Wound vacuum therapy dressing kit

Abstract
A wound vacuum therapy dressing kit is provided for use with a wound drainage system having a vacuum source. The kit may include a wound dressing member, a sealing film, and a wound measurement device. The wound dressing member may include a wound contacting surface configured to be in contact with and generally conform to a wound surface of a patient. The member may be adapted to be coupled to the vacuum source for communicating suction from the vacuum source to the wound surface. The sealing film of the kit may be provided for placement over the member and may be configured to adhere to a patient's healthy skin surrounding the wound. The wound measurement device may include a transparent top portion and a transparent bottom portion configured for placement adjacent the wound surface. The top portion may include a drawing surface and a grid associated with the drawing surface.
Description
BACKGROUND OF THE INVENTION

The present invention relates to wound dressing kits, and particularly to the provision of kits for use with wound vacuum systems.


The prior art contemplates kits for wound medical treatment, such as first aid kits, for example. Such kits usually include bandages for treating wounds, gauze, scissors, and/or medical tape. Conventional kits, however, are not equipped with specialized devices for treating chronic open wounds, such as decubitus ulcers.


SUMMARY OF THE INVENTION

The present invention comprises one or more of the following features discussed below, or combinations thereof:


A wound vacuum therapy dressing kit is provided for use with a wound drainage system. The contents of the kit are provided to aid a caregiver when installing or changing the vacuum bandage. The kit may include a wound dressing member having a wound contacting surface that may be configured to be in contact with and generally conform to the wound surface. The member may further include a plurality of discrete holes formed in the wound contacting surface and a port configured for communication with the vacuum source. The member may further include a passageway between each hole and the port. The kit may further include various components or accessory items that are used in conjunction with the wound dressing member.


An illustrative kit may include a sealing film for placement over the member. The sealing film may adhere to a patient's healthy skin surrounding the wound. The illustrative kit may also include a wound measurement device for measuring and recording the size of the wound at the time the caregiver changes the vacuum bandage. The wound measurement device may include a transparent top portion and a transparent bottom portion removably coupled to the top portion. The bottom portion may be placed adjacent the wound surface and the top portion may be folded for placement adjacent the bottom portion. The top portion may include a drawing surface and a grid coupled to the drawing surface on which the caregiver may draw or trace the size of the wound for keeping with the patient's records, for example.


A kit in accordance with this disclosure may further include a tube guide that may be coupled to the healthy skin surrounding the patient's wound. The tube guide may have an aperture for receiving and positioning a vacuum tube coupled to the member and to a vacuum source. The tube guide may include a curved upper surface for contact with the sealing film. When the bandage is assembled, the film may be draped over the upper surface of the tube guide to couple with the upper surface of the tube guide and effect a seal around the tube guide. The tube guide may further include a flat bottom surface and an adhesive layer coupled to the bottom surface. The adhesive layer may couple the bottom surface of the guide to the patient's healthy skin surrounding the wound.


The guide may further include an opening through a side wall into the aperture, which opening may be defined by confronting first and second surfaces. The opening of the guide may be in communication with the aperture. The first surface and the second surface may be generally parallel to each other and may be inclined with respect to the bottom surface. The tube may be placed within the aperture by moving the first surface and second surface away from each other and passing the tube through the opening for placement within the aperture. The sealing film draped over the guide may effectively cause the first surface to abut the second surface thus sealing the opening.


The kit may further include a patch sheet. The patch sheet may include a first layer and a second layer releasably coupled to the first layer. The second layer may include an adhesive and may be die cut to form circular patches and rectangular strips. The patches and strips may be used with the sealing film to repair and seal any leaks, tears, or holes, for example, to provide a sealed environment about the wound and create a vacuum space above the wound.


It will be appreciated that the kit may also include a variety of components such as those shown and described in the disclosures of the patent applications, patent publications, and issued patents incorporated by reference herein including vents, venting lines, valves, stopcocks, multi-lumen tubes and tubing sets, wound inserts, wound packing, and external catheter access collars, for example.


Features of the disclosure will become apparent to those skilled in the art upon consideration of the following detailed description of the preferred embodiments exemplifying the best mode of carrying out the disclosure as presently perceived.





BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description particularly refers to the accompanying figures in which:



FIG. 1 is a part perspective, part diagrammatic view of a wound care bandage showing the wound care bandage located on the leg of a patient and coupled to both a vacuum source and an irrigation source through the use of a switch valve;



FIG. 2 is an exploded perspective view of the wound care bandage positioned above a wound bed showing a wound contacting layer and a cover of the bandage which cooperate to form a wound dressing member for placement within the wound bed, and also showing a sealing film to cover the member and seal about the wound;



FIG. 3 is a bottom perspective view of a portion of the member provided in a wound vacuum therapy dressing kit in accordance with this disclosure showing a smooth wound contacting surface of the member and also showing the transparent nature of the member;



FIG. 4 is a perspective view showing components of one example of a kit including a pair of pre-packaged gloves, scissors, two cotton-tipped applicators, a wound measurement device, pre-packaged gauze, hypo-allergenic tape, a skin protectant, a sealing film, and the thin, flexible wound dressing member of FIGS. 1-3;



FIG. 5 is a top plan view of the wound measurement device;



FIG. 6 is a sectional view of the wound measurement device of the kit showing the wound measurement device adjacent a wound for measuring the size of the wound by tracing an outline of the wound onto the device;



FIG. 7 is a top plan view of a patch sheet of the kit showing an adhesive layer of the sheet that is die-cut into rectangular strips and circular patches to be used to repair any leaks that occur during the course of treatment;



FIG. 8 is a side elevation view of the patch sheet of FIG. 7;



FIG. 9 is a side elevation view of the sealing film of the kit showing the sealing film including an adhesive backing for covering the wound and showing the film including release liners which are progressively removable to expose the adhesive;



FIG. 10 is a perspective view of a tube guide which is included in some kits and which is configured for adhering to the healthy skin of the patient surrounding the wound and showing the tube guide having an opening that receives a tube which extends between the wound dressing member and the vacuum and/or irrigation source;



FIG. 11 is a front elevation view of the tube guide shown in FIG. 10; and



FIG. 12 is a perspective view of the bandage within the wound bed of a patient and showing the tube guide of FIGS. 10 and 11 coupled to the patient's healthy skin adjacent the wound and receiving the tube therethrough.





DETAILED DESCRIPTION OF THE DRAWINGS

A wound vacuum therapy dressing kit 10 is provided for applying or changing a vacuum dressing or bandage 11 that is used for treatment of a chronic open wound 12 having a wound surface 14, such as that shown in FIGS. 2 and 6, for example. Generally, bandage 11 includes a wound dressing member 19 that is placed on the wound surface 14 and a sealing film 22 to cover the member 19 and seal about the wound 12 to create a vacuum space above the wound 12. Member 19 is configured for communication with a vacuum source 16 and optionally an irrigation source 18, as shown in FIG. 1. The bandage 11 and vacuum source 16 make up a wound drainage system. It is also within this disclosure to include a wound drainage system having irrigation source 18, although irrigation source 18 is not required.


Bandage 11 promotes the healing of wound 12 by providing vacuum therapy to wound 12 to promote blood flow and remove exudate from wound surface 14 and by providing for irrigation of the wound with fluids such as saline, for example. An illustrative wound treatment apparatus having a wound temperature control system, a medicine delivery system, and a drainage system is disclosed in U.S. Pat. No. 6,458,109. An illustrative vacuum and irrigation system is disclosed in U.S. Patent Publication No. US 2002/0161317 A1. Additionally, an illustrative vacuum bandage is disclosed in U.S. Pat. No. 6,685,681. Alternative vacuum bandages are disclosed in U.S. Patent Publication No. US 2002/0082567 A1. Further, a vacuum bandage system including a controller of the system is disclosed in U.S. Patent Application Publication No. US 2002-0198504A1, titled WOUND TREATMENT APPARATUS and in U.S. Patent Application Publication No. US 2002-0198503 A1,titled WOUND TREATMENT APPARATUS. All of these publications and patents are hereby incorporated herein by reference.


