the edges of the dressing.
The adhesive used in such dressings is typically a medically acceptable pressure-sensitive adhesive (PSA) such as an acrylic-based PSA. Such adhesives provide a strong bond to skin, but as a result they are not readily repositionable, and they may cause skin irritation and/or discomfort when the dressing is removed. Moreover, the PSA is not normally permeable to oxygen or water vapour and therefore interferes with normal skin transpiration.
It is known to provide a discontinuous, e.g. patterned, layer of the PSA in order to address the above problems. However, application of a patterned layer of PSA increases the complexity of the manufacturing process and increases the risk of liquid leakage through the PSA to the edges of the dressing.
In a first aspect, the present invention provides a wound dressing comprising: a backing sheet; a layer of pressure-sensitive adhesive on the backing sheet; an island of absorbent material having smaller area than the backing sheet and applied onto a central region of the backing sheet so as to leave a margin of adhesive-coated backing sheet around the absorbent material, and an apertured wound facing layer applied over the absorbent material and adhered to the backing sheet around said island by said pressure-sensitive adhesive, wherein the apertured wound facing layer comprises an apertured substrate having a coating of a silicone elastomer on the wound facing surface thereof, the open area of the apertured wound facing layer is from about 5% to about 75%, and the apertured wound facing layer comprises apertures having an open area of from about 2 mm2 to about 100 mm2.
The adhesive-coated backing sheet may have any shape, such as square, rectangular, circular, oval, trapezium-shaped, suitably with rounded corners.
The adhesive-coated backing sheet supports the absorbent island and suitably provides a barrier to passage of microorganisms through the dressing. Suitably, the adhesive-coated backing sheet is substantially liquid-impermeable. The adhesive-coated backing sheet is suitably semipermeable. That is to say, the adhesive-coated backing sheet is suitably permeable to water vapour, but not permeable to liquid water or wound exudate. Suitably, the adhesive-coated backing sheet is also microorganism-impermeable. Suitable continuous conformable adhesive-coated backing sheets will suitably have a moisture vapor transmission rate (MVTR) of the backing sheet alone of 300 to 30000 g/m2/24 hrs, suitably 1000 to 15000 g/m2/24 hrs, and in one embodiment 1000 to 5000 g/m2/24 hrs, at 37.5° C. at 100% to 10% relative humidity difference. The adhesive-coated backing sheet thickness is suitably in the range of 10 to 1000 micrometers, more suitably 100 to 500 micrometers.
Suitable polymers for forming the adhesive-coated backing sheet include polyurethanes and poly alkoxyalkyl acrylates and methacrylates such as those disclosed in GB-A-1280631. Suitably, the adhesive-coated backing sheet comprises a continuous layer of a high density blocked polyurethane foam that is predominantly closed-cell. A suitable adhesive-coated backing sheet material is the polyurethane film available under the Registered Trade Mark ESTANE 5714F. Also suitable are elastomeric polymeric esters such as Du Pont HYTREL (Registered Trade Mark).
The absorbent island may comprise any of the layers conventionally used for absorbing wound fluids, serum or blood in the wound healing art, including gauzes, nonwoven fabrics, superabsorbents, hydrogels and mixtures thereof. Suitably, the absorbent island comprises a layer of hydrophilic polyurethane foam on a wound facing side thereof, such as an open celled hydrophilic polyurethane foam prepared in accordance with EP-A-0541391. The absorbent island may further comprise a wicking layer. This may be a layer of a nonwoven fibrous web, for example a carded web of viscose staple fibers. The basis weight of the absorbent layer may suitably be in the range of 50-500 g/m2, such as 100-400 g/m2. The uncompressed thickness of the absorbent layer may be in the range of from 0.5 mm to 10 mm, such as 1 mm to 4 mm. The free (uncompressed) liquid absorbency measured for physiological saline may suitably be in the range of 5 to 30 g/g at 25° C.
The area of the absorbent island is suitably in the range of from 1 cm2 to 400 cm2, more suitably from 4 cm2 to 200 cm2, still more suitably from about 10 cm2 to about 150 cm2, for example from about 16 cm2 to about 100 cm2. Dressings of the latter size are especially suitable for the treatment of leg ulcers.
The island has a smaller area than the adhesive-coated backing sheet such that an adhesive-coated margin of the backing sheet extends around the island. Normally, the adhesive-coated margin extends around every edge of the absorbent island. Suitably, the adhesive-coated margin has a mean width of from 0.5 to 5 cm, suitably from 1 to 3 cm. The adhesive-coated margin may be made up of an inner margin covered by the apertured coated layer, and an outer margin extending outside the apertured coated layer, as explained further below.
The pressure-sensitive adhesive layer is suitably pressure-sensitive adhesive layer of the type conventionally used for island-type wound dressings. The PSA layer is suitably a continuous layer, but it may be apertured or interrupted in some embodiments. Acrylic-based pressure sensitive adhesives are suitable. In embodiments, a pressure sensitive adhesive based on acrylate ester copolymers, polyvinyl ethyl ether and polyurethane as described for example in GB-A-1280631. The basis weight of the PSA layer is suitably 20 to 250 g/m2, and more suitably 50 to 150 g/m2.
The apertured layer having a coating of silicone elastomer provides a weakly adherent (tacky) or non-adherent wound facing layer over the absorbent layer. In addition, the apertured layer having a coating of silicone elastomer extends over at least part of the adhesive-coated margin. In this part of the margin, the apertured layer covers a portion of the PSA-coated surface of the backing sheet but allows adhesion of the pressure-sensitive adhesive through the apertures of the layer resulting in reduced overall adherency of the backing sheet in this part of the margin. The overlap of the apertured coated layer and the adhesive-coated backing sheet around the absorbent layer also serves to attach the apertured coated layer to the backing sheet thereby securing the laminate. The silicone elastomer coating is suitably hydrophobic, whereby leakage of wound fluid through the edges of the dressing is inhibited. The silicone elastomer coating may be tacky or non-tacky.
The apertures in the apertured layer are suitably large enough to allow skin contact of the backing layer PSA through the apertures when the dressing is applied to skin around a wound. Suitably, the said apertures have an open area of from about 4 mm2 to about 50 mm2, for example from about 5 mm2 to about 30 mm2. This refers to the average (mean) area of the apertures. Suitably, at least about 90% of the apertures in the apertured layer have open area in the specified ranges. Suitably, at least about 90%, for example substantially all, of the apertures have substantially the same size and shape. Suitably, said apertures consist essentially of a regular array of apertures. The apertures may be of any shape, but suitably they are circular, oval, or polygonal. Suitably, the open area of the apertured layer is from about 10% to about 70% of the total area, for example from about 20% to about 50% of the total area, for example about 25% to about 40% of the total area. Suitably, the density of the apertures is from about 1000 to about 100,000 apertures per m2, for example about 5000 to about 50,000 apertures per m2.
Likewise, in order to ensure sufficient adherency of the PSA through the apertures of the apertured layer, the apertured layer is suitably thin. In embodiments, the thickness of the apertured wound facing layer is less than about 1 mm, for example from about 0.02 mm to about 0.5 mm, in embodiments from about 0.05 mm to about 0.2 mm. The term “thickness” in this context refers to the combined thickness of the silicone coating and substrate.
