1. Field of the Invention
The present disclosure relates generally to healing of wounds and wound-treatment therapies. More particularly, but not by way of limitation, the present disclosure relates to fluid-instillation and negative-pressure wound therapies.
2. Background Information
Clinical studies and practice have shown that providing a reduced pressure in proximity to a tissue site augments and accelerates the growth of new tissue at the tissue site. The applications of this phenomenon are numerous, but application of reduced pressure has been particularly successful in treating wounds. This treatment (frequently referred to in the medical community as “negative pressure wound therapy,” “reduced pressure therapy,” or “vacuum therapy”) provides a number of benefits, including faster healing and increased formulation of granulation tissue. Typically, reduced pressure is applied to tissue through a wound insert (e.g., a porous pad or other manifold device). The wound insert typically contains cells or pores that are capable of distributing reduced pressure to the tissue and channeling fluids that are drawn from the tissue. The wound insert can be incorporated into a wound dressing having other components that facilitate treatment, such as, for example, a drape (e.g., adhesive surgical drape).
The present disclosure includes embodiments of pump cassettes, wound-treatment apparatuses, and methods.
Some embodiments of the present pump cassette for use with a wound treatment apparatus, comprise: a pump body having a pump chamber, an inlet valve in fluid communication with the pump chamber, and an outlet valve in fluid communication with the pump chamber; a diaphragm coupled to the pump body such that the diaphragm is movable to vary a volume in the pump chamber; and an identifier configured to store one or more properties of the pump cassette such that the identifier is readable by an automated reader to determine the one or more properties; where the pump cassette is configured to be removably coupled to a wound-treatment apparatus having an actuator such that the actuator can be activated to move the diaphragm. In some embodiments, the identifier comprises a radio-frequency identification (RFID) tag. In some embodiments, the identifier comprises a barcode. In some embodiments, the identifier comprises a magnetic stripe. In some embodiments, the one or more properties include one or more of: the diameter of the diaphragm, the area of the diaphragm, the stroke of the diaphragm, the change in volume in the pump chamber caused by a stroke of the diaphragm, and a code indicative of one or more properties of the pump cassette. In some embodiments, the inlet valve and outlet valve each comprises a ball valve. In some embodiments, the inlet valve and outlet valve each comprises a duckbill valve. In some embodiments, the inlet valve and outlet valve each comprises an umbrella valve.
Some embodiments further comprise: a conduit having a first end coupled to the inlet valve of the pump body, and a second end configured to be coupled to a fluid container. Some embodiments, further comprise: a fluid container coupled to the second end of the conduit such that the fluid container is in fluid communication with the inlet valve of the pump body; and a fluid disposed in the fluid container. In some embodiments, the one or more properties include the identity of the fluid disposed in the fluid container. Some embodiments further comprise: a support device coupled to the pump body and including a receptacle configured to receive a fluid container.
Some embodiments of the present wound-treatment apparatuses comprise: a housing configured to be coupled to a pump cassette; a vacuum source coupled to the housing and configured to be coupled to a wound dressing such that the vacuum source can be activated to apply negative pressure to a wound through the wound dressing; an actuator coupled to the housing; and an automated reader configured to read an identifier of a pump cassette coupled of the housing to determine one or more properties of the pump cassette; where the wound-treatment apparatus is configured such that if an embodiment of the present pump cassettes is coupled to the housing, the automated reader can read the identifier of the pump cassette to determine one or more properties of the pump cassette, and the actuator can be activated to move the diaphragm.