Optionally, a packing material such as gauze 20 shown in FIG. 4, for example, is provided for placement over the member 19 and under film 22. It will be appreciated, however, that some caregivers may choose to leave the gauze 20 out of the bandage 11 and place the sealing film 22 directly over and in direct contact with member 19 to seal to the patient's healthy skin 62 surrounding the wound 12. Further, it will be appreciated that gauze 20 may be used to serve functions other than packing. For example, gauze 20 may be used to absorb excess liquid from the wound surface 14 prior to placing member 19 onto wound surface 14. It will be appreciated that a variety of other materials may be used as packing.


Vacuum bandages 11 are changed from time to time by caregivers. For example, as a patient's wound heals and becomes smaller, one bandage 11 is removed and a new, smaller bandage 11 is applied. Wound vacuum therapy dressing changes often require many medical supplies that a caregiver has conventionally sourced separately. Kit 10 contains all, or substantially all, of the necessary supplies or accessory items for applying or changing a vacuum wound therapy bandage in one package, thus relieving the caregiver of the time and expense associated with ordering, stocking, and locating each of these items separately. Thus, kit 10 increases productivity of the caregiver.


In one embodiment, kit 10 includes member 19, gauze 20 such as KERLIX™ non-linting gauze by Kendall, sealing film 22 such as 3M's TEGADERM® brand sealing film, scissors 24, a pair of pre-packaged gloves 26, hypo-allergenic tape 28 such as DERMIVIEW® brand tape made by Johnson & Johnson, two sterile cotton swabs 30, a wound measurement device 32, and a skin protectant 34, as shown in FIG. 4. Although each component of kit 10 is disclosed above with respect to a certain brand, it is within the scope of this disclosure to include any brand or type of the above-mentioned products. For example, OPSITE FLEXIGRID® semipermeable dressing made by Smith & Nephew may be used in lieu of TEGADERM® sealing film in some embodiments.


Member 19, as shown in more detail in FIGS. 2 and 3, is made of non-porous, non-adhesive, and generally non-compressible silicone. Vacuum source 16 acts to remove exudate by creating a negative pressure above the wound surface 14 which draws the exudate up through member 19. Irrigation source 18 acts to irrigate the wound surface 14 by supplying a fluid for flushing through member 19 onto wound surface 14. Member 19 is substantially transparent and has a rectangular shape, as shown in FIGS. 2-4. However, it is within the scope of this disclosure to include in kit 10 one or more members having other suitable shapes. Thus, the wound dressing members of the kit 10 may have a variety of sizes, configurations and durometers or degrees of softness and may be configured to conform to different portions of a patient's body such as the heel, sternum, elbow, etc. Examples of some alternative wound dressing members are shown in U.S. Pat. No. 6,685,681, and U.S. Patent Application Nos. US 2002/082567 A1, and US 2002/0161346 A1,the disclosures of which are hereby incorporated by reference herein. Yet another illustrative wound dressing members is disclosed in PCT International Publication No. WO 03/086232; which was filed concurrently herewith; which is titled ACCESS OPENINGS IN VACUUM BANDAGE which is hereby incorporated by reference herein.


Illustrative member 19, shown in FIGS. 2-4, includes a wound contacting layer 36 and a cover 38 coupled to layer 36. Member 19 also includes a connector 40 coupled to cover 38 for communication with vacuum source 16 and/or irrigation source 18 via a tube 41. Layer 36, cover 38, and connector 40 are each made of a medical grade silicone or other type of pliable elastomer. Two companies, for example, which manufacture such medical grade silicone are GE Silicones and NuSil Technology. It is within the scope of this disclosure, however, to include a member made of any type of thin, flexible material which is illustratively non-porous and non-foam-like. This thin, flexible material is also illustratively generally non-absorptive. For example, materials such as polyvinylchloride (PVC), PVC free of diethylhexyl phthalate (DEHP-free PVC), polyurethane, or polyethylene may be used in the manufacture of member 19. Further, layer 36, cover 38, and connector 40 may each be molded to include anti-microbial constituents. For example, it is within the scope of this disclosure to impregnate member 19 with silver ions which are known anti-microbials.