The apertured substrate may be any medically acceptable apertured sheet material, including textile materials such as gauzes. Suitably, the apertured substrate is a unitary substrate such as a unitary polymer mesh or an apertured polymer film. Suitable polymer materials include polyethylene, polypropylene, polyester, polyvinyl acetate, and ethylene vinyl acetate. Suitably, the film substrate has a thickness of from about 1 μm to about 100 μm, for example from about 5 μm to about 25 μm. In other embodiments the substrate is a woven or nonwoven textile material, typically having an uncompressed thickness of from about 0.1 mm to about 1 mm.
In embodiments, the apertured wound facing layer is smaller than the adhesive-coated backing sheet, whereby an adhesive-coated margin of the backing sheet extends around the apertured wound facing layer. This continuous PSA margin provides additional security of attachment and leak resistance around the edges of the dressing. However, it can be made narrower than the PSA-coated margin of conventional island dressings because of the adherency of the inner margin covered by the apertured layer. Thus, in embodiments, the margin of PSA-coated backing sheet around the absorbent island that is covered by the apertured layer has a mean width of from about 5 mm to about 30 mm, for example from about 10 mm to about 20 mm. The outer margin of PSA-coated backing sheet only (where present) has a mean width of from about 2 mm to about 20 mm, for example from about 5 mm to about 15 mm, typically about 10 mm.
In embodiments, the apertured wound facing material comprises lines of weakness substantially parallel to, and spaced from, one or more edges of the apertured wound facing material. These lines of weakness define tear-off strips along one or more edges of the apertured wound facing material that allow the size of the apertured wound facing material (and hence the width of the PSA-coated margin around the outside of the apertured wound facing material) to be varied according to the clinical requirements. Thus, for a heavily-exuding wound, a wider PSA-coated margin around the edges of the dressing may be desirable. On the other hand, for lightly exuding wounds, or where easy repositioning of the dressing is desirable, little or no PSA-coated margin around the outside of the apertured wound facing material may be preferable. Thus, in some embodiments the apertured wound facing sheet may be coterminous with the PSA-coated backing sheet prior to removal of any of the tear strips so that there is no continuously PSA-coated margin around the apertured wound facing sheet until removal of the tear strips.
The lines of weakness may, for example comprise lines of perforations or score lines. Suitably, one or more lines of weakness defining tear-off strips are defined in all edges of the apertured wound facing material so as to allow uniform increasing of the PSA-coated margin. Suitably, the width of the tear-off strips (i.e. the average spacing of the lines of weakness from the edges of the apertured sheet is from about 5 mm to about 20 mm, for example about 8 mm to about 15 mm. Suitably, a pull tab is attached to, or formed integrally with, each tear strip defined by the lines of weakness to assist removal of the tear strip. Suitably, a release coating such as a silicone or a fluoropolymer coating may be provided on the underside of the tear-off strips of the apertured wound contacting layer to assist removal of the strips.
The silicone coating on the wound facing side of the apertured layer is suitably a hydrophobic, tacky or non-tacky silicone polymer. The silicone elastomer coating is suitably coated only on the wound facing side of the apertured layer.
The total coating weight of the silicone is suitably from about 15 g/m2 to about 500 g/m2, for example from about 40 g/m2 to about 250 g/m2, typically from about 50 g/m2 to about 150 g/m2. The silicone is suitably a soft skin adhesive silicone composition. Suitable chemistry is described below. The silicone is suitably hydrophobic.
Suitably, the silicone composition is a so-called soft skin adhesive silicone elastomer. Such silicones can be made by an addition reaction (hydrosilylation) between (a) a vinyl functional polydimethyl siloxane, such as bis-dimethyl vinyl polydimethylsiloxane (PDMS), and (b) a hydrogen functional siloxane, such as dimethyl, methylhydrogen siloxane copolymers, hydrogen dimethylsiloxy terminated PDMS. The cure reaction is catalyzed by a hydrosilylation catalyst, such as a noble metal catalyst, suitably a platinum catalyst. A silicone prepolymer composition may further comprise a polymerization inhibitor that is evaporated from said composition during said step of thermally partially curing, for example 2-methyl-3-butyn-2-ol. Where present, the polymerization inhibitor is suitably present in an amount of from about 0.001 wt. % to about 1 wt. %, for example from about 0.01 wt. % to about 0.1 wt. % before curing. Alternatively, no polymerisation inhibitor is present in the silicone compositions.
Silicone skin adhesive compositions are suitably supplied as two-part systems: Part A contains at least the vinyl prepolymer and the catalyst, while Part B contains the vinyl prepolymer and the SiH siloxane cross linker. The components are mixed immediately before use, optionally with addition of a polymerization inhibitor.
In embodiments, the silicone coating composition comprises or consists essentially of the following components:
(A) a diorganopolysiloxane having at least 2 alkenyl groups in each molecule;
(B) an organohydrogenpolysiloxane having at least 2 silicon-bonded hydrogen atoms in each molecule, in a quantity sufficient for the ratio between the number of moles of silicon-bonded hydrogen atoms in this component and the number of moles of alkenyl groups in component (A) to have a value of from about 0.6:1 to about 20:1,
(C) optionally a platinum group metal catalyst suitably in a quantity providing 0.1 to 500 weight parts as platinum group metal per 1,000,000 weight parts component (A); and
(D) optionally, a volatile polymerization inhibitor, suitably selected from: alkyne alcohols such as 2-methyl-3-butyn-2-ol, 3,5-dimethyl-1-hexyn-3-ol, and phenylbutynol; ene-yne compounds such as 3-methyl-3-penten-1-yne and 3,5-dimethyl-3-hexen-1-yne; tetramethyltetrahexenyl-cyclotetrasiloxane; and benzotriazole.
The diorganopolysiloxane, component (A), used in the instant invention is the base component of the total composition. This diorganopolysiloxane must contain at least 2 alkenyl groups in each molecule in order for this composition to cure into a rubbery elastic silicone rubber coating composition.
The diorganopolysiloxane (A) comprises essentially straight-chain organopolysiloxane with the average unit formula RnSiO(4-n)/2, wherein R is selected from substituted and unsubstituted monovalent hydrocarbon groups and n has a value of 1.9 to 2.1. R may be exemplified by alkyl groups such as methyl, ethyl, propyl, and others; alkenyl groups such as vinyl, allyl, and others; aryl groups such as phenyl, and others; and haloalkyl groups such as 3,3,3-trifluoropropyl and others. The diorganopolysiloxane (A) should have a viscosity at 25° C. of at least 100 centipoise (1 d Pa·s). When such factors as the strength of the silicone rubber coating membrane, and blendability are taken into account, the viscosity of diorganopolysiloxane (A) at 25° C. is preferably from 1,000 centipoise (1 Pa·s) to 100,000 centipoise (100 Pa·s). The diorganopolysiloxane (A) may be exemplified by dimethylvinylsiloxy-endblocked dimethylpolysiloxanes, dimethylvinylsiloxy-endblocked dimethylsiloxane-methylvinylsiloxane copolymers, and dimethylvinyl-siloxy-endblocked dimethylsiloxane-methylphenylsiloxane copolymers.