In some embodiments, the housing is configured to be coupled to one or more of the present pump cassettes, and the wound-treatment apparatus comprises: a plurality of actuators coupled to the housing; where the wound-treatment apparatus is configured such that if one or more pump cassettes, each having at least one pump chamber and at least one diaphragm configured to be movable to vary a volume in a pump chamber, are coupled to the housing, the plurality of actuators can be activated to move the diaphragms. Some embodiments further comprise: a controller coupled to the actuators and configured to activate the actuators. In some embodiments, the controller is configured to activate the actuators simultaneously. In some embodiments, the controller is configured to activate the actuators sequentially. Some embodiments further comprise: a plurality of automated readers each configured to read an identifier of the one or more pump cassettes to determine one or more properties of the one or more pump cassettes; where the wound-treatment apparatus is configured such that if one or more pump cassettes each having an identifier are coupled to the housing, the one or more automated readers can read the identifiers to determine the one or more properties. Some embodiments further comprise: one or more pump cassettes of claim 1 each having a plurality of pump chambers and a plurality of diaphragms configured to be movable to vary a volume in each of the plurality of pump chambers. In some embodiments, at least one of the plurality of diaphragms is a different size than at least one other of the plurality of diaphragms. In some embodiments, the plurality of pump cassettes are coupled to the housing. Some embodiments further comprise: a fluid container. In some embodiments, the input valve of each of the plurality of pump cassettes is coupled to the fluid container. Some embodiments further comprise: a vacuum source coupled to the housing and configured to be coupled to a wound dressing such that the vacuum source can be activated to apply negative pressure to a wound through the wound dressing.
Some embodiments of the present wound-treatment apparatuses, comprise: housing configured to be coupled to a pump cassette comprising: a pump body having a pump chamber, inlet valve in fluid communication with the pump chamber, and an outlet valve in fluid communication with the pump chamber; and a diaphragm coupled to the pump body such that the diaphragm is movable to vary a volume in the pump chamber; a vacuum source coupled to the housing and configured to be coupled to a wound dressing such that the vacuum source can be activated to apply negative pressure to a wound through the wound dressing; and an actuator coupled to the housing; where the wound-treatment apparatus is configured such that if the pump cassette is coupled to the housing the actuator can be activated to move the diaphragm.
Some embodiments of the present wound-treatment apparatuses comprise: a vacuum source configured to be coupled to a wound dressing such that the vacuum source can be activated to apply negative pressure to a wound through the wound dressing; an actuator for moving a diaphragm of a pump cassette coupled to the housing; and an automated reader configured to read an identifier of a pump cassette coupled to the housing to determine one or more properties of the pump cassette. Some embodiments further comprise: a plurality of actuators, each for moving a diaphragm of a pump cassette coupled to the housing. In some embodiments, the apparatus is configured to be coupled to a plurality of pump cassettes. In some embodiments, the apparatus is configured to actuate the actuators simultaneously. In some embodiments, the apparatus is configured to actuate the actuators sequentially. Some embodiments further comprise: a plurality of automated readers, each reader configured to read an identifier of a pump cassette coupled to the housing. In some embodiments, the apparatus is coupled to one of the present pump cassettes. In some embodiments, the apparatus is coupled to a plurality of the present pump cassettes.
Some embodiments of the present methods comprise: coupling a wound dressing to a wound-treatment apparatus that comprises; a housing configured to be coupled to a pump cassette comprising: a pump body having a pump chamber, inlet valve in fluid communication with the pump chamber, and an outlet valve in fluid communication with the pump chamber; and a diaphragm coupled to the pump body such that the diaphragm is movable to vary a volume in the pump chamber; a vacuum source coupled to the housing and configured to be activated to apply negative pressure to a wound through the wound dressing; and an actuator coupled to the housing. Some embodiments further comprise: coupling a pump cassette to the housing of the wound treatment apparatus such that actuator can be activated to move the diaphragm and such that the outlet valve is in fluid communication with the wound dressing. Some embodiments further comprise: activating the actuator to move the diaphragm such that fluid is delivered to the wound dressing. In some embodiments, coupling a pump cassette is performed prior to coupling a wound dressing. Some embodiments further comprise: activating the vacuum source such that negative pressure is applied to the wound dressing.
Any embodiment of any of the present systems and/or methods can consist of or consist essentially of—rather than comprise/include/contain/have—any of the described steps, elements, and/or features. Thus, in any of the claims, the term “consisting of” or “consisting essentially of” can be substituted for any of the open-ended linking verbs recited above, in order to change the scope of a given claim from what it would otherwise be using the open-ended linking verb.
Details associated with the embodiments described above and others are presented below.
The following drawings illustrate by way of example and not limitation. For the sake of brevity and clarity, every feature of a given structure is not always labeled in every figure in which that structure appears. Identical reference numbers do not necessarily indicate an identical structure. Rather, the same reference number may be used to indicate a similar feature or a feature with similar functionality, as may non-identical reference numbers.