Member 19, including layer 36, cover 38, and connector 40, is also made of a generally non-adhesive material. Therefore, layer 38, which lies adjacent to wound surface 14, does not adhere to wound surface 14. Further, member 19 is solid in nature and generally non-compressible. For example, when a negative pressure is applied to member, 19, a thickness, 21, of member 19, as shown in FIG. 3, remains relatively constant. Further, as shown in FIG. 3, member 19 is substantially transparent. Therefore, a caregiver or user is able to see the wound 12 through member 19 when member 19 is placed adjacent to wound surface 14. This transparency allows the caregiver to view the progress of the healing of wound 12.


Layer 36 includes a wound contacting surface 42 and an upper or opposite surface 44. Wound contacting surface 42, or portions thereof, contacts and generally conforms to the wound surface 14. Opposite surface 44 includes a central area 46 and a plurality of channels 48 extending radially away from central area 46. Concentric channels 49 are also formed in layer 36, as shown in FIGS. 2 and 3. Central area 46 is recessed relative to the portions of upper surface 44 between channels 48, 49 as shown in FIG. 2. Channels 48 are open at the sides and ends of member 19. Illustratively, each channel 48, 49 is 0.030 inch (0.762 mm) wide and 0.030 inch (0.762 mm) deep. It is within the scope of this disclosure, however, to include channels 48, 49 of opposite surface 44 having various widths and depths suitable for the present application. As shown in FIG. 2, central area 46 of layer 36 is provided to communicate with the vacuum source 16 and irrigation source 18 through cover 38, as will be described below.


A plurality of radially extending protrusions or bosses 50 are positioned around central area 46. Bosses 50 are positioned between central area 46 and channels 48, 49, as shown in FIG. 2. Bosses 50 prevent central area 46 from collapsing in on a port 52 of cover 38 and forming an unwanted seal which would effectively block air flow through port 52 while suction is applied to bandage 11. Port 52 communicates with the vacuum source 16 and/or the irrigation source 18 via connecter 40 and tube 41, as shown in FIGS. 1 and 2. As mentioned above, port 52 is in communication with central area 46 of layer 36. Illustratively, four bosses 50 are shown in FIG. 2. However, it is within the scope of this disclosure to provide any number of bosses 50 or the like in central area 46 of layer 36 to prevent central area 46 from sealing off port 52 of cover 38 suction is applied to bandage 11. Further, it is within the scope of this disclosure to include bosses 50 having a tapered cross-section, for example, or to include a boss or bosses having any shape that prevents central area 46 from sealing off port 52 when suction is applied to bandage 11. Alternative or supplemental bosses 51 are shown in FIG. 3. Bosses 51 are positioned between bosses 50 and further prevent central area 46 collapsing on port 52 and forming an unwanted seal blocking air flow through port 52 while suction is applied to bandage 11. Alternative bosses are generally rectangularly shaped and extend inwardly from channels 48 toward port 52.


Connecter 40, as shown in FIG. 2, is a tubal port coupled to a top surface 54 of cover 38 and in communication with port 52 of cover 38. As mentioned before, it is within the scope of this disclosure for connecter 23 to be a separate component of member 19 which is coupled to cover 38 or for connecter 23 to be molded integrally with cover 38. Connector 40 includes a passageway formed at a right-angle. Thus, the passageway in connector 40 has a vertical portion 25 that communicates with port 52 and a horizontal portion 27 that communicates with vertical portion 25. Connector 40 connects with tube 41 to provide a horizontal tube attachment with respect to port 52. Cover 38 further includes a bottom surface 56. Bottom surface 56 engages opposite surface 44 of layer 36, as shown in FIG. 3.


As mentioned above, cover 38 is coupled to layer 36 and connecter 40 is coupled to cover 38 to form member 19. Cover 38 and layer 36 cooperate to form distinct passageways 58 of member 19 defined by channels 48, 49 of layer 36 and bottom surface 56 of cover 38. Passageways 58 are in communication with central area 46 of layer 36 and central area 46 of layer 36 is in communication with port 52 of cover 38 which is in communication with the vacuum and/or irrigation sources 16, 18 via connecter 40 and tube 41. Therefore, passageways 58 are in communication with the vacuum and/or irrigation sources 16, 18.