Component (B), an organopolysiloxane that contains at least 2 silicon-bonded hydrogen atoms in each molecule, is a crosslinker for the composition of the instant invention. The organopolysiloxane (B) may be exemplified by trimethylsiloxy-endblocked methylhydrogenpolysiloxanes, trimethylsiloxy-endblocked dimethylsiloxanemethylhydrogensiloxane copolymers, dimethylphenylsiloxy-endblocked methylphenylsiloxanemethylhydrogensiloxane copolymers, cyclic methylhydrogenpolysiloxanes, and copolymers that contain the dimethylhydrogensiloxy unit and SiO4/2 unit. The organohydrogenpolysiloxane (B) should be added in a quantity that the ratio between the number of moles of silicon-bonded hydrogen atoms in this organohydrogenpolysiloxane and the number of moles of alkenyl groups in component (A) has a value of 0.6:1 to 20:1.
The platinum group metal catalyst, component (C), used in the compositions is a curing catalyst. The platinum group metal catalyst (C) may be exemplified by platinum micropowder, platinum black, chloroplatinic acid, platinum tetrachloride, olefin complexes of chloroplatinic acid, alcohol solutions of chloroplatinic acid, complexes between chloroplatinic acid and alkenylsiloxanes, rhodium compounds, and palladium compounds. The platinum group metal catalyst (C) should be added generally at 0.1 to 500 weight parts as platinum group metal per 1,000,000 weight parts component (A), and is preferably used at 1 to 50 weight parts as platinum group metal per 1,000,000 weight parts component (A). The reaction will not develop adequately at less than 0.1 weight parts, while additions in excess of 500 weight parts are uneconomical.
The coated substrate is then subjected to thermal curing to at least partially cure the silicone. The thermal curing is suitably performed continuously by passing the coated substrate through an oven. Suitable thermal curing conditions include exposure to a temperature of from about 80° C. to about 200° C., for example about 120° C. to about 180° C. for a time of from about 1 minute to about 10 minutes, for example about 1.5 minutes to about 5 minutes. The elevated temperature results in evaporation of any polymerization inhibitor from the silicone composition and therefore promotes polymerization of the silicone. The resulting material is chemically polymerized, but may be capable of further curing by ionizing radiation for example during sterilization.
The adhesive dressing according to the present invention may further comprise at least one removable cover sheet to cover the absorbent island and the adhesive-coated margin(s) around the absorbent island. The cover sheet covers and protects the absorbent island and prevents premature adhesion of the adhesive layer. The cover sheet is removed by the care giver immediately before application of the dressing.
The cover sheet may comprise a film of polyethylene, polypropylene or fluorocarbons and papers coated with these materials. Suitably, the cover sheet is a release-coated paper sheet, such as a silicone release-coated paper sheet. Examples of silicone-coated release papers are POLYSLIK (Registered Trade Mark) supplied by H.P. Smith & Co., offered in various formulations to control the degree of adhesion of the paper to the adhesive surface.
Suitably, the dressing comprises a first removable cover sheet having a first edge and a second removable cover sheet that meets the first cover sheet along the first edge.
Certain suitable dressings have a central cover sheet with first and second opposed edges, and two side cover sheets that meet the central cover sheet along the opposed edges. Suitably, the opposed edges are substantially parallel. This arrangement of three cover sheets is especially suitable for positioning of relatively large dressings, such as sacral dressings, as described in detail in EP-A-0117632.
Suitably, along each of said edges where the cover sheets meet, one of the cover sheets is folded back to provide a folded-back margin, and the other cover sheet overlaps the said folded-back margin. This provides an easy-to-grasp margin on each cover sheet in the region of overlap to assist removal of the cover sheets by the care giver.
In the case of the embodiment comprising three cover sheets described above, each side cover sheet is suitably folded back along each of said edges where the cover sheets meet to provide a folded-back margin, and the central cover sheet overlaps the said folded-back margin, suitably as described in EP-A-0117632.
Suitably the dressing according to the present invention is sterile and packaged in a microorganism-impermeable container.
The dressing of the invention may be made by conventional cutting and lamination of the various layers. The apertured coated top sheet may be made by coating a suitable film substrate with a fluid silicone precursor mixture as described above, followed by thermal curing as described above. The coating may be done by any conventional means, such as by roller, doctor blade, spraying or dipping. In embodiments, the fluid silicone precursor may be coated onto an already-apertured substrate, in which case the coated substrate is suitably passed over an air blower to blow excess precursor out of the apertures as described for example in WO-A-9319709.
In other embodiments, the film substrate may be apertured, for example by die cutting, for example after the coating and curing steps. In a particularly suitably embodiment, the die cutting is performed after curing of a layer of the silicone sandwiched between the support film and a release sheet.
Accordingly, in a further aspect the present invention provides a method of making a wound dressing as described herein comprising the steps of: forming a precursor laminate comprising a layer of silicone sandwiched between a polymeric film support sheet and a release sheet; die cutting aperture perimeters through the polymeric film support sheet and the silicone layer; and removing the release sheet to leave an apertured wound facing layer comprising an apertured polymeric film having a coating of a silicone gel on the wound facing surface thereof.
In a further aspect the present invention provides a method of making a wound dressing as described herein comprising the steps of: forming a precursor laminate comprising a layer of a fluid silicone prepolymer sandwiched between a polymeric film support sheet and a release sheet; curing said fluid silicone prepolymer; die cutting aperture perimeters through the polymeric film support sheet and the silicone layer; and removing the release sheet to leave an apertured wound facing layer comprising an apertured polymeric film having a coating of a silicone gel on the wound facing surface thereof.
In a further aspect the present invention provides a method of making a wound dressing as described herein comprising the steps of: forming a precursor laminate comprising a layer of silicone sandwiched between a polymeric film support sheet and a release sheet, wherein said precursor laminate is formed by disposing a layer of a fluid silicone prepolymer on said release sheet, curing said fluid silicone prepolymer, and disposing said polymeric film support sheet on the silicone layer; die cutting aperture perimeters through the polymeric film support sheet and the silicone layer; and removing the release sheet to leave an apertured wound facing layer comprising an apertured polymeric film having a coating of a silicone gel on the wound facing surface thereof.
Suitably, the method according to the present invention further comprises one or more of the following steps: coating one surface of a backing sheet with a layer of pressure sensitive adhesive; applying an island of absorbent material to a central region of the adhesive-coated surface of the backing sheet, wherein the absorbent material has a smaller area than the backing sheet so as to leave an adhesive-coated margin of the backing sheet around the island; and applying said apertured wound facing layer over said island with said polymeric film support sheet facing the backing sheet, wherein a margin of said wound contacting laminate is adhered to said adhesive-coated margin around said island.