The term “coupled” is defined as connected, although not necessarily directly, and not necessarily mechanically; two items that are “coupled” may be integral with each other. The terms “a” and “an” are defined as one or more unless this disclosure explicitly requires otherwise. The terms “substantially,” “approximately,” and “about” are defined as largely but not necessarily wholly what is specified, as understood by a person of ordinary skill in the art.
The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “include” (and any form of include, such as “includes” and “including”) and “contain” (and any form of contain, such as “contains” and “containing”) are open-ended linking verbs. As a result, a method that “comprises,” “has,” “includes” or “contains” one or more steps possesses those one or more steps, but is not limited to possessing only those one or more steps. Likewise, a wound dressing that “comprises,” “has,” “includes” or “contains” one or more elements possesses those one or more elements, but is not limited to possessing only those elements. For example, in a wound dressing that comprises a wound insert and a drape, the wound dressing includes the specified elements but is not limited to having only those elements. For example, such a wound dressing could also include a connection pad configured to be coupled to a wound-treatment apparatus.
Further, a device or structure that is configured in a certain way is configured in at least that way, but it can also be configured in other ways than those specifically described.
Referring now to the drawings, and more particularly to
Apparatus 14 can comprise, for example, a vacuum source configured to be actuatable (and/or actuated) to apply negative pressure (e.g., via conduit 22) to wound dressing 18, a fluid (e.g., liquid or foamed fluid) source configured to be actuatable (and/or actuated) to deliver (e.g., via conduit 22) a fluid (e.g., an instillation fluid such as a medicinal liquid, antibacterial liquid, irrigation liquid, foamed fluid, and/or the like) to wound dressing 18. System 10 can be implemented and/or actuated and/or coupled to patient 30 in any of various configurations and/or methods similar to those described in the prior art. For example, various wound therapy systems and components are commercially available through and/or from KCI USA, Inc. of San Antonio, Tex., U.S.A., and/or its subsidiary and related companies (collectively, “KCI”).
Conduit 22 can comprise a single lumen conduit (e.g., switched between a vacuum source and/or a fluid source and apparatus 14), or can comprise multiple single-lumen conduits or a multi-lumen conduit such that, for example, fluid can be delivered and/or negative pressure can be applied to wound dressing 18 individually and/or simultaneously. Additionally, conduit 22 can comprise, for example, multiple lumens (e.g., as in a single conduit with a central lumen for application of negative pressure and/or fluid delivery and one or more peripheral lumens adjacent to or around the central lumen, such that the peripheral lumens can be coupled to a pressure sensor to sense a pressure or negative pressure between drape 38 and surface 42 (e.g. in space 50)). In the embodiment shown, system 10 further comprises a wound dressing connection pad 54 configured to be coupled (and is shown coupled) to conduit 22. One example of a suitable connection pad 54 is the “V.A.C. T.R.A.C.® Pad,” commercially available from KCI. Another example of a connection pad 54 is disclosed in U.S. patent application Ser. No. 11/702,822, published as Pub. No. US 2007/0219512 A1. One example of a suitable drape 38 includes the “V.A.C.® Drape” commercially available from KCI.
Some embodiments of the present wound-treatment apparatuses and methods may be better understood with reference to
In the embodiment shown, apparatus 14 further comprises a pressure release valve 136 coupled to conduit 132. Further, in the embodiment shown, canister 104 and vacuum source 100 are coupled to wound dressing 18 by way of a conduit 140. More particularly, conduit 140 couples canister 104 to wound dressing 18. In the embodiment shown, canister 104 comprises a filter 144 at or near an outlet of canister 104 to prevent liquid or solid particles from entering conduit 108. Filter 144 can comprise, for example, a bacterial filter that is hydrophobic and/or lipophilic such that aqueous and/or oily liquids will bead on the surface of the filter. Apparatus 14 can be configured such that during operation of vacuum source 100 will provide sufficient airflow through a filter 144 that the pressure drop across filter 144 is not substantial (e.g., such that the pressure drop will not substantially interfere with the application of negative pressure to wound dressing 18 from vacuum source 100).
