This invention relates to a wound dressing, in particular to wound dressings for use on post surgical sites. The invention preferably relates to dressings comprising gel forming fibres used on sites requiring a high degree of conformability and resilience such as those on the hip or knee following orthopaedic surgery.
Wounds on post operative sites such as those following knee or hip surgery can suffer problems with blistering of the skin around the incision site and infection. In addition frequent dressing changes may be necessary due to copious discharge produced at the site.
It is known to use carboxymethylated cellulosic materials in situations where a high degree of exudate absorption is required. For example, WO 93/12275 describes the production of various absorbent products capable of absorbing many times their own weight of water. This causes the carboxymethylated fibres to form a gel. WO 94/16746 and WO 00/01425 describe the use of carboxymethylated Lyocell materials in wound dressings where the advantages of gel formation in preventing adherence and therefore reducing wound damage and pain on removal are discussed.
It is also known to use carboxymethylated cellulosic fibres in the form of a fabric in combination with an adhesive layer to treat post surgical sites. For example, it is known to use Aquacel® (a dressing made of carboxymethylated cellulosic fibres and sold by ConvaTec) combined with Duoderm® Extra Thin® (an occlusive exterior layer which is also adhesive) on post surgical sites in a method reported as the Jubilee method where an Aquacel® island in the form of a narrow strip is surrounded at its periphery with an overlying layer of Duoderm Extra Thin which secures the dressing to the site (The Jubilee Method: a modern dressing design which reduces complications and is cost-effective following total knee and hip arthroplasty. Dillon J. M., Clarke, J. V. et al. Dept of Orthopaedics, Golden Jubilee National Hospital Glasgow EWMA2007, Glasgow).
Although such a combination of advanced dressing materials provides advances over a traditional gauze dressing in that for instance blistering and infection are reduced, post surgical sites have specific needs that remain to be addressed. For instance, dressings for use on the knee or hip following arthroplasty or those on sites where there is a wide range of patient movement require high conformability and resilience from the dressing otherwise patient movement is restricted and blistering occurs due to friction between the dressing and the skin. Most absorbent pads are unable to stretch and so delaminate on flexion of the knee or joint. Even gel-forming dressings break down with repeated movement of the limb. The non-woven fabric of Aquacel®, although conformable and flexible can tend to shrink on absorption of exudate making it less able to bend and stretch. It would be desirable to bring the advantages of gel forming dressings to surgical sites by having the dressings available in a form with a reduced tendency to shrink and an ability for all the layers to stretch and recover so that the dressing accommodates the normal movement of the joint during wear.
It is known to increase the tensile strength of bandages by stitching the bandage longitudinally with one or more lines of stitches. WO 2007/003905 describes such dressings which are particularly suitable for use in dressing burns.
We have found that it is possible to improve the resilience of dressings to mitigate the problems associated with dressing post operative sites where movement occurs.
Accordingly the invention provides a wound dressing comprising an absorbent layer, the absorbent layer being gathered in a longitudinal direction by one or more resilient yarns.
By resilient is meant that the yarn or thread is able to extend and contract to its former shape. The gathers in the absorbent layer formed by the resilient thread or yarn, enable the absorbent layer to extend and contract with movement so that when, for example, the patient's leg is bent the dressing stretches and when the leg is straightened, the dressing recovers its former size. This resilience means that the absorbent layer maintains close conformability with the wound during movement of the patient. It also means that the dressing has a reduced tendency to delaminate during wear. Having the ability to stretch means that there is less movement between the dressing and the patient which reduces blistering.
Preferably the dressing further comprises an adhesive layer overlying the absorbent layer on a surface furthest from the wound in use and extending beyond the periphery of the absorbent layer so as to secure the dressing to the skin.
Preferably the absorbent layer further comprises lines of longitudinal warp stitches formed from an inelastic thread which stitching is longitudinal in that it is generally parallel to the long dimension of the absorbent layer. The warp stitches are preferably made in the absorbent layer after it has been formed.
The inelastic warp stitching preferably passes through the whole thickness of the absorbent layer and is visible on both sides. The absorbent layer preferably comprises two or more layers of fabric that are layered together and stitch bonded with lines of longitudinal inelastic warp stitches. The resilient thread is preferably woven in between the stitches of the inelastic warp stitching and in between the sheets of fabric. By having two layers of fabric it is possible to hold the resilient thread or yarn out of direct contact with the wound.
The resilient thread gathers the absorbent layer and enables it to elongate and then return to shape. The resilient thread can be stitched through the absorbent layer to gather the dressing or woven through a separate line of inelastic warp stitches. The resilient thread can be stitched through the absorbent layer in lines of longitudinal stitches 1 mm to 10 mm apart, more preferably 2 mm to 5 mm apart. The resilient thread is preferably applied to the absorbent layer after the absorbent layer has been formed.
The absorbent layer preferably has an absorbency of at least 2 grams of of 0.9% saline solution per gram of fabric as measured by the free swell method. The absorbent layer preferably comprises gel forming fibres. By gel forming is meant hygroscopic fibres which upon the uptake of wound exudate become moist slippery or gelatinous and thus reduce the tendancy for the surrounding fibres to adhere to the wound. The gel forming fibres can be of the type which retain their structural integrity on absorption of exudate or can be of the type which lose their fibrous form and become a structureless gel. The gel forming fibres are preferably spun sodium carboxymethylcellulose fibres, chemically modified cellulosic fibres, pectin fibres, alginate fibres, chitosan fibres, hyaluronic acid fibres, or other polysaccharide fibres or fibres derived from gums. The cellulosic fibres preferably have a degree of substitution of at least 0.05 carboxymethyl groups per glucose unit. The gel forming fibres preferably have an absorbency of at least 2 grams 0.9% saline solution per gram of fibre (as measured by the free swell method).
Preferably the gel forming fibres have an absorbency of at least 10 g/g as measured in the free swell absorbency method, more preferably, between 15 g/g and 25 g/g.
Carboxymethylation can be achieved, for example, by sequential or simultaneous treatment of the cellulosic material with a strong alkali, such as aqueous sodium hydroxide, and monochloroacetic acid or a salt thereof. The appropriate reaction conditions will depend upon the composition of the fabric and the degree of carboxymethylation required and will be readily apparent to the person skilled in the art. They may be identical or similar to those described in WO 93/12275, WO 94/16746 or WO 00/01425 to which the reader is directed for further detail.
Desirably the carboxymethylation is carried out in the presence of industrial methylated spirits (IMS), and IMS is preferably also used in a subsequent washing step, suitably along with water, as a cleaner and steriliser. The degree of carboxymethylation is desirably such that upon absorption of exudate the fibres at the skin-contacting surface of the bandage form a gel.