Suitably, the method further comprises the step of packaging the dressing in a microorganism-impermeable container, and sterilizing the dressing. Sterilization may be, and preferably is, effected using an ethylene oxide (EtO) sterilization process, which is known in the art for sterilization of medical and pharmaceutical products that cannot support conventional high temperature steam sterilization. In a typical process, gaseous EtO is mixed with air at a ratio of at least 3% EtO and infiltrates the dressing to kill any micro-organisms remaining from the production process. Most EtO sterilization processes involve a pre-conditioning stage, a sterilization stage and a degassing stage.
Sterilization may also be effected with ionizing radiation, such as gamma radiation. Commercially available gamma irradiation equipment includes equipment often used for gamma irradiation sterilization of products for medical applications. Cobalt 60 sources are appropriate. Total absorbed doses are suitably from 20 to 60 kGy, more suitably from about 35 to 50 kGy and dose rates are suitably about 7 to 8 kGy/hour. It has been found that the ionizing radiation provides a further benefit of further curing the silicone elastomer.
The methods of the invention may be used to make any products according to the invention. Any feature disclosed herein in relation to any one or more aspects of the invention is suitable for use in any of the other aspects defined herein.
Embodiments of the present invention will now be described by way of example with reference to the accompanying drawings, in which:
Referring to
The dressing 1 further comprises an apertured wound-facing top sheet 10 that covers the absorbent island and extends around the edges of the absorbent island so that it adheres to the margins of the adhesive-coated backing sheet around the absorbent island. The top sheet 10 is smaller than the backing sheet 2, whereby a relatively narrow adhesive-coated margin 12 of the backing sheet extends around all edges of the top sheet 10.
The top sheet 10 is formed from an apertured film substrate 14 coated on its wound facing surface with a layer of silicone elastomer 16. The film substrate is formed of polyurethane, has thickness about 10 μm. The circular apertures of diameter 6 mm are arranged in a regular array at 10,000 apertures per m2 such that the open area of the film substrate is about 28%. The thickness/coating weight of the silicone is about 50 g/m2. The resulting overall thickness of the top sheet is about 80 μm. The relatively large aperture size and low thickness of the top sheet 10 enable pressure-sensitive adhesive from the layer 4 to penetrate through the apertures and adhere to skin located below the top sheet 10. The degree of adherency can be controlled by varying the tackiness of the silicone elastomer, the size of the apertures, and the overall open area of the top sheet, thereby allowing optimization of adherency for leak prevention and secure attachment versus ease of removal and repositionability. In this embodiment, the additional narrow adhesive margin 16 around the top sheet is provided for further leak prevention from the dressing. In other embodiments, the top sheet may be coterminous with the backing sheet so that there is no narrow adhesive margin 16.
Referring to
Referring to
Referring to
Referring to
Referring to
Alternatively, and again with reference to
The above embodiments have been described by way of example only. It is understood that many other embodiments falling within the scope of the accompanying claims will be apparent to the skilled reader. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.
Number | Date | Country | Kind |
---|---|---|---|
1222770.8 | Dec 2012 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2013/060862 | 12/12/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/097069 | 6/26/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1355846 | Rannells | Oct 1920 | A |
2547758 | Kelling | Apr 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans et al. | Jul 1954 | A |
2910763 | Lauterbach | Nov 1959 | A |
2969057 | Simmons | Jan 1961 | A |
3066672 | Crosby, Jr. et al. | Dec 1962 | A |
3172808 | Baumann et al. | Mar 1965 | A |
3367332 | Groves | Feb 1968 | A |
3376868 | Mondiadis | Apr 1968 | A |
3520300 | Guiles, Jr. | Jul 1970 | A |
3568675 | Harvey | Mar 1971 | A |
3648692 | Wheeler | Mar 1972 | A |
3682180 | McFarlane | Aug 1972 | A |
3742952 | Magers et al. | Jul 1973 | A |
3774611 | Tussey et al. | Nov 1973 | A |
3777016 | Gilbert | Dec 1973 | A |
3779243 | Tussey et al. | Dec 1973 | A |
3826254 | Mellor | Jul 1974 | A |
3852823 | Jones | Dec 1974 | A |
3967624 | Milnamow | Jul 1976 | A |
3983297 | Ono et al. | Sep 1976 | A |
4080970 | Miller | Mar 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4139004 | Gonzalez, Jr. | Feb 1979 | A |
4141361 | Snyder | Feb 1979 | A |
4163822 | Walter | Aug 1979 | A |
4165748 | Johnson | Aug 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4233969 | Lock et al. | Nov 1980 | A |
4245630 | Lloyd et al. | Jan 1981 | A |
4256109 | Nichols | Mar 1981 | A |
4261363 | Russo | Apr 1981 | A |
4275721 | Olson | Jun 1981 | A |
4284079 | Adair | Aug 1981 | A |
4297995 | Golub | Nov 1981 | A |
4333468 | Geist | Jun 1982 | A |
4360015 | Mayer | Nov 1982 | A |
4373519 | Errede et al. | Feb 1983 | A |
4382441 | Svedman | May 1983 | A |
4392853 | Muto | Jul 1983 | A |
4392858 | George et al. | Jul 1983 | A |
4414970 | Berry | Nov 1983 | A |
4419097 | Rowland | Dec 1983 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4475909 | Eisenberg | Oct 1984 | A |
4480638 | Schmid | Nov 1984 | A |
4525166 | Leclerc | Jun 1985 | A |
4525374 | Vaillancourt | Jun 1985 | A |
4529402 | Weilbacher et al. | Jul 1985 | A |
4540412 | Van Overloop | Sep 1985 | A |
4543100 | Brodsky | Sep 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4551139 | Plaas et al. | Nov 1985 | A |
4569348 | Hasslinger | Feb 1986 | A |
4605399 | Weston et al. | Aug 1986 | A |
4608041 | Nielsen | Aug 1986 | A |
4640688 | Hauser | Feb 1987 | A |
4655754 | Richmond et al. | Apr 1987 | A |