In various embodiments, such as the one shown in
Apparatus 14 can also be configured to apply intermittent negative (or subatmospheric) pressure to the wound site, and/or such that pressure relief valve 136 enables pressure at the wound site to be brought to atmospheric pressure rapidly. Thus, if apparatus 14 is programmed, for example, to relieve pressure at ten-minute intervals, at these intervals pressure relief valve 136 can open for a specified period, allow the pressure to equalize at the wound site, and then close to restore the negative pressure. It will be appreciated that when constant negative pressure is being applied to the wound site, valve 136 remains closed to prevent leakage to or from the atmosphere. In this state, it is possible to maintain negative pressure at the wound site without running and/or operating pump 100 continuously, but only from time to time or periodically, to maintain a desired level of negative pressure (i.e. a desired pressure below atmospheric pressure), which is sensed by transducer 116. This saves power and enables the appliance to operate for long periods on its battery power supply.
In the embodiment shown, apparatus 14 further comprises a fluid source 200 coupled to wound dressing 18 by way of a conduit 204 such that such that fluid source 200 is actuatable to deliver a fluid to wound dressing 18 (e.g., to the wound through the wound dressing). Fluid source 200 can be any suitable mechanism capable of delivering fluid, such as, for example, a syringe, a fluid pump, and/or the like.
In some embodiments, pumping cavity 258 is shaped such that when diaphragm 270 (e.g., end 308) is fully extended (diaphragm 270 and end 308 are as close as possible to valves 262 and 266), the circumference about exit valve 266 is sealed by the diaphragm, such that if negative pressure is applied to the wound dressing, negative pressure is substantially prevented (e.g., by diaphragm 270 and inlet valve 266) from being transferred through the pump chamber (which might otherwise draw fluids from the fluid container to the wound and/or collection canister).
In the embodiment shown, pump cassette 250 also comprises an identifier 312 configured to store one or more properties of the pump cassette such that the identifier is readable by an automated reader to determine the one or more properties. In the embodiment shown, apparatus 14a further comprises an automated reader 316 configured to read identifier 312 of the pump cassette to determine the one or more properties (stored on or readable from the identifier). Apparatus 14a can also be configured such that if pump cassette 250 is coupled to housing 300 (as shown in
In some embodiments, pump cassette 250 comprises a conduit 320 having a first end 324 coupled to inlet valve 262 of pump body 254, and a second end 328 configured to be coupled to a fluid container 332 (e.g., via spike 336). In some embodiments, pump cassette 250 comprises: fluid container 332 coupled to second end 328 of conduit 320 (e.g., via spike 336) such that fluid container 332 is in fluid communication with inlet valve 262 of pump body 254; and a fluid disposed in fluid container 332. The fluid in fluid container 332 can comprise any suitable fluid or component, such as, for example, saline, debridement agent, and/or antibiotic. In embodiments in which pump cassette 250 comprises fluid container 332, the one or more properties (stored on or readable from identifier 312), can include the identity of the fluid disposed in fluid container 332. In some embodiments, pump cassette 250 also comprises a support device 340 (e.g., coupled to pump body 254) that includes a receptacle 344 configured to receive a fluid container (e.g., fluid container 332).
In some embodiments, the pump cassette is disposable, such that it can be replaced periodically by a user, and/or can be included in the present kits that can comprise one or pump cassettes, a wound dressing (e.g., 18), a fluid container (e.g., 332), a fluid disposed in the fluid container, and/or a conduit for coupling the wound dressing to the pump cassette and/or a wound treatment apparatus (e.g., 14, 14a). Disposable pump cassettes can increase the service life of the apparatus because the high-wear components of the pump (e.g., the diaphragm, etc.) are in the disposable pump cassette that is easily replaceable. Additionally, disposable pump cassettes can improve cleanliness and reduce risks of infections and/or cross-contamination because the fluids can be retained in the pump cassette without transfer to the remainder of the apparatus.
In some embodiments, apparatus 14a comprises a vacuum source (e.g., 100) coupled to housing 300 and configured to be coupled to a wound dressing (e.g., 18) such that the vacuum source can be activated to apply negative pressure to a wound (e.g., 26) through the wound dressing.