The dressing may for instance comprise non gel forming fibres and in particular may comprise Linel, Lycra® or other elastic fibre.
The dressing may be in the form of a rectangle and be available in the following sizes, 9 cm×10 cm, 9 cm×15 cm, 9 cm×25 cm, 9 cm×35 cm. The lines of inelastic warp stitching may be from 1 mm to 10 mm apart and preferably from 2 mm to 5 mm apart. The lines of inelastic stitching are typically crocheted or knitted and have the appearance of a chain stitch but other stitch patterns may also be used. Preferably, the lines of resilient stitching gather the absorbent layer so that the absorbent layer is able to elongate by 25% to 85%, more preferably 35% to 75% and most preferably 40% to 70% and then recover even when the absorbent layer is hydrated. More preferably, the lines of warp stitching are made in a yarn or thread such as nylon or polyester or Tencel™ or any thread which is strong and easily processed. The resilient stitches are made in a resilient yarn such as an elastomeric yarn or linel or Lycra® or yarn which has good stretch and recovery or an elastane yarn which is an elastomeric yarn with greater than 85% polyurethane such as linel or Lycra® or Spandex.
The dressing may comprise a further adhesive layer overlying the first adhesive layer but on the opposite side of the absorbent layer. Preferably the adhesive layer includes a reinforcing scrim of polyurethane film to reduce any tendency of the adhesive to delaminate on dressing removal. The further adhesive layer preferably has a window cut from it that coincides with the absorbent layer and is present to hold the absorbent layer within the dressing and enable direct contact between the absorbent layer and the wound.
The adhesive layer may be of the type comprising a homogenous blend of one or more water soluble hydrocolloids and one or more low molecular weight polyisobutylenes such as are described in EP-B-92999 incorporated herein by reference. The water soluble hydrocolloids may be selected from sodium carboxymethylcellulose, pectin, gelatine, guar gum, locust bean gum, karaya gum, and mixtures thereof. The polyisobutylenes may be selected from low molecular weight polyisobutylenes having a viscosity average molecular weight of from 36,000 to 58,000 (Florey). The adhesive layer is capable of absorbing exudate while maintaining adhesion of the dressing to the skin.
Alternatively the adhesive composition may comprise a homogeneous blend of one or more hydrocolloids, one or more low molecular weight polyisobutylenes, one or more styrene block copolymers, mineral oil, butyl rubber, a tackifier and small amounts of optional components. By selection of specific ranges of the amounts of the above listed components, an adhesive composition may be prepared having good adhesion to the skin and stretchability. Such compositions and the preparation therefore are disclosed in EP-B-130061.
Preferably the adhesive is such that the removal of an adhesive wound dressing is not traumatic to the patient. Preferably the adhesive ensures a secure application of the dressing whist still permitting non-traumatic removal. Non-traumatic dressing removal may be facilitated by using an adhesive which gels slightly upon interaction with a fluid. The gel formation aiding dressing removal.
The absorbent layer may comprise one or more medicaments. For example an antimicrobial agent, or an antibiotic, or an anaesthetic on an anti-inflammatory agent or a skin protective agent or an odour absorbing agent.
In a further aspect the invention provides a method of manufacturing a wound dressing for use on post surgical wounds characterised in that the method comprises the steps of:
Preferably the absorbent layer is formed first and is then stitched with a resilient yarn to gather it. The absorbent layer is preferably a layer of non woven gel forming fibres which is first formed and then stitch bonded with an inelastic yarn and a resilient yarn to gather it.
Preferred embodiments of the invention will now be described with reference to the accompanying drawings in which:
In
The absorbent layer is made from a non woven roll made by forming a web of Lyocell which is then hydroentangled. The web is then carboxymethylated by sequential or simultaneous treatment of the cellulosic material with a strong alkali, monochloroacetic acid or a salt thereof. Two webs of the resulting fabric are then fed into a stitch bonding machine and stitched simultaneously with lines of longitudinal stitching in an inelastic yarn and a resilient yarn woven in between the stitches and so secured at the centre of the webs. The resilient yarn gathers the absorbent layer (not shown) and is carried by the inelastic stitch bonded yarn. The resulting layer has a basis weight of 350 gm−2.
In
The absorbent layer is made from a tow of carboxymethyl cellulose filaments which has been needlefelted. Two webs of the needlefelted tow are fed into a stitch bonding machine and stitched simultaneously with lines of longitudinal stitching as shown in
In the context of the present invention the terms yarn and thread are used to interchangeably.
Preferred embodiments of the invention will now be described with reference to the following examples:
The absorbency of the dressing described in
The results are shown below:
These results show that the dressing according to the invention with a gathered absorbent layer has an absorbency and fluid handling capacity equivalent to that of a dressing using four layers of the same absorbent material.
The resilience of the dressing of
These results suggest that the dressing may enable increased or easier limb movement during patient rehabilitation.
