The present invention relates to apparatus and a method for the application of topical negative pressure (TNP) therapy to wounds. In particular, but not exclusively, the present invention relates to alerting a user of such apparatus to a canister which is full or approaching full.
There is much prior art available relating to the provision of apparatus and methods of use thereof for the application of TNP therapy to wounds together with other therapeutic processes intended to enhance the effects of the TNP therapy. Examples of such prior art include those listed and briefly described below.
TNP therapy assists in the closure and healing of wounds by reducing tissue oedema; encouraging blood flow and granulation of tissue; removing excess exudates and may reduce bacterial load and thus, infection to the wound. Furthermore, TNP therapy permits less outside disturbance of the wound and promotes more rapid healing.
In our co-pending International patent application, WO 2004/037334, apparatus, a wound dressing and a method for aspirating, irrigating and cleansing wounds are described. In very general terms, this invention describes the treatment of a wound by the application of topical negative pressure (TNP) therapy for aspirating the wound together with the further provision of additional fluid for irrigating and/or cleansing the wound, which fluid, comprising both wound exudates and irrigation fluid, is then drawn off by the aspiration means and circulated through means for separating the beneficial materials therein from deleterious materials. The materials which are beneficial to wound healing are recirculated through the wound dressing and those materials deleterious to wound healing are discarded to a waste collection bag or vessel.
In our co-pending International patent application, WO 2005/04670, apparatus, a wound dressing and a method for cleansing a wound using aspiration, irrigation and cleansing wounds are described. Again, in very general terms, the invention described in this document utilises similar apparatus to that in WO 2004/037334 with regard to the aspiration, irrigation and cleansing of the wound, however, it further includes the important additional step of providing heating means to control the temperature of that beneficial material being returned to the wound site/dressing so that it is at an optimum temperature, for example, to have the most efficacious therapeutic effect on the wound.
In our co-pending International patent application, WO 2005/105180, apparatus and a method for the aspiration, irrigation and/or cleansing of wounds are described. Again, in very general terms, this document describes similar apparatus to the two previously mentioned documents hereinabove but with the additional step of providing means for the supply and application of physiologically active agents to the wound site/dressing to promote wound healing.
The content of the above references is included herein by reference.
However, the above apparatus and methods are generally only applicable to a patient when hospitalised as the apparatus is complex, needing people having specialist knowledge in how to operate and maintain the apparatus, and also relatively heavy and bulky, not being adapted for easy mobility outside of a hospital environment by a patient, for example.
Some patients having relatively less severe wounds which do not require continuous hospitalisation, for example, but whom nevertheless would benefit from the prolonged application of TNP therapy, could be treated at home or at work subject to the availability of an easily portable and maintainable TNP therapy apparatus.
It is an aim of embodiments of the present invention to provide an apparatus and method for alerting a user or wearer of the apparatus that the waste canister is full or approaching the full condition and that a new canister should be checked and/or possibly installed.
According to a first aspect of the present invention there is provided apparatus for the provision of topical negative pressure therapy the apparatus comprising: an aspirant pump for moving aspirated fluid through said apparatus; aspirant conduit means operably connected to a dressing covering a wound being aspirated; a waste container operably connected to the aspirant conduit and for receiving wound exudate therein; the waste container having a fluid exit port for the flow of gaseous aspirated fluid therefrom, the exit port having filter means associated therewith for preventing aspirated liquid from passing therethrough; a fluid flow path on the exit side of said waste container for the flow of aspirated gaseous fluid therethrough; the fluid flow path having therein a flow meter and a pressure monitor; and a control system for interrogating and interpreting signals from said flow meter and pressure monitor.
The invention is comprised in part of an overall apparatus for the provision of TNP therapy to a patient in almost any environment. The apparatus is lightweight, may be mains or battery powered by a rechargeable battery pack contained within a device (henceforth, the term “device” is used to connote a unit which, may contain all of the control, power supply, power supply recharging, electronic indicator means and means for initiating and sustaining aspiration functions to a wound and any further necessary functions of a similar nature). When outside the home, for example, the apparatus may provide for an extended period of operation on battery power and in the home, for example, the device may be connected to the mains by a charger unit whilst still being used and operated by the patient.
The overall apparatus of which the present invention is a part comprises: a dressing covering the wound and sealing at least an open end of an aspiration conduit to a cavity formed over the wound by the dressing; an aspiration tube comprising at least one lumen therethrough leading from the wound dressing to a waste material canister for collecting and holding wound exudates/waste material prior to disposal; and, a power, control and aspiration initiating and sustaining device associated with the waste canister.