4664652 | Weilbacher | May 1987 | A |
4664662 | Webster | May 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4715857 | Juhasz et al. | Dec 1987 | A |
4733659 | Edenbaum et al. | Mar 1988 | A |
4743232 | Kruger | May 1988 | A |
4753230 | Carus et al. | Jun 1988 | A |
4758220 | Sundblom et al. | Jul 1988 | A |
4787888 | Fox | Nov 1988 | A |
4826494 | Richmond et al. | May 1989 | A |
4832008 | Gilman | May 1989 | A |
4838883 | Matsuura | Jun 1989 | A |
4840187 | Brazier | Jun 1989 | A |
4848364 | Bosman | Jul 1989 | A |
4863449 | Therriault et al. | Sep 1989 | A |
4871611 | LeBel | Oct 1989 | A |
4872450 | Austad | Oct 1989 | A |
4878901 | Sachse | Nov 1989 | A |
4897081 | Poirier et al. | Jan 1990 | A |
4906233 | Moriuchi et al. | Mar 1990 | A |
4906240 | Reed et al. | Mar 1990 | A |
4919654 | Kalt | Apr 1990 | A |
4930997 | Bennett | Jun 1990 | A |
4941882 | Ward et al. | Jul 1990 | A |
4953565 | Tachibana et al. | Sep 1990 | A |
4961493 | Kaihatsu | Oct 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4981474 | Bopp et al. | Jan 1991 | A |
4985019 | Michelson | Jan 1991 | A |
4995382 | Lang et al. | Feb 1991 | A |
4996128 | Aldecoa et al. | Feb 1991 | A |
5010883 | Rawlings et al. | Apr 1991 | A |
5018515 | Gilman | May 1991 | A |
5037397 | Kalt et al. | Aug 1991 | A |
5086170 | Luheshi et al. | Feb 1992 | A |
5092323 | Riedel et al. | Mar 1992 | A |
5092858 | Benson et al. | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5112323 | Winkler et al. | May 1992 | A |
5134994 | Say | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5151314 | Brown | Sep 1992 | A |
5152757 | Eriksson | Oct 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5180375 | Feibus | Jan 1993 | A |
5215522 | Page et al. | Jun 1993 | A |
5232453 | Plass et al. | Aug 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5266372 | Arakawa et al. | Nov 1993 | A |
5270358 | Asmus | Dec 1993 | A |
5278100 | Doan et al. | Jan 1994 | A |
5279550 | Habib et al. | Jan 1994 | A |
5298015 | Komatsuzaki et al. | Mar 1994 | A |
5342329 | Croquevielle | Aug 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5344415 | DeBusk et al. | Sep 1994 | A |
5356386 | Goldberg et al. | Oct 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5384174 | Ward et al. | Jan 1995 | A |
5387207 | Dyer et al. | Feb 1995 | A |
5419769 | Devlin et al. | May 1995 | A |
5423778 | Eriksson et al. | Jun 1995 | A |
5429590 | Saito et al. | Jul 1995 | A |
5437622 | Carion | Aug 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5445604 | Lang | Aug 1995 | A |
5447492 | Cartmell et al. | Sep 1995 | A |
5501212 | Psaros | Mar 1996 | A |
5512041 | Bogart | Apr 1996 | A |
5522808 | Skalla | Jun 1996 | A |
5527293 | Zamierowski | Jun 1996 | A |
5549584 | Gross | Aug 1996 | A |
5549585 | Maher et al. | Aug 1996 | A |
5556375 | Ewall | Sep 1996 | A |
5585178 | Calhoun et al. | Dec 1996 | A |
5599292 | Yoon | Feb 1997 | A |
5607388 | Ewall | Mar 1997 | A |
5634893 | Rishton | Jun 1997 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5641506 | Talke et al. | Jun 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
5653224 | Johnson | Aug 1997 | A |
5678564 | Lawrence et al. | Oct 1997 | A |
5710233 | Meckel et al. | Jan 1998 | A |
5714225 | Hansen et al. | Feb 1998 | A |
5736470 | Schneberger | Apr 1998 | A |
5776119 | Bilbo et al. | Jul 1998 | A |
5807295 | Hutcheon et al. | Sep 1998 | A |
5919476 | Fischer et al. | Jul 1999 | A |
5941863 | Guidotti et al. | Aug 1999 | A |
5981822 | Addison | Nov 1999 | A |
6071267 | Zamierowski | Jun 2000 | A |
6086995 | Smith | Jul 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
6174306 | Fleischmann | Jan 2001 | B1 |
6191335 | Robinson | Feb 2001 | B1 |
6241747 | Ruff | Jun 2001 | B1 |
6262329 | Brunsveld et al. | Jul 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6458109 | Henley et al. | Oct 2002 | B1 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6493568 | Bell et al. | Dec 2002 | B1 |
6495229 | Carte et al. | Dec 2002 | B1 |
6548727 | Swenson | Apr 2003 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6566575 | Stickels et al. | May 2003 | B1 |
6566577 | Addison et al. | May 2003 | B1 |
6626891 | Ohmstede | Sep 2003 | B2 |
6627215 | Dale et al. | Sep 2003 | B1 |
6648862 | Watson | Nov 2003 | B2 |
6680113 | Lucast et al. | Jan 2004 | B1 |
6685681 | Lockwood et al. | Feb 2004 | B2 |
6693180 | Lee et al. | Feb 2004 | B2 |
6695823 | Lina et al. | Feb 2004 | B1 |
6752794 | Lockwood et al. | Jun 2004 | B2 |
6787682 | Gilman | Sep 2004 | B2 |
6814079 | Heaton et al. | Nov 2004 | B2 |
6855135 | Lockwood et al. | Feb 2005 | B2 |
6856821 | Johnson | Feb 2005 | B2 |
6979324 | Bybordi et al. | Dec 2005 | B2 |
7070584 | Johnson et al. | Jul 2006 | B2 |
7154017 | Sigurjonsson et al. | Dec 2006 | B2 |
7402721 | Sigurjonsson et al. | Jul 2008 | B2 |
7569742 | Haggstrom et al. | Aug 2009 | B2 |
7645269 | Zamierowski | Jan 2010 | B2 |
8298197 | Eriksson et al. | Oct 2012 | B2 |
8529532 | Pinto et al. | Sep 2013 | B2 |
8632523 | Eriksson et al. | Jan 2014 | B2 |
8764732 | Hartwell | Jul 2014 | B2 |
9192444 | Locke et al. | Nov 2015 | B2 |
20010030304 | Kohda et al. | Oct 2001 | A1 |
20010051178 | Blatchford et al. | Dec 2001 | A1 |
20020009568 | Bries et al. | Jan 2002 | A1 |
20020016346 | Brandt et al. | Feb 2002 | A1 |
20020065494 | Lockwood et al. | May 2002 | A1 |
20020077661 | Saadat | Jun 2002 | A1 |
20020115951 | Norstrem et al. | Aug 2002 | A1 |
20020119292 | Venkatasanthanam et al. | Aug 2002 | A1 |
20020120185 | Johnson | Aug 2002 | A1 |
20020130064 | Adams et al. | Sep 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20020150270 | Werner | Oct 2002 | A1 |
20020150720 | Howard et al. | Oct 2002 | A1 |
20020161346 | Lockwood et al. | Oct 2002 | A1 |
20020164346 | Nicolette | Nov 2002 | A1 |
20020183702 | Henley et al. | Dec 2002 | A1 |
20020198504 | Risk et al. | Dec 2002 | A1 |
20030014022 | Lockwood et al. | Jan 2003 | A1 |
20030109855 | Solem et al. | Jun 2003 | A1 |
20030158577 | Ginn et al. | Aug 2003 | A1 |
20030212357 | Pace | Nov 2003 | A1 |
20030225347 | Argenta et al. | Dec 2003 | A1 |
20030225355 | Butler | Dec 2003 | A1 |