Number | Date | Country | Kind |
---|---|---|---|
0817796 | Sep 2008 | GB | national |
This application is a continuation of U.S. application Ser. No. 13/120,733, filed Aug. 8, 2011, which is the U.S. National Stage Entry of International Application No. PCT/GB2009/002342, filed Sep. 29, 2009, which claims priority to United Kingdom Application No. 0817796.6, filed on Sep. 29, 2008, all of which are incorporated herein by reference their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3367333 | Scheier | Feb 1968 | A |
4773238 | Zafiroglu | Sep 1988 | A |
4891957 | Strack et al. | Jan 1990 | A |
4957795 | Riedel | Sep 1990 | A |
5203186 | Zafiroglu | Apr 1993 | A |
5308673 | Tochacek | May 1994 | A |
5623888 | Zafiroglu | Apr 1997 | A |
5647842 | Kininmonth et al. | Jul 1997 | A |
6233795 | Dischler | May 2001 | B1 |
6267744 | Roberts | Jul 2001 | B1 |
6555730 | Albrod | Apr 2003 | B1 |
10016537 | Menon et al. | Jul 2018 | B2 |
10046096 | Askem et al. | Aug 2018 | B2 |
10076447 | Barta et al. | Sep 2018 | B2 |
10076587 | Locke et al. | Sep 2018 | B2 |
10117783 | Cotton | Nov 2018 | B2 |
10143784 | Walton et al. | Dec 2018 | B2 |
10426670 | Von Blucher et al. | Oct 2019 | B2 |
10426747 | Johnson | Oct 2019 | B2 |
10426874 | Chien et al. | Oct 2019 | B2 |
10426875 | Blott et al. | Oct 2019 | B2 |
10426938 | Locke et al. | Oct 2019 | B2 |
10434015 | Taylor et al. | Oct 2019 | B2 |
10434142 | Niazi et al. | Oct 2019 | B2 |
10434210 | Olson et al. | Oct 2019 | B2 |
10434284 | Hanson et al. | Oct 2019 | B2 |
10449094 | Donda et al. | Oct 2019 | B2 |
D866756 | Allen et al. | Nov 2019 | S |
10463760 | Karthikeyan et al. | Nov 2019 | B2 |
10463773 | Haggstrom et al. | Nov 2019 | B2 |
10470933 | Riesinger | Nov 2019 | B2 |
10470936 | Wohlgemuth et al. | Nov 2019 | B2 |
10471122 | Shi et al. | Nov 2019 | B2 |
10471190 | Locke et al. | Nov 2019 | B2 |
10478345 | Barta et al. | Nov 2019 | B2 |
10478346 | Knutson | Nov 2019 | B2 |
10478394 | Yu | Nov 2019 | B2 |
10485707 | Sexton | Nov 2019 | B2 |
10485891 | Andrews et al. | Nov 2019 | B2 |
10485892 | Hands et al. | Nov 2019 | B2 |
10485906 | Freedman et al. | Nov 2019 | B2 |
10486135 | Yang et al. | Nov 2019 | B2 |
10492956 | Zamierowski | Dec 2019 | B2 |
10493178 | Marchant et al. | Dec 2019 | B2 |
10493184 | Collinson et al. | Dec 2019 | B2 |
10493185 | Stokes et al. | Dec 2019 | B2 |
10500099 | Hung et al. | Dec 2019 | B2 |
10500103 | Croizat et al. | Dec 2019 | B2 |
10500104 | Sookraj | Dec 2019 | B2 |
10500173 | Yang et al. | Dec 2019 | B2 |
10500235 | Wardell | Dec 2019 | B2 |
10500300 | Dybe et al. | Dec 2019 | B2 |
10500301 | Laurensou | Dec 2019 | B2 |
10500302 | Holm et al. | Dec 2019 | B2 |
10501487 | Andrews et al. | Dec 2019 | B2 |
10506928 | Locke et al. | Dec 2019 | B2 |
10507141 | Allen et al. | Dec 2019 | B2 |
10507259 | Cree et al. | Dec 2019 | B2 |
10512707 | Whalen, III et al. | Dec 2019 | B2 |
10525170 | Havenstrite et al. | Jan 2020 | B2 |
10532137 | Pratt et al. | Jan 2020 | B2 |
10532194 | Locke et al. | Jan 2020 | B2 |
10537657 | Phillips et al. | Jan 2020 | B2 |
10542936 | Goldberg et al. | Jan 2020 | B2 |
10543133 | Shaw et al. | Jan 2020 | B2 |
10543293 | Suschek | Jan 2020 | B2 |
10548777 | Locke et al. | Feb 2020 | B2 |
10549008 | Yoo | Feb 2020 | B2 |
10549016 | Bushko et al. | Feb 2020 | B2 |
10549017 | Hsiao et al. | Feb 2020 | B2 |
10555838 | Wu et al. | Feb 2020 | B2 |
10555839 | Hartwell | Feb 2020 | B2 |
10556044 | Robinson et al. | Feb 2020 | B2 |
10561533 | Hoggarth et al. | Feb 2020 | B2 |
10561536 | Holm et al. | Feb 2020 | B2 |
10568767 | Addison et al. | Feb 2020 | B2 |
10568768 | Long et al. | Feb 2020 | B2 |
10568770 | Robinson et al. | Feb 2020 | B2 |
10568771 | MacDonald et al. | Feb 2020 | B2 |
10568773 | Tuck et al. | Feb 2020 | B2 |
10568983 | Gerdes et al. | Feb 2020 | B2 |
10575991 | Dunn | Mar 2020 | B2 |
10575992 | Sarangapani | Mar 2020 | B2 |
10576037 | Harrell | Mar 2020 | B2 |
10576189 | Locke et al. | Mar 2020 | B2 |
10583042 | Sarangapani et al. | Mar 2020 | B2 |
10583228 | Shuler et al. | Mar 2020 | B2 |
10589007 | Coulthard et al. | Mar 2020 | B2 |
10590184 | Kuo | Mar 2020 | B2 |
10610414 | Hartwell et al. | Apr 2020 | B2 |
10610415 | Griffey et al. | Apr 2020 | B2 |
10610623 | Robinson et al. | Apr 2020 | B2 |
10617569 | Bonn | Apr 2020 | B2 |
10617608 | Shin et al. | Apr 2020 | B2 |
10617769 | Huang | Apr 2020 | B2 |
10617784 | Yu et al. | Apr 2020 | B2 |
10617786 | Kluge et al. | Apr 2020 | B2 |
10618266 | Wright et al. | Apr 2020 | B2 |
10624984 | Courage et al. | Apr 2020 | B2 |
10625002 | Locke et al. | Apr 2020 | B2 |
10632019 | Vitaris | Apr 2020 | B2 |
10632224 | Hardy et al. | Apr 2020 | B2 |
10639206 | Hu et al. | May 2020 | B2 |
10639350 | Arber et al. | May 2020 | B2 |
10639404 | Lichtenstein | May 2020 | B2 |
10646614 | Grinstaff et al. | May 2020 | B2 |
