The present invention relates to apparatus and a method for the application of topical negative pressure (TNP) therapy to wounds. In particular, but not exclusively, the present invention relates to a method and apparatus for delivering an agent such as medicament or hydrating fluid through or under a drape covering a wound site.
There is much prior art available relating to the provision of apparatus and methods of use thereof for the application of TNP therapy to wounds together with other therapeutic processes intended to enhance the effects of the TNP therapy. Examples of such prior art include those listed and briefly described below.
TNP therapy assists in the closure and healing of wounds by reducing tissue oedema; encouraging blood flow and granulation of tissue; removing excess exudates and may reduce bacterial load and thus, infection to the wound. Furthermore, TNP therapy permits less outside disturbance of the wound and promotes more rapid healing.
In our co-pending International patent application, WO 2004/037334, apparatus, a wound dressing and a method for aspirating, irrigating and cleansing wounds are described. In very general terms, this invention describes the treatment of a wound by the application of topical negative pressure (TNP) therapy for aspirating the wound together with the further provision of additional fluid for irrigating and/or cleansing the wound, which fluid, comprising both wound exudates and irrigation fluid, is then drawn off by the aspiration means and circulated through means for separating the beneficial materials therein from deleterious materials. The materials which are beneficial to wound healing are recirculated through the wound dressing and those materials deleterious to wound healing are discarded to a waste collection bag or vessel.
In our co-pending International patent application, WO 2005/04670, apparatus, a wound dressing and a method for cleansing a wound using aspiration, irrigation and cleansing wounds are described. Again, in very general terms, the invention described in this document utilises similar apparatus to that in WO 2004/037334 with regard to the aspiration, irrigation and cleansing of the wound, however, it further includes the important additional step of providing heating means to control the temperature of that beneficial material being returned to the wound site/dressing so that it is at an optimum temperature, for example, to have the most efficacious therapeutic effect on the wound. In our co-pending International patent application, WO 2005/105180, apparatus and a method for the aspiration, irrigation and/or cleansing of wounds are described. Again, in very general terms, this document describes similar apparatus to the two previously mentioned documents hereinabove but with the additional step of providing means for the supply and application of physiologically active agents to the wound site/dressing to promote wound healing.
The content of the above references is included herein by reference.
However, the above apparatus and methods are generally only applicable to a patient when hospitalised as the apparatus is complex, needing people having specialist knowledge in how to operate and maintain the apparatus, and also relatively heavy and bulky, not being adapted for easy mobility outside of a hospital environment by a patient, for example.
Some patients having relatively less severe wounds which do not require continuous hospitalization, for example, but whom nevertheless would benefit from the prolonged application of TNP therapy, could be treated at home or at work subject to the availability of an easily portable and maintainable TNP therapy apparatus.
GB-A-2 307 180 describes a portable TNP therapy unit which may be carried by a patient clipped to belt or harness. It will be appreciated however that there are limitations as to how parameters associated with a wound site can be maintained.
In general it is known that the bacterial load of wounds can increase over time and that wounds can also dry out whilst under negative pressure wound therapy. This is particularly so when using conventional wound dressings such as ALLEVYN (trademark). At present a way of reducing wound/tissue infection is by regularly changing dressings which are located over a wound site. This has an impact on the patient since changing dressing can lead to patient discomfort, increased cost associated with the replacement dressings themselves and can increase the chances of patient to patient infection.
It is also known that from time to time it is advantageous to deliver one or more agents such as pain relief medicament, anti-biotics, wound irrigation etc to a wound site. With known techniques a dressing or drape kept over the wound site to prevent infection must be removed prior to delivery of the agent with a new drape/dressing being required subsequent to introduction of the agent. Again this can lead to patient discomfort, increases costs and increases likelihood of cross infection.
U.S. Pat. No. 6,398,767 and WO03/073970 each show how substances can be introduced at a wound site but the techniques shown are complicated, can be prone to fault and disclose use of only a limited number of agents.
It is an aim of the present invention to at least partly mitigate the above-mentioned problems.
It is an aim of embodiments of the present invention to provide a method and apparatus which permits one or more agents such as painkillers, anti-biotics and/or wound irrigation to be introduced at a wound site without having to remove/replace a drape/dressing covering the wound site.
It is an aim of embodiments of the present invention to provide a method and apparatus which is able to automatically deliver agent continuously or at predetermined time intervals to a wound site.
It is an aim of embodiments of the present invention to provide a method and apparatus which permits a user to quickly and efficiently deliver a highly precise dose of medicament or other such agent to a wound site.
According to a first aspect of the present invention there is provided a method of delivering at least one agent to a wound site; comprising the steps of:
The invention is comprised in part of an overall apparatus for the provision of TNP therapy to a patient in almost any environment. The apparatus is lightweight, may be mains or battery powered by a rechargeable battery pack contained within a device (henceforth, the term “device” is used to connote a unit which may contain all of the control, power supply, power supply recharging, electronic indicator means and means for initiating and sustaining aspiration functions to a wound and any further necessary functions of a similar nature). When outside the home, for example, the apparatus may provide for an extended period of operation on battery power and in the home, for example, the device may be connected to the mains by a charger unit whilst still being used and operated by the patient.