The dressing covering the wound may be any type of dressing normally employed with TNP therapy and, in very general terms, may comprise, for example, a semi-permeable, flexible, self-adhesive drape material, as is known in the dressings art, to cover the wound and seal with surrounding sound tissue to create a sealed cavity or void over the wound. There may aptly be a porous barrier and support member in the cavity between the wound bed and the covering material to enable an even vacuum distribution to be achieved over the area of the wound. The porous barrier and support member being, for example, a gauze, a foam, an inflatable bag or known wound contact type material resistant to crushing under the levels of vacuum created and which permits transfer of wound exudates across the wound area to the aspiration conduit sealed to the flexible cover drape over the wound.
The aspiration conduit may be a plain flexible tube, for example, having a single lumen therethrough and made from a plastics material compatible with raw tissue, for example. However, the aspiration conduit may have a plurality of lumens therethrough to achieve specific objectives relating to the invention. A portion of the tube sited within the sealed cavity over the wound may have a structure to enable continued aspiration and evacuation of wound exudates without becoming constricted or blocked even at the higher levels of the negative pressure range envisaged.
It is envisaged that the negative pressure range for the apparatus embodying the present invention may be between about −50 mmHg and −200 mmHg (note that these pressures are relative to normal ambient atmospheric pressure thus, −200 mmHg would be about 560 mmHg in practical terms). Aptly, the pressure range may be between about −75 mmHg and −150 mmHg. Alternatively a pressure range of up to −75 mmHg, up to −80 mmHg or over −80 mmHg can be used. Also aptly a pressure range of below −75 mmHg could be used. Alternatively a pressure range of over −100 mmHg could be used or over −150 mmHg.
The aspiration conduit at its distal end remote from the dressing may be attached to the waste canister at an inlet port or connector. The device containing the means for initiating and sustaining aspiration of the wound/dressing may be situated between the dressing and waste canister, however, in a preferred embodiment of the apparatus embodying the present invention, the device may aspirate the wound/dressing via the canister thus, the waste canister may preferably be sited between the wound/dressing and device.
The aspiration conduit at the waste material canister end may preferably be bonded to the waste canister to prevent inadvertent detachment when being caught on an obstruction, for example.
The canister may be a plastics material moulding or a composite unit comprising a plurality of separate mouldings. The canister may aptly be translucent or transparent in order to visually determine the extent of filling with exudates. However, the canister and device may in some embodiments provide automatic warning of imminent canister full condition and may also provide means for cessation of aspiration when the canister reaches the full condition.
The canister is provided with a filter or filters to prevent the exhaust of liquids and odours therefrom and also to prevent the expulsion of bacteria into the atmosphere. Such filters may comprise a plurality of filters in series. Examples of suitable filters may comprise hydrophobic filters of 0.2 μm pore size, for example, in respect of sealing the canister against bacteria expulsion and 1 μm against liquid expulsion.
Aptly, the filters may be sited at an upper portion of the waste canister in normal use, that is when the apparatus is being used or carried by a patient the filters are in an upper position and separated from the exudate liquid in the waste canister by gravity. Furthermore, such an orientation keeps the waste canister outlet or exhaust exit port remote from the exudate surface.
Aptly the waste canister may be filled with an absorbent gel such as ISOLYSEL (trade mark), for example, as an added safeguard against leakage of the canister when full and being changed and disposed of. Added advantages of a gel matrix within the exudate storing volume of the waste canister are that it prevents excessive movement, such as slopping, of the liquid, minimises bacterial growth and minimises odours.
The waste canister may also be provided with suitable means to prevent leakage thereof both when detached from the device unit and also when the aspiration conduit is detached from the wound site/dressing.
The canister may have suitable means to prevent emptying by a user (without tools or damage to the canister) such that a full or otherwise end-of-life canister may only be disposed of with waste fluid still contained.
The device and waste canister may have mutually complementary means for connecting a device unit to a waste canister whereby the aspiration means in the device unit automatically connects to an evacuation port on the waste canister such that there is a continuous aspiration path from the wound site/dressing to an exhaust port on the device.
Aptly, the exhaust port from the fluid path or at a position in the fluid path through the apparatus is provided with filter means to prevent offensive odours from being ejected into the atmosphere.