10653562 | Robinson et al. | May 2020 | B2 |
10653782 | Ameer et al. | May 2020 | B2 |
10653810 | Datt et al. | May 2020 | B2 |
10653821 | Nichols | May 2020 | B2 |
10653823 | Bharti et al. | May 2020 | B2 |
10660799 | Wu et al. | May 2020 | B2 |
10660851 | Millis et al. | May 2020 | B2 |
10660992 | Canner et al. | May 2020 | B2 |
10660994 | Askem et al. | May 2020 | B2 |
10667955 | Allen et al. | Jun 2020 | B2 |
10667956 | Van Holten et al. | Jun 2020 | B2 |
10682257 | Lu | Jun 2020 | B2 |
10682258 | Manwaring et al. | Jun 2020 | B2 |
10682259 | Hunt et al. | Jun 2020 | B2 |
10682318 | Twomey et al. | Jun 2020 | B2 |
10682386 | Ellis-Behnke et al. | Jun 2020 | B2 |
10682446 | Askem et al. | Jun 2020 | B2 |
10687983 | Dahlberg et al. | Jun 2020 | B2 |
10687985 | Lee et al. | Jun 2020 | B2 |
10688215 | Munro et al. | Jun 2020 | B2 |
10688217 | Hanson et al. | Jun 2020 | B2 |
RE48117 | Albert et al. | Jul 2020 | E |
10702419 | Locke et al. | Jul 2020 | B2 |
10702420 | Hammond et al. | Jul 2020 | B2 |
10703942 | Tunius | Jul 2020 | B2 |
10709760 | Gronberg et al. | Jul 2020 | B2 |
10709807 | Kshirsagar | Jul 2020 | B2 |
10709883 | Spector | Jul 2020 | B2 |
10716711 | Locke et al. | Jul 2020 | B2 |
10716874 | Koyama et al. | Jul 2020 | B2 |
10729589 | Dorian et al. | Aug 2020 | B2 |
10729590 | Simmons et al. | Aug 2020 | B2 |
10729826 | Lin | Aug 2020 | B2 |
10736787 | Hannigan et al. | Aug 2020 | B2 |
10736788 | Locke et al. | Aug 2020 | B2 |
10736985 | Odermatt et al. | Aug 2020 | B2 |
10737003 | Fujisaki | Aug 2020 | B2 |
10743900 | Ingram et al. | Aug 2020 | B2 |
10744040 | Kazala, Jr. et al. | Aug 2020 | B2 |
10744041 | Hartwell | Aug 2020 | B2 |
10744225 | Lindgren et al. | Aug 2020 | B2 |
10744237 | Guidi et al. | Aug 2020 | B2 |
10744238 | Guidi et al. | Aug 2020 | B2 |
10744239 | Armstrong et al. | Aug 2020 | B2 |
10744240 | Simmons et al. | Aug 2020 | B2 |
10751212 | Raza et al. | Aug 2020 | B2 |
10751442 | Bonnefin et al. | Aug 2020 | B2 |
10751452 | Topaz | Aug 2020 | B2 |
10758423 | Pigg et al. | Sep 2020 | B2 |
10758424 | Blott et al. | Sep 2020 | B2 |
10758425 | Blott et al. | Sep 2020 | B2 |
10758426 | Eddy | Sep 2020 | B2 |
10758651 | Blott et al. | Sep 2020 | B2 |
10765561 | Lattimore et al. | Sep 2020 | B2 |
10765783 | Locke et al. | Sep 2020 | B2 |
10772767 | Bjork et al. | Sep 2020 | B2 |
10772999 | Svensby | Sep 2020 | B2 |
10779993 | Bishop et al. | Sep 2020 | B2 |
10780114 | Udagawa et al. | Sep 2020 | B2 |
10780194 | Flach et al. | Sep 2020 | B2 |
10780201 | Lin | Sep 2020 | B2 |
10780202 | Askem et al. | Sep 2020 | B2 |
10780203 | Coulthard et al. | Sep 2020 | B2 |
10782238 | Hicks et al. | Sep 2020 | B2 |
10792191 | Robinson et al. | Oct 2020 | B2 |
10792192 | Tout et al. | Oct 2020 | B2 |
10792337 | Leung et al. | Oct 2020 | B2 |
10792404 | Hu et al. | Oct 2020 | B2 |
10792482 | Randolph et al. | Oct 2020 | B2 |
10800905 | Delli-Santi et al. | Oct 2020 | B2 |
10806819 | Shuler | Oct 2020 | B2 |
20030040691 | Griesbach, III | Feb 2003 | A1 |
20050015068 | Bean et al. | Jan 2005 | A1 |
20060089614 | Bonnin | Apr 2006 | A1 |
20060127462 | Canada et al. | Jun 2006 | A1 |
20060155260 | Blott et al. | Jul 2006 | A1 |
20060172000 | Cullen et al. | Aug 2006 | A1 |
20060253058 | Evans | Nov 2006 | A1 |
20070042024 | Gladman | Feb 2007 | A1 |
20070160654 | Ferguson | Jul 2007 | A1 |
20070173162 | Ethiopia et al. | Jul 2007 | A1 |
20070185426 | Ambrosio et al. | Aug 2007 | A1 |
20070219512 | Heaton et al. | Sep 2007 | A1 |
20070225663 | Watt | Sep 2007 | A1 |
20070239078 | Jaeb | Oct 2007 | A1 |
20090234307 | Vitaris | Sep 2009 | A1 |
20090259203 | Hu et al. | Oct 2009 | A1 |
20090293887 | Wilkes et al. | Dec 2009 | A1 |
20090299303 | Seegert | Dec 2009 | A1 |
20100015208 | Kershaw et al. | Jan 2010 | A1 |
20100030178 | MacMeccan et al. | Feb 2010 | A1 |
20100125233 | Edward S. et al. | May 2010 | A1 |
20100125258 | Coulthard et al. | May 2010 | A1 |
20100137775 | Hu et al. | Jun 2010 | A1 |
20100185163 | Heagle | Jul 2010 | A1 |
20100298790 | Guidi et al. | Nov 2010 | A1 |
20110015595 | Robinson et al. | Jan 2011 | A1 |
20110028918 | Hartwell | Feb 2011 | A1 |
20110112457 | Holm et al. | May 2011 | A1 |
20110178451 | Robinson et al. | Jul 2011 | A1 |
20110224593 | Tunius | Sep 2011 | A1 |
20110224630 | Simmons et al. | Sep 2011 | A1 |
20110230849 | Coulthard et al. | Sep 2011 | A1 |
20110251566 | Zimnitsky et al. | Oct 2011 | A1 |
20110257572 | Locke et al. | Oct 2011 | A1 |
20110257573 | Hong et al. | Oct 2011 | A1 |
20110275972 | Rosenberg | Nov 2011 | A1 |
20120071845 | Hu et al. | Mar 2012 | A1 |
20120130332 | Cotton et al. | May 2012 | A1 |
20120136325 | Allen et al. | May 2012 | A1 |
20120209226 | Simmons et al. | Aug 2012 | A1 |
20130053795 | Coulthard et al. | Feb 2013 | A1 |
20130123728 | Pratt et al. | May 2013 | A1 |
20130226063 | Taylor et al. | Aug 2013 | A1 |