The overall apparatus of which the present invention is a part comprises: a dressing covering the wound and sealing at least an open end of an aspiration conduit to a cavity formed over the wound by the dressing; an aspiration tube comprising at least one lumen therethrough leading from the wound dressing to a waste material canister for collecting and holding wound exudates/waste material prior to disposal; and, a power, control and aspiration initiating and sustaining device associated with the waste canister.
The dressing covering the wound may be any type of dressing normally employed with TNP therapy and, in very general terms, may comprise, for example, a semi-permeable, flexible, self-adhesive drape material, as is known in the dressings art, to cover the wound and seal with surrounding sound tissue to create a sealed cavity or void over the wound. There may aptly be a porous barrier and support member in the cavity between the wound bed and the covering material to enable an even vacuum distribution to be achieved over the area of the wound. The porous barrier and support member being, for example, a gauze, a foam, an inflatable bag or known wound contact type material resistant to crushing under the levels of vacuum created and which permits transfer of wound exudates across the wound area to the aspiration conduit sealed to the flexible cover drape over the wound.
The aspiration conduit may be a plain flexible tube, for example, having a single lumen therethrough and made from a plastics material compatible with raw tissue, for example. However, the aspiration conduit may have a plurality of lumens therethrough to achieve specific objectives relating to the invention. A portion of the tube sited within the sealed cavity over the wound may have a structure to enable continued aspiration and evacuation of wound exudates without becoming constricted or blocked even at the higher levels of the negative pressure range envisaged.
It is envisaged that the negative pressure range for the apparatus embodying the present invention may be between about −50 mmHg and −200 mmHg (note that these pressures are relative to normal ambient atmospheric pressure thus, −200 mmHg would be about 560 mmHg in practical terms). Aptly, the pressure range may be between about −75 mmHg and −150 mmHg. Alternatively a pressure range of up to −75 mmHg, up to −80 mmHg or over −80 mmHg can be used. Also aptly a pressure range of below −75 mmHg could be used. Alternatively a pressure range of over −100 mmHg could be used or over −150 mmHg.
The aspiration conduit at its distal end remote from the dressing may be attached to the waste canister at an inlet port or connector. The device containing the means for initiating and sustaining aspiration of the wound/dressing may be situated between the dressing and waste canister, however, in a preferred embodiment of the apparatus embodying the present invention, the device may aspirate the wound/dressing via the canister thus, the waste canister may preferably be sited between the wound/dressing and device.
The aspiration conduit at the waste material canister end may preferably be bonded to the waste canister to prevent inadvertent detachment when being caught on an obstruction, for example.
The canister may be a plastics material moulding or a composite unit comprising a plurality of separate mouldings. The canister may aptly be translucent or transparent in order to visually determine the extent of filling with exudates. However, the canister and device may in some embodiments provide automatic warning of imminent canister full condition and may also provide means for cessation of aspiration when the canister reaches the full condition.
The canister may be provided with filters to prevent the exhaust of liquids and odours therefrom and also to prevent the expulsion of bacteria into the atmosphere. Such filters may comprise a plurality of filters in series. Examples of suitable filters may comprise hydrophobic filters of 0.2 μm pore size, for example, in respect of sealing the canister against bacteria expulsion and 1 μm against liquid expulsion.
Aptly, the filters may be sited at an upper portion of the waste canister in normal use, that is when the apparatus is being used or carried by a patient the filters are in an upper position and separated from the exudate liquid in the waste canister by gravity. Furthermore, such an orientation keeps the waste canister outlet or exhaust exit port remote from the exudate surface.
Aptly the waste canister may be filled with an absorbent gel such as ISOLYSEL (trade mark), for example, as an added safeguard against leakage of the canister when full and being changed and disposed of. Added advantages of a gel matrix within the exudate storing volume of the waste canister are that it prevents excessive movement, such as slopping, of the liquid, minimises bacterial growth and minimises odours.
The waste canister may also be provided with suitable means to prevent leakage thereof both when detached from the device unit and also when the aspiration conduit is detached from the wound site/dressing.
The canister may have suitable means to prevent emptying by a user (without tools or damage to the canister) such that a full or otherwise end-of-life canister may only be disposed of with waste fluid still contained.
The device and waste canister may have mutually complementary means for connecting a device unit to a waste canister whereby the aspiration means in the device unit automatically connects to an evacuation port on the waste canister such that there is a continuous aspiration path from the wound site/dressing to an exhaust port on the device.
Aptly, the exhaust port from the fluid path through the apparatus is provided with filter means to prevent offensive odours from being ejected into the atmosphere.
In general terms the device unit comprises an aspirant pump; means for monitoring pressure applied by the aspirant pump; a flowmeter to monitor fluid flow through the aspirant pump; a control system which controls the aspirant pump in response to signals from sensors such as the pressure monitoring means and the flowmeter, for example, and which control system also controls a power management system with regard to an on-board battery pack and the charging thereof and lastly a user interface system whereby various functions of the device such as pressure level set point, for example, may be adjusted (including stopping and starting of the apparatus) by a user. The device unit may contain all of the above features within a single unified casing.
In view of the fact that the device unit contains the majority of the intrinsic equipment cost therein ideally it will also be able to survive impact, tolerate cleaning in order to be reusable by other patients.