In general terms the device unit comprises an aspirant pump; means for monitoring pressure applied by the aspirant pump; a flowmeter to monitor fluid flow through the aspirant pump; a control system which controls the aspirant pump in response to signals from sensors such as the pressure monitoring means and the flowmeter, for example, and which control system also controls a power management system with regard to an on-board battery pack and the charging thereof and lastly a user interface system whereby various functions of the device such as pressure level set point, for example, may be adjusted (including stopping and starting of the apparatus) by a user. The device unit may contain all of the above features within a single unified casing.
In view of the fact that the device unit contains the majority of the intrinsic equipment cost therein ideally it will also be able to survive impact, tolerate cleaning in order to be reusable by other patients.
In one embodiment of the present invention, the aspirant pump may be placed in the fluid flow path after the waste canister exit port intermediate the aspirant pressure monitor and the aspirant flow meter.
The flow meter may be hot wire or pressure differential or any other suitable flow meter known to those skilled in the art.
A software element of the control system uses the aspirant pressure monitor and the aspirant flow meter to determine the status of the waste canister with respect to its degree of filling and need for changing the waste canister for fresh unit. In essence the software queries the pressure monitor and flow meter at regular intervals when the apparatus is in use to determine the pressure being delivered or applied and the flow of exudate from the wound to the waste canister. If the software detects sufficient pressure (being created by the aspirant pump) but detects an inappropriately low flow rate of gaseous aspirant fluid for the detected pressure, the software will classify the condition as being either a blockage in the aspirant conduit, or of the filter at the waste canister exit port or, a full waste canister. Under this condition the software alerts the user by means of an alarm such as a buzzer, a flashing light or a message on the device LCD screen or a combination of some or all of these, for example. The user may then check the waste canister and take the appropriate action.
The alarm system may include at least one of; an audible alarm; a visible alarm; a physically conveyed alarm such as a vibration; and a message alarm on a LCD screen.
Even in the condition where an alarm has been raised, the aspirant pump may still be kept running in order to continue the TNR therapy since the alarm may be caused by energetic movement of the user such as by running, for example and the filter at the exit in the waste canister may be only momentarily or temporarily blocked.
The fluid flow path may be provided with a silencing system to reduce noise generated by the aspirant pump and may also have a filter on an exhaust port to atmosphere, for example. In the embodiment of the present invention described above the silencing system and the exhaust filter may be positioned in the fluid flow path downstream of the pressure monitor, the flow meter and the aspirant pump.
Other embodiments of the apparatus according to the present invention may position the elements of the system in a different order with respect to the flow path. Positional variations starting from the waste canister exit port may include: pressure monitor, aspirant flowmeter, aspirant pump; or, pressure monitor, aspirant pump, silencing system, flow meter, exhaust filter; or, flow meter, pressure monitor, aspirant pump, silencing system, exhaust filter.
In terms of pressure capability the aspiration means may be able to apply a maximum pressure drop of at least −200 mmHg to a wound site/dressing. The apparatus is capable of maintaining a predetermined negative pressure even under conditions where there is a small leak of air into the system and a high exudate flow.
The pressure control system may prevent the minimum pressure achieved from exceeding for example −200 mmHg so as not to cause undue patient discomfort. The pressure required may be set by the user at a number of discreet levels such as −50, −75, −100, −125, −150, −175 mmHg, for example, depending upon the needs of the wound in question and the advice of a clinician. Thus suitable pressure ranges in use may be from −25 to −80 mmHg, or −50 to −76 mmHg, or −50 to −75 mmHg as examples. The control system may also advantageously be able to maintain the set pressure within a tolerance band of +/−10 mmHg of the set point for 95% of the time the apparatus is operating given that leakage and exudation rates are within expected or normal levels.
Aptly, the control system may trigger alarm means such as a flashing light, buzzer or any other suitable means when various abnormal conditions apply such as, for example: pressure outside set value by a large amount due to a gross leak of air into system; duty on the aspiration pump too high due to a relatively smaller leakage of air into the system; pressure differential between wound site and pump is too high due, for example, to a blockage or waste canister full.
The apparatus of the present invention may be provided with a carry case and suitable support means such as a shoulder strap or harness, for example. The carry case may be adapted to conform to the shape of the apparatus comprised in the joined together device and waste canister. In particular, the carry case may be provided with a bottom opening flap to permit the waste canister to be changed without complete removal of the apparatus form the carry case.
The carry case may be provided with an aperture covered by a displaceable flap to enable user access to a keypad for varying the therapy applied by the apparatus.