20140005618 | Locke et al. | Jan 2014 | A1 |
20140074053 | Locke et al. | Mar 2014 | A1 |
20140188060 | Robinson et al. | Jul 2014 | A1 |
20140194838 | Wibaux et al. | Jul 2014 | A1 |
20140200532 | Robinson et al. | Jul 2014 | A1 |
20140236112 | Von Wolff et al. | Aug 2014 | A1 |
20140256925 | Catchmark et al. | Sep 2014 | A1 |
20140276499 | Locke et al. | Sep 2014 | A1 |
20140296804 | Hicks et al. | Oct 2014 | A1 |
20140308338 | Nierle et al. | Oct 2014 | A1 |
20140309574 | Cotton | Oct 2014 | A1 |
20150018433 | Leipzig et al. | Jan 2015 | A1 |
20150057624 | Simmons et al. | Feb 2015 | A1 |
20150071985 | Walker et al. | Mar 2015 | A1 |
20150079152 | Wuollett et al. | Mar 2015 | A1 |
20150094674 | Pratt et al. | Apr 2015 | A1 |
20150104486 | Bonnefin et al. | Apr 2015 | A1 |
20150112311 | Hammond et al. | Apr 2015 | A1 |
20150119831 | Robinson et al. | Apr 2015 | A1 |
20150119834 | Locke et al. | Apr 2015 | A1 |
20150141941 | Allen et al. | May 2015 | A1 |
20150148785 | Kleiner | May 2015 | A1 |
20150174304 | Askem et al. | Jun 2015 | A1 |
20150245949 | Locke et al. | Sep 2015 | A1 |
20150246164 | Heaton et al. | Sep 2015 | A1 |
20150250979 | Loske | Sep 2015 | A1 |
20150265741 | Duncan et al. | Sep 2015 | A1 |
20150265743 | Hanson et al. | Sep 2015 | A1 |
20150320901 | Chandrashekhar-Bhat et al. | Nov 2015 | A1 |
20160008293 | Shi et al. | Jan 2016 | A1 |
20160038626 | Locke et al. | Feb 2016 | A1 |
20160051724 | Sahin et al. | Feb 2016 | A1 |
20160067107 | Cotton | Mar 2016 | A1 |
20160100987 | Hartwell et al. | Apr 2016 | A1 |
20160106878 | Yang et al. | Apr 2016 | A1 |
20160106892 | Hartwell | Apr 2016 | A1 |
20160166422 | Karim et al. | Jun 2016 | A1 |
20160193244 | Ota et al. | Jul 2016 | A1 |
20160222548 | Agboh | Aug 2016 | A1 |
20160271178 | Hauser et al. | Sep 2016 | A1 |
20160287743 | Andrews | Oct 2016 | A1 |
20160339158 | Collinson et al. | Nov 2016 | A1 |
20160374847 | Lachenbruch et al. | Dec 2016 | A1 |
20170014275 | Schneider | Jan 2017 | A1 |
20170049111 | Patton et al. | Feb 2017 | A1 |
20170072669 | Sekido et al. | Mar 2017 | A1 |
20170128269 | Coulthard et al. | May 2017 | A1 |
20170189237 | Locke et al. | Jul 2017 | A1 |
20170189575 | Lee et al. | Jul 2017 | A1 |
20170209615 | Tornero Garcia et al. | Jul 2017 | A1 |
20170232161 | Fewkes et al. | Aug 2017 | A1 |
20170258956 | Flach et al. | Sep 2017 | A1 |
20170367895 | Holm et al. | Dec 2017 | A1 |
20170368239 | Askem et al. | Dec 2017 | A1 |
20180008742 | Hoggarth et al. | Jan 2018 | A1 |
20180014974 | Hoggarth et al. | Jan 2018 | A1 |
20180023217 | Patton et al. | Jan 2018 | A1 |
20180030321 | Tunius | Feb 2018 | A1 |
20180042789 | Bradford et al. | Feb 2018 | A1 |
20180078423 | Magin et al. | Mar 2018 | A1 |
20180086903 | Zhang et al. | Mar 2018 | A1 |
20180118809 | Mearns Spragg | May 2018 | A1 |
20180133066 | Ahsani et al. | May 2018 | A1 |
20180140467 | Hunt | May 2018 | A1 |
20180140822 | Robinson et al. | May 2018 | A1 |
20180200414 | Askem et al. | Jul 2018 | A1 |
20180221531 | Bender et al. | Aug 2018 | A1 |
20180236124 | Young et al. | Aug 2018 | A1 |
20180243463 | Chatterjee et al. | Aug 2018 | A1 |
20180243464 | Hwang et al. | Aug 2018 | A1 |
20180244857 | Lee et al. | Aug 2018 | A1 |
20180272052 | Locke et al. | Sep 2018 | A1 |
20180296397 | Askem et al. | Oct 2018 | A1 |
20180303873 | Been et al. | Oct 2018 | A1 |
20180311419 | Locke et al. | Nov 2018 | A1 |
20180333522 | Pratt et al. | Nov 2018 | A1 |
20180344533 | Rovaniemi | Dec 2018 | A1 |
20180353334 | Locke et al. | Dec 2018 | A1 |
20180353337 | Locke | Dec 2018 | A1 |
20180353339 | Locke et al. | Dec 2018 | A1 |
20180353340 | Robinson et al. | Dec 2018 | A1 |
20180353344 | Locke et al. | Dec 2018 | A1 |
20180353662 | Locke et al. | Dec 2018 | A1 |
20180353663 | Locke et al. | Dec 2018 | A1 |
20180360667 | Droche | Dec 2018 | A1 |
20190000677 | Munro | Jan 2019 | A1 |
20190015258 | Gowans et al. | Jan 2019 | A1 |
20190015468 | Yadav et al. | Jan 2019 | A1 |
20190030223 | Lin | Jan 2019 | A1 |
20190046682 | Choi et al. | Feb 2019 | A1 |
20190060127 | Locke et al. | Feb 2019 | A1 |
20190083752 | Howell et al. | Mar 2019 | A1 |
20190117465 | Osborne et al. | Apr 2019 | A1 |
20190117466 | Kazala, Jr. et al. | Apr 2019 | A1 |
20190117861 | Locke et al. | Apr 2019 | A1 |
20190125590 | Rehbein et al. | May 2019 | A1 |
20190133830 | Bishop et al. | May 2019 | A1 |
20190151155 | Bonn | May 2019 | A1 |
20190151159 | Gowans et al. | May 2019 | A1 |
20190151495 | Helary et al. | May 2019 | A1 |
20190184052 | Ilan et al. | Jun 2019 | A1 |
20190231600 | Locke et al. | Aug 2019 | A1 |
20190231602 | Locke et al. | Aug 2019 | A1 |
20190231943 | Robinson et al. | Aug 2019 | A1 |
20190274889 | Steward et al. | Sep 2019 | A1 |
20190282728 | Kellar et al. | Sep 2019 | A1 |
20190290799 | Arshi et al. | Sep 2019 | A1 |