In terms of pressure capability the aspiration means may be able to apply a maximum pressure drop of at least −200 mmHg to a wound site/dressing. The apparatus is capable of maintaining a predetermined negative pressure even under conditions where there is a small leak of air into the system and a high exudate flow.
The pressure control system may prevent the minimum pressure achieved from exceeding for example −200 mmHg so as not to cause undue patient discomfort. The pressure required may be set by the user at a number of discreet levels such as −50, −75, −100, −125, −150, −175 mmHg, for example, depending upon the needs of the wound in question and the advice of a clinician. Thus suitable pressure ranges in use may be from −25 to −80 mmHg, or −50 to −76 mmHg, or −50 to −75 mmHg as examples. The control system may also advantageously be able to maintain the set pressure within a tolerance band of +/−10 mmHg of the set point for 95% of the time the apparatus is operating given that leakage and exudation rates are within expected or normal levels.
Aptly, the control system may trigger alarm means such as a flashing light, buzzer or any other suitable means when various abnormal conditions apply such as, for example: pressure outside set value by a large amount due to a gross leak of air into system; duty on the aspiration pump too high due to a relatively smaller leakage of air into the system; pressure differential between wound site and pump is too high due, for example, to a blockage or waste canister full.
The apparatus of the present invention may be provided with a carry case and suitable support means such as a shoulder strap or harness, for example. The carry case may be adapted to conform to the shape of the apparatus comprised in the joined together device and waste canister. In particular, the carry case may be provided with a bottom opening flap to permit the waste canister to be changed without complete removal of the apparatus form the carry case.
The carry case may be provided with an aperture covered by a displaceable flap to enable user access to a keypad for varying the therapy applied by the apparatus.
According to a second aspect of the present invention, there is provided apparatus for delivering at least one agent to a wound site, comprising:
In order that the present invention may be more fully understood, examples will now be described by way of illustration only with reference to the accompanying drawings, of which:
Referring now to
More particularly, as shown in
the pressure control system gives feedback on the pressure at the pump head to the control system; the pump control varies the pump speed based on the difference between the target pressure and the actual pressure at the pump head. In order to improve accuracy of pump speed and hence provide smoother and more accurate application of the negative pressure at a wound site, the pump is controlled by an auxiliary control system. The pump is from time to time allowed to “free-wheel” during its duty cycle by turning off the voltage applied to it. The spinning motor causes a “back electro-motive force” or BEMF to be generated. This BEMF can be monitored and can be used to provide an accurate measure of pump speed. The speed can thus be adjusted more accurately than can prior art pump systems.
According to embodiments of the present invention, actual pressure at a wound site is not measured but the difference between a measured pressure (at the pump) and the wound pressure is minimised by the use of large filters and large bore tubes wherever practical. If the pressure control measures that the pressure at the pump head is greater than a target pressure (closer to atmospheric pressure) for a period of time, the device sends an alarm and displays a message alerting the user to a potential problem such as a leak.
In addition to pressure control a separate flow control system can be provided. A flow meter may be positioned after the pump and is used to detect when a canister is full or the tube has become blocked. If the flow falls below a certain threshold, the device sounds an alarm and displays a message alerting a user to the potential blockage or full canister.
Referring now to
It will be appreciated that the bacterial load of wounds can increase over time and that wounds can, unless evasive action is taken, dry out whilst under negative pressure wound therapy (NPWT). This is so when using conventional wound dressings.
As illustrated in
A generally T-shaped delivery tube 1005 extends through the drape 14. The projection of the delivery tube through the drape can be achieved either by providing a dressing with an inlet port (not shown) sized to accommodate the delivery tube diameter or by pinching the drape 14 around the delivery tube during dressing of the wound site. The delivery tube 1005 includes an agent inlet port 1006 through which agent can be introduced.
It will be appreciated that embodiments of the present invention can be used to deliver a wide variety of agents to the wound site. For example, but not exclusively, embodiments of the present invention can deliver powdered or fluid medicament and/or pain relief medicament and/or anti-biotics and/or saline solution and/or hydrating fluid and/or biologically active agents and/or growth factors and/or enzymes and/or anti inflammatories. Embodiments of the present invention can also be utilised to introduce a mixture of agents. When the agent is introduced at the inlet valve 1006 it passes along the delivery tube through the drape to the wound site, entering the wound site through an outlet 1007.
The delivery tube 1005 is also provided with a removable cap 1008 which can be resealably sealed on the end of the delivery tube. When an agent is to be introduced to the wound site the cap 1008 is removed to reveal a filter 1009 which is provided to allow air to fill the wound as desired. The air allows the injection port to be flushed and helps the removal of large volumes of fluid from the wound.
As illustrated in
Likewise the upwardly extending delivery tube 1202 has a filter 1206 in an upper housing 1207. An opening 1208 allows air to enter the delivery tube where an air inlet valve 1209 is opened. A cap (not shown) may resealably seal 1208 in the delivery tube.
A lower surface 1210 of the delivery tube body 1201 carries an adhesive layer 1211 which is covered by protector paper 1212. The protector paper 1212 may be peeled away to reveal the adhesive as will be described herein below.
A penetrating portion 1213 of the delivery tube extends below a low surface of the disc like body 1201. The protrusion extends below this lower surface a sufficient distance so that penetration of a drape 14 can occur when the delivery tube is mounted on a sealed dressing.