In the embodiment shown, fluid container 332 is coupled in parallel to inlet valves 262a, 262b, 262c of each of the pump chambers, and outlet ports 266a, 266b, 266c are coupled in parallel to wound dressing 18. In some embodiments, apparatus 14b comprises a controller (not shown) coupled to actuators 304a, 304b, 304c and configured to activate the actuators. In some embodiments, the controller is configured to activate actuators 304a, 304b, 304c simultaneously. In some embodiments, the controller is configured to activate actuators 304a, 304b, 304c sequentially (e.g., 304a-304b-304c, 304a-304b-304c) such as, for example, to minimize fluctuations perceivable at wound dressing 18. Sequential activation can reduce pump ripple, and/or increase flow. In some embodiments, sequential activation can deliver very high, flow-rates of fluid, and, by changing the selected actuators, deliver a very accurate final dose.
In some embodiments, apparatus 14b comprises: one or more automated readers (e.g., 312) configured to read an identifier (e.g., 316) of the one or more pump cassettes (e.g., 250, 250a) to determine the one or more properties of the one or more pump cassettes, and apparatus 14b is configured such that if one or more pump cassettes (e.g., 250, 250a) having an identifier (e.g., 312) are coupled to the housing, the one or more automated readers can read the identifier to determine the one or more properties. In some embodiments, apparatus 14b comprises a one or more pump cassettes (e.g., 250, 250a) having a plurality of pump chambers (e.g., 258) and a plurality of diaphragms (e.g., 270a, 270b, 270c) configured to be movable to vary a volume in each of the plurality of pump chambers. In some embodiments, the one or more pump cassettes are coupled to housing 300a. In the some embodiments, the plurality of diaphragms are the same size. In the embodiment shown, at least one of the plurality of diaphragms is a different size than at least one other of the plurality of diaphragms. For example, in the embodiment shown diaphragm 270c is larger than diaphragm 270b, and diaphragm 270b is larger than diaphragm 270a.
Some embodiments of the present methods comprise: coupling a wound dressing (e.g., 18) to a wound-treatment apparatus (e.g., 14a). In some embodiments, the wound-treatment apparatus comprises; a housing (e.g., 300) configured to be coupled to a pump cassette (e.g., 250); a vacuum source (e.g., 100) coupled to the housing and configured to be activated to apply negative pressure to a wound through the wound dressing; and an actuator (e.g., 304) coupled to the housing. Some embodiments of the present methods comprise: coupling a pump cassette (e.g., 250) to the housing of the wound treatment apparatus such that actuator can be activated to move the diaphragm (e.g., 270) and such that the outlet valve (e.g., 266) is in fluid communication with the wound dressing; and/or activating the actuator to move the diaphragm such that fluid is delivered to the wound dressing. In some embodiments, coupling a pump cassette is performed prior to coupling a wound dressing. Some embodiments comprise: activating the vacuum source such that negative pressure is applied to the wound dressing. Embodiments of the present wound-treatment methods can comprise embodiments of the present apparatuses (e.g., 14, 14a, 14b) and/or pump cassettes (e.g., 250, 250a).
The various illustrative embodiments of devices, systems, and methods described herein are not intended to be limited to the particular forms disclosed. Rather, they include all modifications and alternatives falling within the scope of the claims.
The claims are not intended to include, and should not be interpreted to include, means-plus- or step-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase(s) “means for” or “step for,” respectively.
It will be understood that the benefits and advantages described above may relate to one embodiment or may relate to several embodiments. It will further be understood that reference to ‘an’ item refers to one or more of those items, unless otherwise specified.
The steps of the methods described herein may be carried out in any suitable order, or simultaneously where appropriate.
Where appropriate, aspects of any of the examples described above may be combined with aspects of any of the other examples described to form further examples having comparable or different properties and addressing the same or different problems.
It will be understood that the above description of preferred embodiments is given by way of example only and that various modifications may be made by those skilled in the art. The above specification, examples and data provide a complete description of the structure and use of exemplary embodiments. Although various embodiments have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the scope of this invention.