20190298249 | Bates et al. | Oct 2019 | A1 |
20190298577 | Locke et al. | Oct 2019 | A1 |
20190298578 | Shulman et al. | Oct 2019 | A1 |
20190298579 | Moore et al. | Oct 2019 | A1 |
20190298580 | Hall et al. | Oct 2019 | A1 |
20190298582 | Addison et al. | Oct 2019 | A1 |
20190298881 | Ramjit et al. | Oct 2019 | A1 |
20190298882 | Nelson | Oct 2019 | A1 |
20190298895 | Selby et al. | Oct 2019 | A1 |
20190307611 | Askem et al. | Oct 2019 | A1 |
20190307612 | Hartwell et al. | Oct 2019 | A1 |
20190307934 | Allen et al. | Oct 2019 | A1 |
20190307935 | Simmons et al. | Oct 2019 | A1 |
20190314187 | Emslander et al. | Oct 2019 | A1 |
20190314209 | Ha et al. | Oct 2019 | A1 |
20190314544 | Filho et al. | Oct 2019 | A1 |
20190321232 | Jardret et al. | Oct 2019 | A1 |
20190321509 | Chakravarthy et al. | Oct 2019 | A1 |
20190321526 | Robinson et al. | Oct 2019 | A1 |
20190322795 | Kubo et al. | Oct 2019 | A1 |
20190328580 | Emslander et al. | Oct 2019 | A1 |
20190336343 | Etchells et al. | Nov 2019 | A1 |
20190336344 | Locke | Nov 2019 | A1 |
20190336345 | Bannwart | Nov 2019 | A1 |
20190336346 | Locke et al. | Nov 2019 | A1 |
20190336640 | Vismara et al. | Nov 2019 | A1 |
20190336641 | Nisbet | Nov 2019 | A1 |
20190336643 | Luukko et al. | Nov 2019 | A1 |
20190336658 | Heaton et al. | Nov 2019 | A1 |
20190336739 | Locke et al. | Nov 2019 | A1 |
20190343687 | Locke et al. | Nov 2019 | A1 |
20190343889 | Luukko et al. | Nov 2019 | A1 |
20190343979 | Kearney et al. | Nov 2019 | A1 |
20190343993 | Weston | Nov 2019 | A1 |
20190343994 | Greener | Nov 2019 | A1 |
20190344242 | Kim et al. | Nov 2019 | A1 |
20190350763 | Pratt et al. | Nov 2019 | A1 |
20190350764 | Zochowski et al. | Nov 2019 | A1 |
20190350765 | Heagle et al. | Nov 2019 | A1 |
20190350775 | Biasutti et al. | Nov 2019 | A1 |
20190350970 | Saphier et al. | Nov 2019 | A1 |
20190351092 | Silver et al. | Nov 2019 | A1 |
20190351093 | Stein et al. | Nov 2019 | A1 |
20190351094 | Maher et al. | Nov 2019 | A1 |
20190351095 | Maher et al. | Nov 2019 | A1 |
20190351111 | Locke et al. | Nov 2019 | A1 |
20190358088 | Lavocah et al. | Nov 2019 | A1 |
20190358361 | McInnes et al. | Nov 2019 | A1 |
20190358372 | Askem et al. | Nov 2019 | A1 |
20190365948 | Deegan et al. | Dec 2019 | A1 |
20190365962 | Lee et al. | Dec 2019 | A1 |
20190374408 | Robles et al. | Dec 2019 | A1 |
20190374673 | Hoefinghoff et al. | Dec 2019 | A1 |
20190380878 | Edwards et al. | Dec 2019 | A1 |
20190380881 | Albert et al. | Dec 2019 | A1 |
20190380882 | Taylor et al. | Dec 2019 | A1 |
20190380883 | Macphee et al. | Dec 2019 | A1 |
20190381222 | Locke et al. | Dec 2019 | A9 |
20190388577 | Chandrashekhar-Bhat et al. | Dec 2019 | A1 |
20190388579 | Macphee et al. | Dec 2019 | A1 |
20190388589 | Macphee et al. | Dec 2019 | A1 |
20200000640 | Mondal et al. | Jan 2020 | A1 |
20200000642 | Waite | Jan 2020 | A1 |
20200000955 | Andrews et al. | Jan 2020 | A1 |
20200000956 | Huang et al. | Jan 2020 | A1 |
20200000985 | Seddon et al. | Jan 2020 | A1 |
20200008981 | Wheldrake | Jan 2020 | A1 |
20200009289 | Torabinejad et al. | Jan 2020 | A1 |
20200009400 | Ribeiro et al. | Jan 2020 | A1 |
20200017650 | Young et al. | Jan 2020 | A1 |
20200022844 | Blott et al. | Jan 2020 | A1 |
20200023102 | Powell | Jan 2020 | A1 |
20200023103 | Joshi et al. | Jan 2020 | A1 |
20200023104 | Eriksson et al. | Jan 2020 | A1 |
20200023105 | Long et al. | Jan 2020 | A1 |
20200023106 | Carroll et al. | Jan 2020 | A1 |
20200030153 | Johannison et al. | Jan 2020 | A1 |
20200030480 | Choi | Jan 2020 | A1 |
20200030499 | Menon et al. | Jan 2020 | A1 |
20200038023 | Dunn | Feb 2020 | A1 |
20200038249 | Pratt et al. | Feb 2020 | A1 |
20200038250 | Edwards et al. | Feb 2020 | A1 |
20200038251 | Locke et al. | Feb 2020 | A1 |
20200038252 | Spiro | Feb 2020 | A1 |
20200038283 | Hall et al. | Feb 2020 | A1 |
20200038470 | Datt et al. | Feb 2020 | A1 |
20200038544 | Grover et al. | Feb 2020 | A1 |
20200038546 | Dizio et al. | Feb 2020 | A1 |
20200038639 | Patel et al. | Feb 2020 | A1 |
20200046565 | Barta et al. | Feb 2020 | A1 |
20200046566 | Carey et al. | Feb 2020 | A1 |
20200046567 | Carroll et al. | Feb 2020 | A1 |
20200046568 | Sexton | Feb 2020 | A1 |
20200046663 | Murdock et al. | Feb 2020 | A1 |
20200046876 | Liu | Feb 2020 | A1 |
20200046887 | Runquist et al. | Feb 2020 | A1 |
20200054491 | Hentrich et al. | Feb 2020 | A1 |
20200054781 | Weiser et al. | Feb 2020 | A1 |
20200060879 | Edwards et al. | Feb 2020 | A1 |
20200061253 | Long et al. | Feb 2020 | A1 |
20200061254 | Joshi et al. | Feb 2020 | A1 |
20200061379 | Bogie et al. | Feb 2020 | A1 |
20200064220 | Locke | Feb 2020 | A1 |
20200069183 | Rice et al. | Mar 2020 | A1 |
20200069476 | Randolph et al. | Mar 2020 | A1 |
20200069477 | Holm et al. | Mar 2020 | A1 |
20200069478 | Jabbarzadeh et al. | Mar 2020 | A1 |
20200069479 | Buan et al. | Mar 2020 | A1 |