The delivery tube shown in
In order to secure the delivery tube to a dressing a small hole is first punctured in a lower sealing layer with the peeling paper being removed and then the delivery tube urged onto the lower drape so that the protrusion 1213 extends through the drape. The delivery tube is secured to the lower drape by the lower surface of the adhesive layer 1304.
In order to locate the delivery tube 1400 at a wound site, the auxiliary drape 1502 is adhered to a target surface close to the wound site 1000. An end region 1504 of the auxiliary drape 1502 is folded back to form a fold line 1505. The upper surface 1506 is adhesive and the lozenge portion of the delivery tube 1402 can be adhered to this upper surface. Next the main drape 1501 is laid over the wound site covering the end region 1504 of the auxiliary drape. A lower surface 1507 of the main drape is adhesive so that the main drape and auxiliary drape can be pinched together around the lozenge base portion of the delivery tube 1400. As a result the flap 1503 is formed which can hingedly move around the hinge line 1505.
It will be appreciated that further passageways (not shown) can be formed through the lozenge section of the delivery tube 1400 to provide further input and output access to the wound site.
It will be appreciated by those skilled in the art that according to embodiments of the present invention rather than a syringe or reservoir being connected to the delivery tube the delivery tube may be connected directly to an outlet of a saline drip so that the wound bed may continuously be irrigated.
It will also be appreciated that from time to time using the syringe illustrated more clearly in
The provision of a passage through the drape 14 or under the drape means that from time to time fluid or dry agent may be introduced into a wound site without needing to move the dressing. This means that localised pain relief and/or anti-biotics and/or wound irrigation may be introduced to a wound site without the need for regular changing of dressings. This can help prevent tissue infection, reduces cost, reduces pain to the patient and reduces the risk of patient to patient infection. It will also be appreciated that from time to time embodiments of the present invention allow wound fluid to be drawn out of the wound bed again without the need to disturb the drape 14 covering the wound dressing thus obviating certain disadvantages associated with prior art dressings.
Embodiments of the present invention enable agent to be introduced continuously or at predetermined time intervals into a wound site or for wound fluid to be drawn from the wound site either whilst topical negative pressure wound therapy continues or in such a way that TNP can be minimised
Throughout the description and claims of this specification, the words “comprise” and “contain” and variations of the words, for example “comprising” and “comprises”, means “including but not limited to”, and is not intended to (and does not) exclude other moieties, additives, components, integers or steps.
Throughout the description and claims of this specification, the singular encompasses the plural unless the context otherwise requires. In particular, where the indefinite article is used, the specification is to be understood as contemplating plurality as well as singularity, unless the context requires otherwise.
Features, integers, characteristics, compounds, chemical moieties or groups described in conjunction with a particular aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith
Number | Date | Country | Kind |
---|---|---|---|
0723875.1 | Dec 2007 | GB | national |
This application is a continuation application of U.S. application Ser. No. 14/948,130, filed Nov. 20, 2015 entitled “WOUND MANAGEMENT”, now U.S. Pat. No. 9,694,120, which is a divisional application of U.S. application Ser. No. 12/746,502, filed on Sep. 21, 2010 entitled “WOUND MANAGEMENT”, now U.S. Pat. No. 9,199,014, which is a U.S. National Phase of the PCT International Application No. PCT/GB2008/051159 filed on Dec. 5, 2008, designating the United States and published on Jun. 11, 2009 as WO 2009/071948, which claims priority to Great Britain Patent Application No. 0723875.1, filed on Dec. 6, 2007.