This application is a continuation of U.S. patent application Ser. No. 13/015,175, filed Jan. 27, 2011, which claims priority to U.S. Provisional Patent Application No. 61/299,787, filed Jan. 29, 2010, which is incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1355846 | Rannells | Oct 1920 | A |
2547758 | Keeling | Apr 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans et al. | Jul 1954 | A |
2910763 | Lauterbach | Nov 1959 | A |
2969057 | Simmons | Jan 1961 | A |
3066672 | Crosby, Jr. et al. | Dec 1962 | A |
3367332 | Groves | Feb 1968 | A |
3520300 | Flower, Jr. | Jul 1970 | A |
3568675 | Harvey | Mar 1971 | A |
3648692 | Wheeler | Mar 1972 | A |
3682180 | McFarlane | Aug 1972 | A |
3826254 | Mellor | Jul 1974 | A |
4080970 | Miller | Mar 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4139004 | Gonzalez, Jr. | Feb 1979 | A |
4165748 | Johnson | Aug 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4233969 | Lock et al. | Nov 1980 | A |
4245630 | Lloyd et al. | Jan 1981 | A |
4256109 | Nichols | Mar 1981 | A |
4261363 | Russo | Apr 1981 | A |
4275721 | Olson | Jun 1981 | A |
4284079 | Adair | Aug 1981 | A |
4297995 | Golub | Nov 1981 | A |
4333468 | Geist | Jun 1982 | A |
4373519 | Errede et al. | Feb 1983 | A |
4382441 | Svedman | May 1983 | A |
4392853 | Muto | Jul 1983 | A |
4392858 | George et al. | Jul 1983 | A |
4419097 | Rowland | Dec 1983 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4475909 | Eisenberg | Oct 1984 | A |
4480638 | Schmid | Nov 1984 | A |
4525166 | Leclerc | Jun 1985 | A |
4525374 | Vaillancourt | Jun 1985 | A |
4540412 | Van Overloop | Sep 1985 | A |
4543100 | Brodsky | Sep 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4551139 | Plaas et al. | Nov 1985 | A |
4569348 | Hasslinger | Feb 1986 | A |
4605399 | Weston et al. | Aug 1986 | A |
4608041 | Nielsen | Aug 1986 | A |
4640688 | Hauser | Feb 1987 | A |
4655754 | Richmond et al. | Apr 1987 | A |
4664662 | Webster | May 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4733659 | Edenbaum et al. | Mar 1988 | A |
4743232 | Kruger | May 1988 | A |
4758220 | Sundblom et al. | Jul 1988 | A |
4787888 | Fox | Nov 1988 | A |
4826494 | Richmond et al. | May 1989 | A |
4838883 | Matsuura | Jun 1989 | A |
4840187 | Brazier | Jun 1989 | A |
4863449 | Therriault et al. | Sep 1989 | A |
4872450 | Austad | Oct 1989 | A |
4878901 | Sachse | Nov 1989 | A |
4897081 | Poirier et al. | Jan 1990 | A |
4906233 | Moriuchi et al. | Mar 1990 | A |
4906240 | Reed et al. | Mar 1990 | A |
4919654 | Kalt et al. | Apr 1990 | A |
4941882 | Ward et al. | Jul 1990 | A |
4953565 | Tachibana et al. | Sep 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4985019 | Michelson | Jan 1991 | A |
5037397 | Kalt et al. | Aug 1991 | A |
5086170 | Luheshi et al. | Feb 1992 | A |
5092858 | Benson et al. | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5134994 | Say | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5215522 | Page et al. | Jun 1993 | A |
5232453 | Plass et al. | Aug 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5278100 | Doan et al. | Jan 1994 | A |
5279550 | Habib et al. | Jan 1994 | A |
5298015 | Komatsuzaki et al. | Mar 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5344415 | DeBusk et al. | Sep 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5431627 | Pastrone et al. | Jul 1995 | A |
5437622 | Carion | Aug 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5527293 | Zamierowski | Jun 1996 | A |
5549584 | Gross | Aug 1996 | A |
5556375 | Ewall | Sep 1996 | A |
5607388 | Ewall | Mar 1997 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
6071267 | Zamierowski | Jun 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
6241747 | Ruff | Jun 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6493568 | Bell et al. | Dec 2002 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6814079 | Heaton et al. | Nov 2004 | B2 |
20020077661 | Saadat | Jun 2002 | A1 |
20020115951 | Norstrem et al. | Aug 2002 | A1 |
20020120185 | Johnson | Aug 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20070179460 | Adahan | Aug 2007 | A1 |
20070213684 | Hickle et al. | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
550575 | Mar 1986 | AU |
745271 | Apr 1999 | AU |
755496 | Feb 2002 | AU |
2005436 | Jun 1990 | CA |
26 40 413 | Mar 1978 | DE |
43 06 478 | Sep 1994 | DE |
295 04 378 | Oct 1995 | DE |
0100148 | Feb 1984 | EP |
0117632 | Sep 1984 | EP |
0161865 | Nov 1985 | EP |
0358302 | Mar 1990 | EP |
1018967 | Aug 2004 | EP |
692578 | Jun 1953 | GB |