20200069835 | Hissink et al. | Mar 2020 | A1 |
20200069850 | Beadle et al. | Mar 2020 | A1 |
20200069851 | Blott et al. | Mar 2020 | A1 |
20200069853 | Hall et al. | Mar 2020 | A1 |
20200078223 | Locke et al. | Mar 2020 | A1 |
20200078224 | Carroll et al. | Mar 2020 | A1 |
20200078225 | Grillitsch et al. | Mar 2020 | A1 |
20200078305 | Auvinen et al. | Mar 2020 | A1 |
20200078330 | Gay | Mar 2020 | A1 |
20200078482 | Yoon et al. | Mar 2020 | A1 |
20200078499 | Gadde et al. | Mar 2020 | A1 |
20200085625 | Bellini et al. | Mar 2020 | A1 |
20200085626 | Braga et al. | Mar 2020 | A1 |
20200085629 | Locke et al. | Mar 2020 | A1 |
20200085630 | Robinson et al. | Mar 2020 | A1 |
20200085632 | Locke et al. | Mar 2020 | A1 |
20200085991 | Coomber | Mar 2020 | A1 |
20200085992 | Locke et al. | Mar 2020 | A1 |
20200086014 | Locke et al. | Mar 2020 | A1 |
20200086017 | Jardret et al. | Mar 2020 | A1 |
20200086049 | Park et al. | Mar 2020 | A1 |
20200093646 | Locke et al. | Mar 2020 | A1 |
20200093756 | Sabacinski | Mar 2020 | A1 |
20200093953 | Kim et al. | Mar 2020 | A1 |
20200093954 | Leise, III | Mar 2020 | A1 |
20200093970 | Hunt et al. | Mar 2020 | A1 |
20200095421 | Kettel | Mar 2020 | A1 |
20200095620 | Kellar et al. | Mar 2020 | A1 |
20200100945 | Albert et al. | Apr 2020 | A1 |
20200107964 | Locke et al. | Apr 2020 | A1 |
20200107965 | Greener | Apr 2020 | A1 |
20200107967 | Holm et al. | Apr 2020 | A1 |
20200108169 | Hu et al. | Apr 2020 | A1 |
20200113741 | Rehbein et al. | Apr 2020 | A1 |
20200114039 | Wang et al. | Apr 2020 | A1 |
20200114040 | Waite et al. | Apr 2020 | A1 |
20200114049 | Wall | Apr 2020 | A1 |
20200121510 | Hartwell et al. | Apr 2020 | A1 |
20200121521 | Daniel et al. | Apr 2020 | A1 |
20200121833 | Askem et al. | Apr 2020 | A9 |
20200129338 | Gardiner et al. | Apr 2020 | A1 |
20200129341 | Coulthard et al. | Apr 2020 | A1 |
20200129654 | Bouvier et al. | Apr 2020 | A1 |
20200129655 | Gardiner et al. | Apr 2020 | A1 |
20200129675 | Robinson et al. | Apr 2020 | A1 |
20200138754 | Johnson | May 2020 | A1 |
20200139023 | Haggstrom et al. | May 2020 | A1 |
20200139025 | Robinson et al. | May 2020 | A1 |
20200141031 | Kosan et al. | May 2020 | A1 |
20200146894 | Long et al. | May 2020 | A1 |
20200155355 | Hill et al. | May 2020 | A1 |
20200155358 | Wheldrake | May 2020 | A1 |
20200155361 | Pigg et al. | May 2020 | A1 |
20200155379 | Shaw et al. | May 2020 | A1 |
20200163802 | Hunt et al. | May 2020 | A1 |
20200163803 | Pigg et al. | May 2020 | A1 |
20200164112 | Kato et al. | May 2020 | A1 |
20200164120 | Jaecklein et al. | May 2020 | A1 |
20200170841 | Waite et al. | Jun 2020 | A1 |
20200170842 | Locke | Jun 2020 | A1 |
20200170843 | Collinson et al. | Jun 2020 | A1 |
20200171197 | Hubbell et al. | Jun 2020 | A1 |
20200179558 | Munro et al. | Jun 2020 | A1 |
20200179673 | Wan | Jun 2020 | A1 |
20200188180 | Akbari et al. | Jun 2020 | A1 |
20200188182 | Sanders et al. | Jun 2020 | A1 |
20200188550 | Dagger et al. | Jun 2020 | A1 |
20200188564 | Dunn | Jun 2020 | A1 |
20200190310 | Meyer | Jun 2020 | A1 |
20200197227 | Locke et al. | Jun 2020 | A1 |
20200197228 | Hartwell | Jun 2020 | A1 |
20200197559 | Bourdillon et al. | Jun 2020 | A1 |
20200197580 | Kilpadi et al. | Jun 2020 | A1 |
20200206036 | Robinson et al. | Jul 2020 | A1 |
20200214637 | Brownhill et al. | Jul 2020 | A1 |
20200214897 | Long et al. | Jul 2020 | A1 |
20200214898 | Waite et al. | Jul 2020 | A1 |
20200215220 | Schomburg et al. | Jul 2020 | A1 |
20200215226 | Kitagawa et al. | Jul 2020 | A1 |
20200222469 | Cotton | Jul 2020 | A1 |
20200229983 | Robinson et al. | Jul 2020 | A1 |
20200237564 | Hammond et al. | Jul 2020 | A1 |
20200237816 | Lait | Jul 2020 | A1 |
20200246195 | Robinson et al. | Aug 2020 | A1 |
20200253785 | Bernet et al. | Aug 2020 | A1 |
20200253786 | Harrison et al. | Aug 2020 | A1 |
20200254139 | Phillips et al. | Aug 2020 | A1 |
20200261275 | Manwaring et al. | Aug 2020 | A1 |
20200261276 | Lujan Hernandez et al. | Aug 2020 | A1 |
20200268560 | Harrison et al. | Aug 2020 | A1 |
20200268561 | Locke et al. | Aug 2020 | A1 |
20200270484 | Lipscomb et al. | Aug 2020 | A1 |
20200276055 | Randolph et al. | Sep 2020 | A1 |
20200276058 | Locke et al. | Sep 2020 | A1 |
20200277450 | Silverstein et al. | Sep 2020 | A1 |
20200281519 | Gowans et al. | Sep 2020 | A1 |
20200281529 | Grubb et al. | Sep 2020 | A1 |
20200281678 | Long et al. | Sep 2020 | A1 |
20200281775 | Kushnir et al. | Sep 2020 | A1 |
20200282100 | Gil et al. | Sep 2020 | A1 |
20200282114 | Long et al. | Sep 2020 | A1 |
20200282115 | Gardner et al. | Sep 2020 | A1 |
20200289328 | Luckemeyer et al. | Sep 2020 | A1 |
20200289347 | Gowans et al. | Sep 2020 | A1 |
20200289701 | Hall et al. | Sep 2020 | A1 |
20200289712 | Jiang et al. | Sep 2020 | A1 |
20200289723 | Gregory | Sep 2020 | A1 |
20200289726 | Locke et al. | Sep 2020 | A1 |