20040002676 | Siegwart et al. | Jan 2004 | A1 |
20040030304 | Hunt et al. | Feb 2004 | A1 |
20040064132 | Boehringer et al. | Apr 2004 | A1 |
20040077984 | Worthley | Apr 2004 | A1 |
20040099268 | Smith et al. | May 2004 | A1 |
20040118401 | Smith et al. | Jun 2004 | A1 |
20040127836 | Sigurjonsson et al. | Jul 2004 | A1 |
20040127862 | Bubb et al. | Jul 2004 | A1 |
20040133143 | Burton | Jul 2004 | A1 |
20040186239 | Qin et al. | Sep 2004 | A1 |
20040219337 | Langley et al. | Nov 2004 | A1 |
20040230179 | Shehada | Nov 2004 | A1 |
20050034731 | Rousseau et al. | Feb 2005 | A1 |
20050054998 | Poccia et al. | Mar 2005 | A1 |
20050059918 | Sigurjonsson et al. | Mar 2005 | A1 |
20050065484 | Watson | Mar 2005 | A1 |
20050070858 | Lockwood et al. | Mar 2005 | A1 |
20050101940 | Radl et al. | May 2005 | A1 |
20050113732 | Lawry | May 2005 | A1 |
20050124925 | Scherpenborg | Jun 2005 | A1 |
20050131327 | Lockwood et al. | Jun 2005 | A1 |
20050137539 | Biggie et al. | Jun 2005 | A1 |
20050143694 | Schmidt et al. | Jun 2005 | A1 |
20050159695 | Cullen et al. | Jul 2005 | A1 |
20050161042 | Fudge et al. | Jul 2005 | A1 |
20050163978 | Strobech et al. | Jul 2005 | A1 |
20050214376 | Faure et al. | Sep 2005 | A1 |
20050233072 | Stephan et al. | Oct 2005 | A1 |
20050256437 | Silcock et al. | Nov 2005 | A1 |
20050261642 | Weston | Nov 2005 | A1 |
20050261643 | Bybordi et al. | Nov 2005 | A1 |
20050277860 | Jensen | Dec 2005 | A1 |
20060079852 | Bubb et al. | Apr 2006 | A1 |
20060083776 | Bott et al. | Apr 2006 | A1 |
20060154546 | Murphy et al. | Jul 2006 | A1 |
20060241542 | Gudnason et al. | Oct 2006 | A1 |
20060271020 | Huang et al. | Nov 2006 | A1 |
20070027414 | Hoffman et al. | Feb 2007 | A1 |
20070078366 | Haggstrom et al. | Apr 2007 | A1 |
20070185426 | Ambrosio et al. | Aug 2007 | A1 |
20070225663 | Watt et al. | Sep 2007 | A1 |
20070265585 | Joshi et al. | Nov 2007 | A1 |
20070265586 | Joshi et al. | Nov 2007 | A1 |
20080090085 | Kawate et al. | Apr 2008 | A1 |
20080119802 | Riesinger | May 2008 | A1 |
20080149104 | Eifler | Jun 2008 | A1 |
20080195017 | Robinson et al. | Aug 2008 | A1 |
20080225663 | Smith et al. | Sep 2008 | A1 |
20080243044 | Hunt et al. | Oct 2008 | A1 |
20080269657 | Brenneman et al. | Oct 2008 | A1 |
20080271804 | Biggie et al. | Nov 2008 | A1 |
20090025724 | Herron, Jr. | Jan 2009 | A1 |
20090088719 | Driskell | Apr 2009 | A1 |
20090093779 | Riesinger | Apr 2009 | A1 |
20090124988 | Coulthard | May 2009 | A1 |
20090177172 | Wilkes | Jul 2009 | A1 |
20090216204 | Bhavaraju et al. | Aug 2009 | A1 |
20090227969 | Jaeb et al. | Sep 2009 | A1 |
20090264807 | Haggstrom et al. | Oct 2009 | A1 |
20090292264 | Hudspeth et al. | Nov 2009 | A1 |
20090312662 | Colman et al. | Dec 2009 | A1 |
20090326488 | Budig et al. | Dec 2009 | A1 |
20100063467 | Addison et al. | Mar 2010 | A1 |
20100106106 | Heaton et al. | Apr 2010 | A1 |
20100106118 | Heaton et al. | Apr 2010 | A1 |
20100125259 | Olson | May 2010 | A1 |
20100159192 | Cotton | Jun 2010 | A1 |
20100185163 | Heagle | Jul 2010 | A1 |
20100226824 | Ophir et al. | Sep 2010 | A1 |
20100262090 | Riesinger | Oct 2010 | A1 |
20100267302 | Kantner et al. | Oct 2010 | A1 |
20100305490 | Coulthard et al. | Dec 2010 | A1 |
20100305524 | Vess et al. | Dec 2010 | A1 |
20100324516 | Braga et al. | Dec 2010 | A1 |
20110046585 | Weston | Feb 2011 | A1 |
20110112458 | Holm et al. | May 2011 | A1 |
20110137271 | Andresen et al. | Jun 2011 | A1 |
20110160686 | Ueda et al. | Jun 2011 | A1 |
20110171480 | Mori et al. | Jul 2011 | A1 |
20110172617 | Riesinger | Jul 2011 | A1 |
20110224631 | Simmons et al. | Sep 2011 | A1 |
20110229688 | Cotton | Sep 2011 | A1 |
20110244010 | Doshi | Oct 2011 | A1 |
20110257617 | Franklin | Oct 2011 | A1 |
20120016322 | Coulthard et al. | Jan 2012 | A1 |
20120123359 | Reed | May 2012 | A1 |
20120143157 | Riesinger | Jun 2012 | A1 |
20120258271 | Maughan | Oct 2012 | A1 |
20130030394 | Locke et al. | Jan 2013 | A1 |
20130066285 | Locke et al. | Mar 2013 | A1 |
20130096518 | Hall et al. | Apr 2013 | A1 |
20130152945 | Locke et al. | Jun 2013 | A1 |
20140012213 | Locke | Jan 2014 | A1 |
20140039423 | Riesinger | Feb 2014 | A1 |
20140039424 | Locke | Feb 2014 | A1 |
20140058309 | Addison | Feb 2014 | A1 |
20140155849 | Heaton et al. | Jun 2014 | A1 |
20140171851 | Addison | Jun 2014 | A1 |
20140309574 | Cotton | Oct 2014 | A1 |
20140350494 | Hartwell et al. | Nov 2014 | A1 |
20150030848 | Goubard | Jan 2015 | A1 |
20150119830 | Luckemeyer et al. | Apr 2015 | A1 |
20150190286 | Allen et al. | Jul 2015 | A1 |
20150245949 | Locke | Sep 2015 | A1 |
20160067107 | Cotton | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
550575 | Mar 1986 | AU |
745271 | Mar 2002 | AU |
755496 | Dec 2002 | AU |
2009200608 | Oct 2009 | AU |
2005436 | Jun 1990 | CA |
87101823 | Aug 1988 | CN |
26 40 413 | Mar 1978 | DE |
43 06 478 | Sep 1994 | DE |
29 504 378 | Sep 1995 | DE |
202004018245 | Jul 2005 | DE |
097517 | Jan 1984 | EP |
0100148 | Feb 1984 | EP |
0117632 | Sep 1984 | EP |
0147119 | Jul 1985 | EP |
0161865 | Nov 1985 | EP |
0251810 | Jan 1988 | EP |
0275353 | Jul 1988 | EP |
0358302 | Mar 1990 | EP |
0538917 | Apr 1993 | EP |
0630629 | Dec 1994 | EP |
1002846 | May 2000 | EP |
1018967 | Jul 2000 | EP |
2578193 | Apr 2013 | EP |
692578 | Jun 1953 | GB |
2 195 255 | Apr 1988 | GB |
2 197 789 | Jun 1988 | GB |
2 220 357 | Jan 1990 | GB |
2 235 877 | Mar 1991 | GB |
2 329 127 | Mar 1999 | GB |
2 333 965 | Aug 1999 | GB |
2377939 | Jan 2003 | GB |
2392836 | Mar 2004 | GB |
2393655 | Apr 2004 | GB |
2425487 | Nov 2006 | GB |
2452720 | Mar 2009 | GB |
2496310 | May 2013 | GB |
1961003393 | Feb 1961 | JP |
S62139523 | Sep 1987 | JP |
S62-275456 | Nov 1987 | JP |
08-336555 | Dec 1996 | JP |
2007254515 | Oct 2007 | JP |
2008080137 | Apr 2008 | JP |
4129536 | Aug 2008 | JP |
2015501712 | Jan 2015 | JP |
71559 | Apr 2002 | SG |
8002182 | Oct 1980 | WO |
8704626 | Aug 1987 | WO |
8707164 | Dec 1987 | WO |
9010424 | Sep 1990 | WO |
9309727 | May 1993 | WO |
WO-9313813 | Jul 1993 | WO |
WO-9319709 | Oct 1993 | WO |
9420041 | Sep 1994 | WO |
WO-9515135 | Jun 1995 | WO |