2 195 255 | Apr 1988 | GB |
2 197 789 | Jun 1988 | GB |
2 220 357 | Jan 1990 | GB |
2 235 877 | Mar 1991 | GB |
2 329 127 | Mar 1999 | GB |
2 333 965 | Aug 1999 | GB |
4129536 | Apr 1992 | JP |
71559 | Apr 2002 | SG |
8002182 | Oct 1980 | WO |
8704626 | Aug 1987 | WO |
9010424 | Sep 1990 | WO |
9309727 | May 1993 | WO |
9420041 | Sep 1994 | WO |
9605873 | Feb 1996 | WO |
9718007 | May 1997 | WO |
9913793 | Mar 1999 | WO |
Entry |
---|
N.A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of the Soft Tissues,” Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986);pp. 94-96 (certified translation). |
Louis C. Argenta, MD and Michael J. Morykwas, PhD; “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies & Basic Foundation”; Annals of Plastic Surgery, vol. 38, No. 6, Jun. 1997; pp. 553-562. |
Susan Mendez-Eastmen, RN; “When Wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24. |
James H. Blackburn, II, MD, et al; “Negative-Pressure Dressings as a Bolster for Skin Grafts”; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457. |
John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letters to the Editor, British Journal of Plastic Surgery, 1998, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK. |
S.E. Greer, et al “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin” British Journal of Plastic Surgery (2000), vol. 53, pp. 484-487. |
George V. Letsou, MD., et al; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, vol. 31, 1990, pp. 634-639. |
Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80. |
International Search Report for PCT International Application PCT/GB95/01983; Nov. 23, 1995. |
PCT International Search Report for PCT International Application PCT/GB98/02713; Jan. 8, 1999. |
PCT Written Opinion; PCT International Application PCT/GB98/02713; Jun. 8, 1999. |
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; Jan. 15, 1998 & Apr. 29, 1997. |
PCT Written Opinion, PCT International Application PCT/GB96/02802; Sep. 3, 1997. |
Dattilo, Philip P., Jr., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5. |
Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof. |
Davydov, Yu. A., et al; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof. |
Yusupov. Yu. N., et al; “Active Wound Drainage”, Vestnik Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof. |
Davydov, Yu. A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirurgi, Oct. 1988, pp. 48-52, and 8 page English translation thereof. |
Davydov, Yu. A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof. |
Chariker, Mark E., M.D., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63. |
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24. |
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, p. 1. |
Svedman, P.: “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534. |
Chinn, Steven D. et al.: “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81. |
Arnljots, Björn et al.: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., vol. 19, 1985, pp. 211-213. |
Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221. |
Svedman, P. et al.: “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous or Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133. |
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246. |
G. {hacek over (Z)}ivadinovic, V. ukić, {hacek over (Z)}. Maksimović, . Radak, and P. Pe{hacek over (s)}ka, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (certified translation). |
F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585. |
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (certified translation). |
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370. |
D.E. Tribble, “An Improved Sump Drain-Irrigation Device of Simple Construction,” Archives of Surgery 105 (1972) pp. 511-513. |
C.E. Tennant, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax,” Journal of the American Medical Association 64 (1915), pp. 1548-1549. |
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211. |
V.A. Solovev et al., Guidelines, The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”). |
V.A. Kuznetsov & N.A. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”). |
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”). |
V.A.C.® Therapy Clinical Guidelines: A Reference Source for Clinicians (Jul. 2007). |
Number | Date | Country | |
---|---|---|---|
20130245580 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
61299787 | Jan 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13015175 | Jan 2011 | US |
Child | 13790933 | US |