Number | Name | Date | Kind |
---|---|---|---|
4117551 | Books et al. | Sep 1978 | A |
4538920 | Drake et al. | Sep 1985 | A |
4573965 | Russo | Mar 1986 | A |
4735606 | Davison | Apr 1988 | A |
4753536 | Spehar et al. | Jun 1988 | A |
4767026 | Keller | Aug 1988 | A |
4771919 | Ernst | Sep 1988 | A |
4872450 | Austad | Oct 1989 | A |
4969880 | Zamierowski | Nov 1990 | A |
5010115 | Grisoni | Apr 1991 | A |
5064653 | Sessions et al. | Nov 1991 | A |
5080493 | McKown et al. | Jan 1992 | A |
5249709 | Duckworth et al. | Oct 1993 | A |
5266326 | Barry et al. | Nov 1993 | A |
5333760 | Simmen et al. | Aug 1994 | A |
5456745 | Rorefer et al. | Oct 1995 | A |
5527293 | Zamierowski | Jun 1996 | A |
5582596 | Fukunaga et al. | Dec 1996 | A |
5583114 | Barrows et al. | Dec 1996 | A |
5609271 | Keller et al. | Mar 1997 | A |
5612050 | Rowe et al. | Mar 1997 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
5660823 | Chakrabarti et al. | Aug 1997 | A |
5717030 | Dunn et al. | Feb 1998 | A |
5738656 | Wagner | Apr 1998 | A |
5747064 | Burnett et al. | May 1998 | A |
5776104 | Guignard | Jul 1998 | A |
5776193 | Kwan et al. | Jul 1998 | A |
5834007 | Kubota | Nov 1998 | A |
5874500 | Rhee et al. | Feb 1999 | A |
5945115 | Dunn et al. | Aug 1999 | A |
5962010 | Greff et al. | Oct 1999 | A |
5998472 | Berger et al. | Dec 1999 | A |
6142982 | Hunt et al. | Nov 2000 | A |
6143352 | Clark et al. | Nov 2000 | A |
6165201 | Sawhney et al. | Dec 2000 | A |
6168788 | Wortham | Jan 2001 | B1 |
6214332 | Askill et al. | Apr 2001 | B1 |
6252129 | Coffee | Jun 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6391294 | Dettmar et al. | May 2002 | B1 |
6398761 | Bills et al. | Jun 2002 | B1 |
6398767 | Fleischmann | Jun 2002 | B1 |
6447802 | Sessions et al. | Sep 2002 | B2 |
6486285 | Fujita | Nov 2002 | B2 |
6495127 | Wallace et al. | Dec 2002 | B1 |
6509031 | Miller et al. | Jan 2003 | B1 |
6521251 | Askill et al. | Feb 2003 | B2 |
6547467 | Quintero | Apr 2003 | B2 |
6575940 | Levinson et al. | Jun 2003 | B1 |
6596704 | Court et al. | Jul 2003 | B1 |
6627216 | Brandt et al. | Sep 2003 | B2 |
6629774 | Gruendeman | Oct 2003 | B1 |
6648862 | Watson | Nov 2003 | B2 |
6685681 | Lockwood et al. | Feb 2004 | B2 |
6695824 | Howard et al. | Feb 2004 | B2 |
6730299 | Tayot et al. | May 2004 | B1 |
6752794 | Lockwood et al. | Jun 2004 | B2 |
6790438 | Constancis et al. | Sep 2004 | B1 |
6936037 | Bubb et al. | Aug 2005 | B2 |
6951553 | Bubb et al. | Oct 2005 | B2 |
6979324 | Bybordi et al. | Dec 2005 | B2 |
7004915 | Boynton et al. | Feb 2006 | B2 |
7108683 | Zamierowski | Sep 2006 | B2 |
7129210 | Lowinger et al. | Oct 2006 | B2 |
7195624 | Lockwood | Mar 2007 | B2 |
7198046 | Argenta et al. | Apr 2007 | B1 |
7216651 | Argenta et al. | May 2007 | B2 |
7303757 | Schankereli et al. | Dec 2007 | B2 |
7381859 | Hunt et al. | Jun 2008 | B2 |
7438705 | Karpowicz et al. | Oct 2008 | B2 |
7524315 | Blott et al. | Apr 2009 | B2 |
7534240 | Johnson | May 2009 | B1 |
7569742 | Haggstrom et al. | Aug 2009 | B2 |
7615036 | Joshi et al. | Nov 2009 | B2 |
7645269 | Zamierowski | Jan 2010 | B2 |
7700819 | Ambrosio et al. | Apr 2010 | B2 |
7717313 | Criscuolo et al. | May 2010 | B2 |
7745681 | Ferguson | Jun 2010 | B1 |
7753894 | Blott et al. | Jul 2010 | B2 |
7754937 | Boehringer et al. | Jul 2010 | B2 |
7758554 | Lina et al. | Jul 2010 | B2 |
7759537 | Bishop et al. | Jul 2010 | B2 |
7759538 | Fleischmann | Jul 2010 | B2 |
7759539 | Shaw et al. | Jul 2010 | B2 |
7763769 | Johnson et al. | Jul 2010 | B2 |
7779625 | Joshi et al. | Aug 2010 | B2 |
7790945 | Watson, Jr. | Sep 2010 | B1 |
7790946 | Mulligan | Sep 2010 | B2 |
7794438 | Henley et al. | Sep 2010 | B2 |
7794450 | Blott et al. | Sep 2010 | B2 |
7803980 | Griffiths et al. | Sep 2010 | B2 |
7811269 | Boynton et al. | Oct 2010 | B2 |
7815616 | Boehringer et al. | Oct 2010 | B2 |
7828782 | Suzuki | Nov 2010 | B2 |
7838717 | Haggstrom et al. | Nov 2010 | B2 |