9605873 | Feb 1996 | WO |
9622753 | Aug 1996 | WO |
9718007 | May 1997 | WO |
9913793 | Mar 1999 | WO |
9965542 | Dec 1999 | WO |
0119306 | Mar 2001 | WO |
0136188 | May 2001 | WO |
0160296 | Aug 2001 | WO |
0168021 | Sep 2001 | WO |
0185248 | Nov 2001 | WO |
0185248 | Nov 2001 | WO |
WO-0220067 | Mar 2002 | WO |
0243743 | Jun 2002 | WO |
02062403 | Aug 2002 | WO |
WO-03043553 | May 2003 | WO |
03045294 | Jun 2003 | WO |
03045492 | Jun 2003 | WO |
03053484 | Jul 2003 | WO |
2004024197 | Mar 2004 | WO |
2004037334 | May 2004 | WO |
WO-2004060359 | Jul 2004 | WO |
WO-2004060413 | Jul 2004 | WO |
2004112852 | Dec 2004 | WO |
2005002483 | Jan 2005 | WO |
2005062896 | Jul 2005 | WO |
2005105176 | Nov 2005 | WO |
2005123170 | Dec 2005 | WO |
2007022097 | Feb 2007 | WO |
2007030601 | Mar 2007 | WO |
2007070269 | Jun 2007 | WO |
2007085396 | Aug 2007 | WO |
2007087811 | Aug 2007 | WO |
2007113597 | Oct 2007 | WO |
WO 2007113597 | Oct 2007 | WO |
2007133618 | Nov 2007 | WO |
2008041926 | Apr 2008 | WO |
WO-2008062176 | May 2008 | WO |
2008082444 | Jul 2008 | WO |
2008100440 | Aug 2008 | WO |
2008104609 | Sep 2008 | WO |
2008131895 | Nov 2008 | WO |
2009002260 | Dec 2008 | WO |
2008149107 | Dec 2008 | WO |
2009066105 | May 2009 | WO |
2009066106 | May 2009 | WO |
WO-2009067062 | May 2009 | WO |
2009081134 | Jul 2009 | WO |
2009089016 | Jul 2009 | WO |
2009124100 | Oct 2009 | WO |
2009126103 | Oct 2009 | WO |
2010032728 | Mar 2010 | WO |
2010056977 | May 2010 | WO |
WO-2010061228 | Jun 2010 | WO |
WO-2010122665 | Oct 2010 | WO |
2010129299 | Nov 2010 | WO |
2011008497 | Jan 2011 | WO |
2011049562 | Apr 2011 | WO |
2011043786 | Apr 2011 | WO |
2011115908 | Sep 2011 | WO |
2011121127 | Oct 2011 | WO |
2011162862 | Dec 2011 | WO |
2012112204 | Aug 2012 | WO |
2012104584 | Aug 2012 | WO |
2012140378 | Oct 2012 | WO |
2012143665 | Oct 2012 | WO |
WO-2012140378 | Oct 2012 | WO |
2013009239 | Jan 2013 | WO |
2013090810 | Jun 2013 | WO |
2014039557 | Mar 2014 | WO |
2014113253 | Jul 2014 | WO |
2014140608 | Sep 2014 | WO |
2015065615 | May 2015 | WO |
2015130471 | Sep 2015 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT/US2014/056594 dated Dec. 2, 2014. |
Partial Internationl Search Report date mailed Jul. 31, 2009; PCT Internationl Application No. PCT/US2009/036222. |
International Search Report and Written opinion date mailed Dec. 15, 2009; PCT Internation Application No. PCT/US2009/036222. |
International Search Report and Written Opinion date mailed Feb. 24, 2010; PCT/US2009/057182. |
International Search Report and Written Opinion date mailed Jan. 5, 2010; PCT International Application No. PCT/US2009/057130. |
Response filed Oct. 20, 2011 for U.S. Appl. No. 12/398,904. |
Interview Summary date mailed Oct. 27, 2011 for U.S. Appl. No. 12/398,904. |
Non-Final Office Action dated mailed Jul. 20, 2011 for U.S. Appl. No. 12/398,904. |
V.A. Solovev et al., Guidelines, the Method of Treatment of Immagure External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medican Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”). |
V.A. Kuznetsov & N.A. Bagautdinov, “Vacuum and Vacuum-Sorption Treatement of Open Septic Wounds,” in All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Masco, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”). |
V.A. Solovev, Dissertation Abstract, Treatement and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1998 (“Solovev Abstract”). |
NDP 1000 Negative Pressure Wound Terapy System, Kalypto Medical, pp. 1-4. |
Partial International Search Report date mailed Jul. 31, 2009 for PCT International Application No. PCT/US2009/036217. |
International Search Report and Written Opinion date mailed May 31, 2010 for PCT Application No. PCT/US2009/064364. |
Examination report for AU2009221772 dated Apr. 4, 2013. |
Response filed Oct. 21, 2011 for U.S. Appl. No. 12/398,891. |
Interview Summary date mailed Oct. 27, 2011 for U.S. Appl. No. 12/398,891. |
Restriction Requirement date mailed Jun. 13, 2011 for U.S. Appl. No. 12/398,891. |
Response filed Jun. 24, 2011 for U.S. Appl. No. 12/398,891. |
Non-Final Office Action date mailed Jul. 21, 2011 for U.S. Appl. No. 12/398,891. |
International Search Report and Written Opinion date mailed Oct. 19, 2010; PCT International Application No. PCT/US2009/036217. |
International Search Report and Written Opinion date mailed Jan. 05, 2010; PCT International Application No. PCT/US2009/057130. |
International Search Report and Written Opinion date mailed Feb. 24, 2010; PCT International Application No. PCT/US2009/057182. |
NPD 1000 Negative Pressure Would Therapy System, Kalypto Medical, pp. 1-4. |
Partial International Search Report date mailed Jul. 31, 2009; PCT Internationl Application No. PCT/US2009/036222. |
Non-Final Rejection for U.S. Appl. No. 12/398,904 mailed Mar. 14, 2012. |
Response to Non-Final Rejection for U.S. Appl. No. 12/398,904, filed Jun. 4, 2012. |
International Search Report and Written Opinion for PCT/US2014/061251 date mailed May 8, 2015. |
International Search Report and Written Opinion for PCT/IB2013/060862 date mailed Jun. 26, 2014. |
European Search Report for corresponding EPSN 15157408.4 published on Sep. 30, 2015. |
International Search Report and Written Opinion for PCT/US2015/034289 mailed Aug. 21, 2015. |
International Search Report and Written Opinion for PCT/US2015/065135 mailed Apr. 4, 2016. |
International Search Report and Written Opinion for PCT/GB2012/050822 mailed Aug. 8, 2012. |
International Search Report and Written Opinion for PCT/US2015/029037 mailed Sep. 4, 2015. |
International Search Report and Written Opinion date mailed Jun. 1, 2011 for PCT International Application No. PCT/US2011/028344. |
European Search Report for EP 11714148.1, dated May 2, 2014. |
European Search Report for corresponding Application No. 15192606.0 mailed Feb. 24, 2016. |
International Search Report and Written Opinion for corresponding PCT/US2014/048081 mailed Nov. 14, 2014. |
International Search Report and Written Opinion for corresponding PCT/US2014/010704 mailed Mar. 25, 2014. |
European Examination Report dated Aug. 26, 2016, corresponding to EP Application No. 16173614.5. |