Member 19 includes through holes 60 which extend from channels 48, 49 through layer 36 to wound contacting surface 42, as shown in FIG. 3. Holes 60 are distinct and are provided to communicate with channels 48, 49 of layer 36. Holes 60 therefore communicate with passageways 58 of member 19 and the vacuum and/or irrigation sources 16, 18 as well to allow the suction from the vacuum source 16 and/or the fluid from the irrigation source 18 to reach the wound surface 14 via the holes 60. As shown in FIG. 3, holes 60 have a staggered arrangement. Illustratively, holes 46 are 0.020 inch (0.508 mm) in diameter and are spaced approximately 0.500 (12.700 mm) apart along channels 48, 49 of layer 36. It is, however, within the scope of the disclosure to include holes having other suitable sized diameters and/or other suitable spacing that allow for the removal of exudate without clogging.


Member 19 includes a smooth wound contacting surface 42, as shown in FIG. 3. Wound contacting surface 42 may also be textured or roughened. By providing member 19 with a textured or roughened surface, a space is created between surface 42 of layer 36 and wound surface 14. Through holes 60 communicate with this space which permits vacuum source 16 to establish a generally uniformly distributed vacuum or negative pressure to the wound surface 14 to draw blood from the body to the wound surface 14 and to draw exudate from the wound 12 through holes 60, into channels 48, 49 and passageways 58, and out port 52 of cover 38. It is within the scope of this disclosure to include other means for providing a space between surface 42 and wound surface 14 such as providing ribs, protrusions, channels, spacers, etc.


As mentioned above, port 52 of cover 38 communicates with vacuum source 16 and/or irrigation source 18 via connecter 40 and tube 41. As shown in FIG. 1, a switch valve 55 is provided which allows the caregiver to switch between the use of the vacuum source 16 and the irrigation source 18. It will be appreciated that a mechanism other than the switch valve 55 maybe used selectively to couple the vacuum source 16 or the irrigation source 18 to the bandage. Simple tube clamps, for example, may be used selectively to open and close the tube set provided with bandage 11. When valve 55 is switched to operate the vacuum source 16, the vacuum suction draws exudate up through holes 60 and radially inwardly through passageways 58 toward port 52 and finally through connecter 40 and tube 41. Although illustrative bandage 11 includes one central port 52, it is within the scope of this disclosure to include multiple ports. It is further within the scope of this disclosure to provide an alternative member having multiple ports and multiple passageway sets for use independent of each other.


As mentioned above, bandage 11 and kit 10 each further includes a sealing layer or film 22 that is placed over cover 38 and around tube 41, as shown in FIG. 1. Film 22 covers the entire wound 12 and extends across and attaches to the patient's healthy skin 62, also as shown in FIG. 1. Preferably, film 22 is an occlusive or semi-occlusive material which allows moisture to permeate through. Because of this characteristic, the film 22 is referred to as Moisture Vapor Transmission Rate film or MVTR film. As mentioned above, the products TEGADERM® made by 3M Corporation and OPSITE FLEXGRID® made by Smith and Nephew can be used for film 50, for example. The product OpSite™ is a semi-permeable film. Film 22 is approximately 0.003 inch (0.076 mm) thick. However, it is within the scope of this disclosure to include any occlusive or semi-occlusive film 22 having another thickness. Film 22 is provided to create a sealed environment below the film 22 and around the wound 12 in which a vacuum or negative pressure can be maintained as provided by vacuum source 16. As shown in FIG. 9, film 22 includes an adhesive layer 23 and release liners 70 coupled to adhesive layer 23. Illustratively, layer 23 is an adhesive backed polyurethane film. Release liners 70 include a flap 71 to be grasped by the caregiver to remove each release liner 70 and progressively expose the adhesive below for attachment of adhesive layer 23 to the patient's healthy skin 62 surrounding the wound 12.


Illustrative skin protectant 34 of kit 10 is CAVILON™ No-Sting Barrier available from 3M Corporation. Other manufactures includes BARD® Incontinence Protective Barrier Film by Bard Medical Division and NO-STING SKIN-PREP™ Protective Dressing by Smith & Nephew, for example. Skin protectant 34 is also referred to as skin barrier film. Skin protectant 34 is typically applied as a liquid that is sprayed, swabbed or wiped on the patient's healthy skin 62 with an impregnated gauze. The liquid is typically polymeric and is allowed to dry on the skin 62 to form a tin film that protects the healthy skin 62 from such things as urine and/or fecal incontinence, digestive juices, wound drainage, adhesives and friction, for example. Skin protectant 34 is also provided in kit 10 for the purpose of preventing the vacuum and irrigation tubing 41 from creating a pressure sore on the patient's healthy skin 62. It is within the scope of this disclosure for kit 10 to include suitable skin protectants other than those listed above.