According to a second aspect of the present invention, there is provided a method for determining a waste canister full condition of apparatus for the topical negative pressure treatment of a wound comprising the steps of: providing an aspirant pump for moving aspirated fluid through said apparatus; providing aspirant conduit means operably connected to a dressing covering a wound being aspirated; providing a waste container operably connected to the aspirant conduit and for receiving wound exudate therein;
providing the waste container with a fluid exit port for the flow of gaseous aspirated fluid therefrom, the exit port having filter means associated therewith for preventing aspirated liquid from passing therethrough; providing a fluid flow path on the exit side of said waste container for the flow of aspirated gaseous fluid therethrough; providing the fluid flow path with a flow meter and a pressure monitor; and a control system for interrogating and interpreting signals from said flow meter and pressure monitor.
According to a third aspect of the present invention there is provided a method for the use of apparatus according to the first aspect for the provision of topical negative pressure therapy to a user.
In order that the present invention may be more fully understood, examples will now be described by way of illustration only with reference to the accompanying drawings, of which:
Referring now to
More particularly, as shown in
According to embodiments of the present invention, actual pressure at a wound site is not measured but the difference between a measured pressure (at the pump) and the wound pressure is minimised by the use of large filters and large bore tubes wherever practical. If the pressure control measures that the pressure at the pump head is greater than a target pressure (closer to atmospheric pressure) for a period of time, the device sends an alarm and displays a message alerting the user to a potential problem such as a leak.
In addition to pressure control a separate flow control system can be provided. A flow meter may be positioned after the pump and is used to detect when a canister is full or the tube has become blocked. If the flow falls below a certain threshold, the device sounds an alarm and displays a message alerting a user to the potential blockage or full canister.
In more detail and referring again particularly to
Where p(set) is a reference pressure for comparison with the p(current) pressure.
Similarly, f(current) is the instantaneous measured flow rate and should be greater than a preset minimum flow rate under the given pressure conditions.
The above sequence of steps is repeated at a frequency of 200 Hz, however, the sensor may be sampled at a higher frequency and the signals averaged.
The control system 60 obtains the current pressure from the pressure monitor 46 and compares the current pressure with a predetermined value stored in the control system memory: if the difference between the two pressure values is less than predetermined limit and, if the flow rate is less than a predetermined minimum value also stored in the control system memory, then the control system will activate one or more of the alarms included in the device.
Referring now to
Referring now to
Gaseous fluid exits from the waste canister 204 via spigot 214 into the gaseous fluid flow path defined in its initial stage to the pump 248 inlet port 410 by conduit 412 attached to the spigot 214. A silencing system is provided between the pump outlet port 414 and the exhaust outlet 408. A first exhaust conduit portion 420 is provided between the pump outlet port 414 and a plenum chamber 404; and, a second exhaust conduit portion 422 between the plenum chamber 404 and the exhaust outlet 408. However, the first exhaust conduit portion 420 is provided with a flow meter 424 intermediate its ends at the pump outlet 414 and an inlet 426 of the plenum chamber 404. A pressure sensing device 440 is connected to the first conduit portion 412 by means of a T-piece 442 and conduit 444. Similarly a pressure relief valve 448 is connected into the first exhaust conduit portion 412 also by a T-piece 450 and conduit 452. The pressure relief valve 448 is a safety device for preventing excessive negative pressures from being applied by the apparatus to the wound of user. The flow meter 424 is provided to fulfil various control functions including determining when the waste canister 204 is full. Since it is necessary that the fluid flow values measured by the flow meter 424 are accurate it is preferably positioned in the first conduit portion 420 rather than the second conduit portion 422 in case the plenum chamber 404 should leak for any reason and cause spurious flow measurements. However, other than this reason, the flow meter 424 could be positioned in the second conduit portion 422. The flow meter 424 and the pressure sensing device 440 are both connected electrically to the control system described hereinabove with reference to
Throughout the description and claims of this specification, the words “comprise” and “contain” and variations of the words, for example “comprising” and “comprises”, means “including but not limited to”, and is not intended to (and does not) exclude other moieties, additives, components, integers or steps.
Throughout the description and claims of this specification, the singular encompasses the plural unless the context otherwise requires. In particular, where the indefinite article is used, the specification is to be understood as contemplating plurality as well as singularity, unless the context requires otherwise.
Features, integers, characteristics, compounds, chemical moieties or groups described in conjunction with a particular aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith.
Number | Date | Country | Kind |
---|---|---|---|
0712736.8 | Jul 2007 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2008/050507 | 6/27/2008 | WO | 00 | 12/29/2009 |