7862831 | Wang et al. | Jan 2011 | B2 |
7880050 | Robinson et al. | Feb 2011 | B2 |
7896823 | Mangrum et al. | Mar 2011 | B2 |
7896864 | Lockwood et al. | Mar 2011 | B2 |
7910135 | St. John et al. | Mar 2011 | B2 |
8007164 | Miyano et al. | Aug 2011 | B2 |
8034037 | Adams et al. | Oct 2011 | B2 |
8062272 | Weston | Nov 2011 | B2 |
8097272 | Addison | Jan 2012 | B2 |
8119160 | Looney et al. | Feb 2012 | B2 |
8158844 | McNeil | Apr 2012 | B2 |
8192409 | Hardman et al. | Jun 2012 | B2 |
8226942 | Charier et al. | Jul 2012 | B2 |
8246606 | Stevenson et al. | Aug 2012 | B2 |
8257327 | Blott et al. | Sep 2012 | B2 |
8267908 | Coulthard | Sep 2012 | B2 |
8273368 | Ambrosio et al. | Sep 2012 | B2 |
8298200 | Vess et al. | Oct 2012 | B2 |
8303973 | Daniloff et al. | Nov 2012 | B2 |
8372049 | Jaeb et al. | Feb 2013 | B2 |
8382731 | Johannison | Feb 2013 | B2 |
8409157 | Haggstrom et al. | Apr 2013 | B2 |
8410189 | Carnahan et al. | Apr 2013 | B2 |
8535296 | Blott et al. | Sep 2013 | B2 |
8545466 | Andresen et al. | Oct 2013 | B2 |
8715256 | Greener | May 2014 | B2 |
8734410 | Hall et al. | May 2014 | B2 |
8753670 | Delmotte | Jun 2014 | B2 |
8795635 | Tamarkin et al. | Aug 2014 | B2 |
8795713 | Makower et al. | Aug 2014 | B2 |
8808259 | Walton et al. | Aug 2014 | B2 |
8968773 | Thomas et al. | Mar 2015 | B2 |
9028872 | Gaserod et al. | May 2015 | B2 |
9199014 | Hall et al. | Dec 2015 | B2 |
20010004082 | Keller et al. | Jun 2001 | A1 |
20010031943 | Urie | Oct 2001 | A1 |
20010043913 | Spaans et al. | Nov 2001 | A1 |
20020038826 | Hurray et al. | Apr 2002 | A1 |
20020082566 | Stenzler | Jun 2002 | A1 |
20020122771 | Holland et al. | Sep 2002 | A1 |
20020145007 | Sawhney et al. | Oct 2002 | A1 |
20020187182 | Kramer et al. | Dec 2002 | A1 |
20020198490 | Wirt et al. | Dec 2002 | A1 |
20020198504 | Risk, Jr. | Dec 2002 | A1 |
20030040478 | Drucker et al. | Feb 2003 | A1 |
20030069535 | Shalaby | Apr 2003 | A1 |
20030143189 | Askill et al. | Jul 2003 | A1 |
20030183653 | Bills | Oct 2003 | A1 |
20040033466 | Shellard et al. | Feb 2004 | A1 |
20040037897 | Benjamin et al. | Feb 2004 | A1 |
20040049187 | Burnett et al. | Mar 2004 | A1 |
20040073152 | Karason et al. | Apr 2004 | A1 |
20040167617 | Voellmicke et al. | Aug 2004 | A1 |
20040171998 | Marasco, Jr. | Sep 2004 | A1 |
20050004534 | Lockwood | Jan 2005 | A1 |
20050085795 | Lockwood | Apr 2005 | A1 |
20050197626 | Moberg et al. | Sep 2005 | A1 |
20050230422 | Muller et al. | Oct 2005 | A1 |
20050267424 | Eriksson | Dec 2005 | A1 |
20060033331 | Ziman | Feb 2006 | A1 |
20060079599 | Arthur | Apr 2006 | A1 |
20060173514 | Biel et al. | Aug 2006 | A1 |
20060253082 | Mcintosh et al. | Nov 2006 | A1 |
20060273109 | Keller | Dec 2006 | A1 |
20070004896 | Ito et al. | Jan 2007 | A1 |
20070009580 | DiCosmo et al. | Jan 2007 | A1 |
20070141101 | Nugent et al. | Jun 2007 | A1 |
20070147947 | Stenton et al. | Jun 2007 | A1 |
20070164047 | Reidt et al. | Jul 2007 | A1 |
20070185463 | Mulligan | Aug 2007 | A1 |
20070203062 | Ellis-Behnke et al. | Aug 2007 | A1 |
20070219585 | Cornet et al. | Sep 2007 | A1 |
20070219588 | Freeman | Sep 2007 | A1 |
20070255198 | Leong | Nov 2007 | A1 |
20070276195 | Xu et al. | Nov 2007 | A1 |
20070276309 | Xu et al. | Nov 2007 | A1 |
20080004549 | Anderson et al. | Jan 2008 | A1 |
20080060550 | MacDonald et al. | Mar 2008 | A1 |
20080071216 | Locke et al. | Mar 2008 | A1 |
20080089173 | Lu et al. | Apr 2008 | A1 |
20080206155 | Tamarkin et al. | Aug 2008 | A1 |
20080208163 | Wilkie | Aug 2008 | A1 |
20080215019 | Malamutmann | Sep 2008 | A1 |
20080243096 | Svedman | Oct 2008 | A1 |
20080254103 | Harris et al. | Oct 2008 | A1 |
20080287880 | Keller | Nov 2008 | A1 |
20080300555 | Olson et al. | Dec 2008 | A1 |
20080314929 | Keller | Dec 2008 | A1 |
20090020561 | Keller | Jan 2009 | A1 |
20090022779 | Kelly et al. | Jan 2009 | A1 |
20090030086 | Eady et al. | Jan 2009 | A1 |
20090093550 | Rolfes et al. | Apr 2009 | A1 |
20090098073 | MacDonald et al. | Apr 2009 | A1 |
20090134186 | Keller | May 2009 | A1 |
20090157017 | Ambrosio | Jun 2009 | A1 |