20200289727 | Locke | Sep 2020 | A1 |
20200289806 | Locke et al. | Sep 2020 | A1 |
20200297541 | Hartwell et al. | Sep 2020 | A1 |
20200297543 | Rodzewicz et al. | Sep 2020 | A1 |
20200297544 | Moine et al. | Sep 2020 | A1 |
20200297892 | Silcock | Sep 2020 | A1 |
20200297893 | Ericson | Sep 2020 | A1 |
20200297894 | Koyama et al. | Sep 2020 | A1 |
20200299865 | Bonnefin et al. | Sep 2020 | A1 |
20200306089 | Delury et al. | Oct 2020 | A1 |
20200306091 | Lee et al. | Oct 2020 | A1 |
20200306094 | Kushnir et al. | Oct 2020 | A1 |
20200315853 | Waite | Oct 2020 | A1 |
20200315854 | Simmons et al. | Oct 2020 | A1 |
20200316271 | Lin | Oct 2020 | A1 |
20200323692 | Locke et al. | Oct 2020 | A1 |
20200324015 | Kettel et al. | Oct 2020 | A1 |
20200330283 | Locke et al. | Oct 2020 | A1 |
20200330284 | Locke et al. | Oct 2020 | A1 |
20200330285 | Rehbein et al. | Oct 2020 | A1 |
20200330658 | Fujisaki | Oct 2020 | A1 |
20200330660 | Patel et al. | Oct 2020 | A1 |
20200337719 | Ingram et al. | Oct 2020 | A1 |
20200337904 | Waite | Oct 2020 | A1 |
20200337905 | Earl et al. | Oct 2020 | A1 |
20200337906 | Long et al. | Oct 2020 | A1 |
20200337908 | Long et al. | Oct 2020 | A1 |
20200338228 | Kharkar et al. | Oct 2020 | A1 |
20200338243 | Harrison et al. | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
0130061 | Aug 1988 | EP |
0092999 | Apr 1992 | EP |
3187204 | Jul 2017 | EP |
738722 | Oct 1955 | GB |
WO-9312275 | Jun 1993 | WO |
WO-9416746 | Aug 1994 | WO |
WO-0001425 | Jan 2000 | WO |
2005018543 | Mar 2005 | WO |
WO-2007003905 | Jan 2007 | WO |
2011121394 | Oct 2011 | WO |
2011135284 | Nov 2011 | WO |
2011144888 | Nov 2011 | WO |
2013015827 | Jan 2013 | WO |
2013126049 | Aug 2013 | WO |
2014014842 | Jan 2014 | WO |
2015145117 | Oct 2015 | WO |
2015173546 | Nov 2015 | WO |
2016141450 | Sep 2016 | WO |
2017016974 | Feb 2017 | WO |
2017125250 | Jul 2017 | WO |
2018029231 | Feb 2018 | WO |
2018094061 | May 2018 | WO |
2018162613 | Sep 2018 | WO |
2018163093 | Sep 2018 | WO |
2018189265 | Oct 2018 | WO |
2018226667 | Dec 2018 | WO |
2018227144 | Dec 2018 | WO |
2018231825 | Dec 2018 | WO |
2018236648 | Dec 2018 | WO |
2019002085 | Jan 2019 | WO |
2019012068 | Jan 2019 | WO |
2019012069 | Jan 2019 | WO |
2019022493 | Jan 2019 | WO |
2019027933 | Feb 2019 | WO |
2019038548 | Feb 2019 | WO |
2019038549 | Feb 2019 | WO |
2019040656 | Feb 2019 | WO |
2019050855 | Mar 2019 | WO |
2019058373 | Mar 2019 | WO |
2019073326 | Apr 2019 | WO |
2019083563 | May 2019 | WO |
2019083868 | May 2019 | WO |
2019086911 | May 2019 | WO |
2019091150 | May 2019 | WO |
2019094147 | May 2019 | WO |
2019096828 | May 2019 | WO |
2019113275 | Jun 2019 | WO |
2019113623 | Jun 2019 | WO |
2019191590 | Oct 2019 | WO |
2019193141 | Oct 2019 | WO |
2019193333 | Oct 2019 | WO |
2019199389 | Oct 2019 | WO |
2019199596 | Oct 2019 | WO |
2019199687 | Oct 2019 | WO |
2019199798 | Oct 2019 | WO |
2019199849 | Oct 2019 | WO |
2019200035 | Oct 2019 | WO |
2019215572 | Nov 2019 | WO |
2019219613 | Nov 2019 | WO |
2019234365 | Dec 2019 | WO |
2020005062 | Jan 2020 | WO |
2020005344 | Jan 2020 | WO |
2020005536 | Jan 2020 | WO |
2020005546 | Jan 2020 | WO |
2020005577 | Jan 2020 | WO |
2020007429 | Jan 2020 | WO |
2020011691 | Jan 2020 | WO |
2020014178 | Jan 2020 | WO |
2020014310 | Jan 2020 | WO |
2020018300 | Jan 2020 | WO |
2020026061 | Feb 2020 | WO |
2020026144 | Feb 2020 | WO |
2020033351 | Feb 2020 | WO |
2020035811 | Feb 2020 | WO |
2020043665 | Mar 2020 | WO |
2020044237 | Mar 2020 | WO |
2020046443 | Mar 2020 | WO |
2020047255 | Mar 2020 | WO |
2020049038 | Mar 2020 | WO |
2020055945 | Mar 2020 | WO |
2020056182 | Mar 2020 | WO |
2020056914 | Mar 2020 | WO |
Entry |
---|
Structure, 2017, The George Washington University Museum The Textile Museum (Year: 2017). |
Dillon, J.M. et al. The Jubilee method a modern dressing design which reduces complications and improves cost-effectiveness following total hip and knee arthroplasty. 8th European Federation of National Associations of Orthopaedics and Traumatology Congress, May 11, 2007. Glaslow. |
No Author. BS EN 13726-1: 2002 Test Methods for Primary Wound Dressings Part 1: Aspects of absorbency, (pp. 1-20) (Apr. 15, 2002). |
U.S. Appl. No. 13/120,733 Office Action dated Jun. 1, 2017. |
U.S. Appl. No. 13/120,733 Office Action dated Mar. 22, 2016. |
U.S. Appl. No. 13/120,733 Office Action dated Nov. 17, 2016. |
U.S. Appl. No. 13/120,733 Office Action dated Nov. 8, 2017. |
White, Sarah E. Yarn Over, About Home. http://knitting.about.com./od/knittingglossary/g/yarn_over.htm (Oct. 29, 2007). |
Worst, Edward. Problems in Raffia. Industrial Education. Volume 8. CCM Professional Magazines, Inc. 1919, p. 183. |
Number | Date | Country | |
---|---|---|---|
20190021912 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13120733 | US | |
Child | 16140438 | US |