International Search Report and Written Opinion for corresponding PCT application PCT/US2016/051768 issued Dec. 15, 2016. |
Louis C. Argenta, MD and Michael J. Morykwas, PHD; Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Clinical Experience; Annals of Plastic Surgery Control. |
Susan Mendez-Eatmen, RN; “When wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24. |
James H. Blackburn II, MD et al.: Negative-Pressure Dressings as a Bolster for Skin Grafts; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457; Lippincott Williams & Wilkins, Inc., Philidelphia, PA, USA. |
John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letter to the Editor, British Journal of Plastic Surgery, 198, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK. |
S.E. Greer, et al. “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin” British Journal of Plastic Surgery (2000), 53, pp. 484-487. |
George V. Letsou, MD., et al; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, 31, 1990, pp. 634-639. |
Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80. |
International Search Report for PCT International Application PCT/GB95/01983; Nov. 23, 1995. |
PCT International Search Report for PCT International Application PCT/GB98/02713; Jan. 8, 1999. |
PCT Written Opinion; PCT International Application PCT/GB98/02713; Jun. 8, 1999. |
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; Jan. 15, 1998 & Apr. 29, 1997. |
PCT Written Opinion, PCT International Application PCT/GB96/02802; Sep. 3, 1997. |
Dattilo, Philip P., Jr., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5. |
Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page. English translation thereof. |
Davydov, Yu. A., et al; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof. |
Yusupov. Yu.N., et al; “Active Wound Drainage”, Vestnki Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof. |
Davydov, Yu.A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirugi, Oct. 1988, pp. 48-52, and 8 page English translation thereof. |
Davydov, Yu.A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof. |
Chariker, Mark E., M.D., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63. |
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24. |
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, pp. 2. |
Svedman, P.: “Irrigation Treatment of Leg Ulcers”, the Lancet, Sep. 3, 1983, pp. 532-534. |
Chinn, Steven D. et al.: “Closed Wound Suction Drainage”, the Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81. |
Arnljots, Björn et al.: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., No. 19, 1985, pp. 211-213. |
Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221. |
Svedman, P. et al: “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous of Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133. |
N.A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of Soft Tissues,” Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986); pp. 94-96 (copy and certified translation). |
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246. |
G. {hacek over (Z)}ivadinovi?, V. ?uki?, {hacek over (Z)}. Maksimovi?, ?. Radak, and P. Pe{hacek over (s)}ka, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (copy and certified translation). |
F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585. |
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (copy and certified translation). |
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370. |
D.E. Tribble, an Improved Sump Drain-Irrigation Device of Simple Construction, Archives of Surgery 105 (1972) pp. 511-513. |
M.J. Morykwas, L.C. Argenta, E.I. Shelton-Brown, and W. McGuirt, “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies and Basic Foundation,” Annals of Plastic Surgery 38 (1997), pp. 553-562 (Morykwas I). |
C.E. Tennants, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax,” Journal of the American Medical Association 64 (1915), pp. 1548-1549. |
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211. |
V.A. Solovev et al., Guidelines, the Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”). |
V.A. Kuznetsov & N.A. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”). |
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”). |
V.A.C. ® Therapy Clinical Guidelines: A Reference Source for Clinicians; Jul. 2007. |
International Search Report and Written Opinion for PCT/GB2008/003075 mailed Mar. 11, 2010. |
International Search Report and Written Opinion for PCT/GB2008/004216 dated Jul. 2, 2009. |
International Search Report and Written Opinion for PCT/GB2012/000099 dated May 2, 2012. |
EP Examination Report dated May 22, 2014 for EP. |
International Search Report and Written Opinion for PCT/US2012/069893 dated Apr. 8, 2013. |
International Search Report and Written Opinion for PCT/US2013/070070 dated Jan. 29, 2014. |
International Search Report and Written Opinion for PCT/US2014/016320 dated Apr. 15, 2014. |
International Search Report and Written Opinion for PCT/US2014/056566 dated Dec. 5, 2014. |
International Search Report and Written Opinion for PCT/US2014/056508 dated Dec. 9, 2014. |
International Search Report and Written Opinion for PCT/US2014/056524 dated Dec. 11, 2014. |
European Search Report for corresponding EP Application 171572787 dated Jun. 6, 2017. |
International Search Report and Written Opinion for corresponding application PCT/US2016/031397. |
Japanese office action for corresponding application 2015-547246, dated Sep. 5, 2017. |
M. Waring et al., “Cell attachment to adhesive dressing: qualitative and quantitative analysis”, Wounds, UK, (2008), vol. 4, No. 3, pp. 35-47. |
R. White, “Evidence for atraumatic soft silicone wound dressing use”, Wound, UK (2005), vol. 3, pp. 104-108, Mepilex Border docs, (2001). |
European Search Report for corresponding application 17183683.6, dated Sep. 18, 2017. |
European Search Report for corresponding application 17164033.7, dated Oct. 13, 2017. |
Extended European Search Report for corresponding application 17191970.7, dated Oct. 26, 2017. |
Number | Date | Country | |
---|---|---|---|
20150320605 A1 | Nov 2015 | US |