20090196844 | Choi et al. | Aug 2009 | A1 |
20090275872 | Addison et al. | Nov 2009 | A1 |
20090299255 | Kazala, Jr. et al. | Dec 2009 | A1 |
20100022972 | Lina et al. | Jan 2010 | A1 |
20100030132 | Niezgoda et al. | Feb 2010 | A1 |
20100036305 | Green | Feb 2010 | A1 |
20100069850 | Fabo | Mar 2010 | A1 |
20100094234 | Ramella et al. | Apr 2010 | A1 |
20100122417 | Vrzalik et al. | May 2010 | A1 |
20100210986 | Sanders | Aug 2010 | A1 |
20100230467 | Crisuolo et al. | Sep 2010 | A1 |
20100262090 | Riesinger | Oct 2010 | A1 |
20100262091 | Larsson | Oct 2010 | A1 |
20100268176 | Johnson et al. | Oct 2010 | A1 |
20110021431 | Jones et al. | Jan 2011 | A1 |
20110028919 | Johnnison et al. | Feb 2011 | A1 |
20110033503 | Sinko et al. | Feb 2011 | A1 |
20110086077 | McCrea et al. | Apr 2011 | A1 |
20160074564 | Hall et al. | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
3 935 818 | May 1991 | DE |
0 521 434 | Jan 1993 | EP |
0 858 810 | Aug 1998 | EP |
0 888 141 | Jan 1999 | EP |
1 007 015 | Jun 2000 | EP |
1 029 585 | Aug 2000 | EP |
1 105 171 | Jun 2001 | EP |
1 105 180 | Jun 2001 | EP |
1 107 813 | Jun 2001 | EP |
1 030 657 | Oct 2001 | EP |
1 306 123 | May 2003 | EP |
1 440 737 | Jul 2004 | EP |
1 923 077 | Nov 2006 | EP |
1 790 378 | May 2007 | EP |
2 111 804 | Oct 2009 | EP |
2 218 431 | Aug 2010 | EP |
2288734 | Nov 1995 | GB |
2307180 | May 1997 | GB |
2424582 | Oct 2006 | GB |
2435419 | Feb 2007 | GB |
WO 1991000718 | Jan 1991 | WO |
WO 1992009301 | Jun 1992 | WO |
WO 199209651 | Jun 1992 | WO |
WO 199306802 | Apr 1993 | WO |
WO 199309176 | May 1993 | WO |
WO 1994020133 | Sep 1994 | WO |
WO 199640174 | Dec 1996 | WO |
WO 199703717 | Feb 1997 | WO |
WO 199733922 | Sep 1997 | WO |
WO 199742986 | Nov 1997 | WO |
WO 199803267 | Jan 1998 | WO |
WO 199806444 | Feb 1998 | WO |
WO 199917698 | Apr 1999 | WO |
WO 199930629 | Jun 1999 | WO |
WO 1999047097 | Sep 1999 | WO |
WO 199965536 | Dec 1999 | WO |
WO 200038752 | Jul 2000 | WO |
WO 2000061206 | Oct 2000 | WO |
WO 200062827 | Oct 2000 | WO |
WO 2000064396 | Nov 2000 | WO |
WO 200137922 | May 2001 | WO |
WO 200137922 | May 2001 | WO |
WO 2001062312 | Aug 2001 | WO |
WO 2001066017 | Sep 2001 | WO |
WO 200202079 | Jan 2002 | WO |
WO 2002094256 | Nov 2002 | WO |
WO 2002102864 | Dec 2002 | WO |
WO 2003073970 | Sep 2003 | WO |
WO 2003074100 | Sep 2003 | WO |
WO 2004037334 | May 2004 | WO |
WO 2004054632 | Jul 2004 | WO |
WO 2005017000 | Feb 2005 | WO |
WO 2005018695 | Mar 2005 | WO |
WO 2005046760 | May 2005 | WO |
WO 2005046761 | May 2005 | WO |
WO 2005046762 | May 2005 | WO |
WO 2005105180 | Nov 2005 | WO |
WO 2005115523 | Dec 2005 | WO |
WO 2005118011 | Dec 2005 | WO |
WO 2006014534 | Feb 2006 | WO |
WO 2006030054 | Mar 2006 | WO |
WO 2006052745 | May 2006 | WO |
WO 2006056408 | Jun 2006 | WO |
WO 2006114638 | Nov 2006 | WO |
WO 2006135506 | Dec 2006 | WO |
WO 2007062024 | May 2007 | WO |
WO 2007106594 | Sep 2007 | WO |
WO 2007124198 | Nov 2007 | WO |
WO 2008036345 | Mar 2008 | WO |
WO 2008076407 | Jun 2008 | WO |
WO 2008082444 | Jul 2008 | WO |
WO 2008134544 | Nov 2008 | WO |
WO 2008134774 | Nov 2008 | WO |
WO 2008141228 | Nov 2008 | WO |
WO 2008141470 | Nov 2008 | WO |
WO 2009019227 | Feb 2009 | WO |
WO 2009019229 | Feb 2009 | WO |
WO 2009034322 | Mar 2009 | WO |
WO 2009042514 | Apr 2009 | WO |
WO 2009047524 | Apr 2009 | WO |
WO 2009052193 | Apr 2009 | WO |
WO 2009060327 | May 2009 | WO |
WO 2009062327 | May 2009 | WO |
WO 2009070905 | Jun 2009 | WO |
WO 2009071948 | Jun 2009 | WO |
WO 2009078790 | Jun 2009 | WO |
WO 2009103031 | Aug 2009 | WO |
WO 2009126833 | Oct 2009 | WO |
WO 2009145703 | Dec 2009 | WO |
WO 2010051068 | May 2010 | WO |
Entry |
---|
Annex to the Communication, re the Opposition of European Patent No. EP 2 231 221, dated Apr. 26, 2018, in 14 pages. |
Brief Communication—Letter from the Opponent, re the Opposition of European Patent No. EP 2 231 218, dated Oct. 12, 2018, in 4 pages. |
Great Britain Office Action and Search Report, re GB Application No. 0723875.1, dated Mar. 31, 2008. |
U.S. Final Office Action, re U.S. Appl. No. 11/577,642, dated Sep. 23, 2009. |
U.S. Final Office Action, re U.S. Appl. No. 11/919,354, dated Nov. 24, 2010. |
Grounds for the Decision and Annex to Communication, re the Opposition of European Patent No. EP 2 231 221, dated Dec. 21, 2018, in 51 pages. |
Info V.A.C. User Manual—KCI—Dec. 2006, in 76 pages. |
Information about the Result of Oral Proceedings, re the Opposition of European Patent No. EP 2 231 221, dated Nov. 9, 2018, in 3 pages. |
International Search Report, re PCT Application No. PCT/GB2008/051159, dated Apr. 16, 2009. |
International Preliminary Report on Patentability, re PCT Application No. PCT/GB2008/051159, dated Jun. 8, 2010. |
Landis, E.M. et al., The Effects of Alternate Suction and Pressure on Blood Flow to the Lower Extremities, Alternate Suction and Pressure, J Clin Invest. Sep. 1933, vol. 12(5), pp. 925-961. |
Maintenance of the Patent with the Documents specified in the Final Decision, re the Opposition of European Patent No. EP 2 231 221, Apr. 18, 2019, in 1 page. |
Opponent's Written Submission in Preparation for the Oral Proceedings, re the Opposition of European Patent No. EP 2 231 221, dated Sep. 7, 2018, in 25 pages. |
Opponent's Written Submission in Preparation for the Oral Proceedings, re the Opposition of European Patent No. EP 2 231 221, dated Oct. 3, 2018, in 5 pages. |
Opponent's Written Submission in Preparation for the Oral Proceedings, re the Opposition of European Patent No. EP 2 231 221, dated Oct. 30, 2018, in 3 pages. |
U.S. Office Action, re U.S. Appl. No. 11/577,642, dated Jan. 12, 2009. |
U.S. Office Action, re U.S. Appl. No. 10/599,728, dated Jan. 28, 2011, in 17 pages. |
U.S. Office Action, re U.S. Appl. No. 11/919,354, dated Apr. 29, 2010. |
Proprietor's Written Submission in Preparation for the Oral Proceedings, re the Opposition of European Patent No. EP 2 231 221, dated Sep. 7, 2018, in 35 pages. |
Proprietor's Written Submission in Preparation for the Oral Proceedings, re the Opposition of European Patent No. EP 2 231 221, dated Oct. 30, 2018, in 23 pages. |
Bevan, Damon, et al.: “Diverse and potent activities of HGF/SF in skin wound repair”, Journal of Pathology, 2004; 203: 831-838. |
Declaration of Chris Locke submitted in the Opposition against European Patent No. EP 2 231 221, dated Sep. 7, 2016, in 1 page. |
Mitchell, Richard N., et al.: “Role of Stem Cells in Tissue Homeostasis”, Pocket Companion to Robbins and Cotran Pathologic Basis of Diseas, 7th Ed., 2006. |
Notice of Opposition—Statement of Facts and Evidence, re European Patent No. EP 2 231 221, dated Apr. 3, 2017, in 13 pages. |
First Auxiliary Request during opposition procedure re European Patent No. EP 2231221, dated Sep. 25, 2017, in 2 pages. |
Second Auxiliary Request during opposition procedure re European Patent No. EP 2231221, dated Sep. 25, 2017, in 2 pages. |
Reply of the patent proprietor to the Notice of Opposition re European Patent No. EP 2231221, dated Sep. 25, 2017, in 14 pages. |
Notice of Opposition—Statement of Facts and Evidence, re European Patent No. EP 2 231 221, dated Apr. 3, 2017, including a Statement of Facts and Evidence and prior art references D1—U.S. Pat. No. 5,738,656, D2—WO 03/057070, D3—U.S. Pat. No. 4,573,965, D4—Declaration by Chris Locke, D5—WO 2005/115523, D6—US 2005/0085795, and D7—U.S. Pat. No. 6,398,767 attached with the Notice, in 149 pages. |
Decision to Maintain the European Patent in Amended Form (mailed to HGF Limited), re the Opposition of European Patent No. EP 2 231 221, dated Aug. 22, 2019, in 1 page. |
Decision to Maintain the European Patent in Amended Form (mailed to Simmons & Simmons), re the Opposition of European Patent No. EP 2 231 221, dated Aug. 22, 2019, in 1 page. |
Termination of the Opposition Proceedings with Maintenance of Patent, re the Opposition of European Patent No. EP 2 231 221, dated Aug. 16, 2019, in 1 page. |
Number | Date | Country | |
---|---|---|---|
20170340784 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12746502 | US | |
Child | 14948130 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14948130 | Nov 2015 | US |
Child | 15592067 | US |