Illustrative sterile cotton swabs or applicators 30 are provided on a 6-inch (15.24 cm) wooden stick and are used for measuring the depth of the wound 12 for recordation in a patient's logbook, for example, to chart the progress of the healing of the wound 12. Although two applicators 30 are provided, only one applicator 30 is required for measuring the depth of wound 12. An extra applicator is provided if needed by the caregiver. To measure the depth of wound 12, a caregiver inserts applicator 30 perpendicularly into wound 12 relative to the healthy skin surrounding wound 12. Caregiver then either grasps the wood stick or shaft portion of the applicator 30 with his/her fingers or simply marks the shaft with a pen or marker to indicate the depth of the wound 12. Using a ruler or other measuring device, the caregiver then measures the distance on the applicator 30 between the cotton tip and their finger or mark to determine a numerical value for the depth of wound 12 for recording in the patient's log book or records.


Illustrative wound tracing guide or wound measurement device 32, shown in FIGS. 1-3 is a transparent plastic film that is placed over the wound 12. Device 32 includes a a first (e.g., top) sheet or portion 74, and a second (e.g., bottom) sheet or portion 72 configured to be pulled from first or top portion 74 (e.g., by way of a perforated line 76 separating bottom portion 72 from top portion 74). Bottom portion 72 is transparent and includes a wound contacting surface 78 and an opposite surface 80 which contacts top portion 74 when device 32 is folded along perforated line 76, as shown in FIG. 6. Bottom portion 72 has a ruler 82 printed or otherwise provided thereon, as shown in FIG. 5. Illustrative ruler 82 is graduated in centimeters for measurement of the length and/or width of wound 12.


Top portion 74 of device 32 includes a drawing surface 84 and an opposite surface 86 for contact with opposite surface 80 of bottom portion 72 when device 32 is folded along the perforated line 76. Top portion 74 further includes an information recording area 88 for a caregiver to record such information as the patient's name or identification number, the date, the location of the wound 12 on the patient, the length and width of the wound 12, the depth of the wound 12 including any amount of tunneling of the wound 12, and a measurement of any undermining of the wound 12 which may be present. A grid 90 is also printed or otherwise provided on top layer 74 of device 32. Grid 90, similar to ruler 82, is calibrated in centimeters.


In use, device 32 is placed on or over wound surface 14 of wound 12 when the vacuum bandage 11 is being changed by a caregiver. That is, device 32 is place upon the wound surface 14 once sealing film 22, member 19, and gauze 20 (if used) have been removed from the wound 12 and before application of a new bandage 11 to wound 12. Device 32 is positioned so that the wound contacting surface 78 of bottom layer 72 is above and generally adjacent wound surface 14 and the patient's healthy skin 62 surrounding wound 12. Device 32 is next folded along perforated line 76 to place opposite surface 86 of top layer 74 adjacent opposite surface 80 of bottom layer 72. A caregiver then traces the shape of wound 12 (i.e. the boundary between healthy skin and wound 12) onto grid 90 of drawing surface 84 of top layer 74, as shown for example in FIG. 7 by wound outline 92. Once the outline 92 of wound 12 has been traced, device 32 is torn (e.g., by pulling second or bottom portion 72 away from first or top portion 74) along perforated line 76. Bottom portion 72, which has been in contact with wound surface 14, is discarded. Top layer 74 is maintained in the patient's log or records to record the progress and healing of wound 12 for future reference. Thus, bottom layer 72 prevents exudate, bacteria, etc. from wound 12 from contacting top layer 74.


Kit 10 further includes an alternate means of measuring the size of the patient's wound 12. As stated above, wound measurement device 32 is provided to record the wound size for the patient's records. In an alternate embodiment, member 19 includes a removable, peel-off plastic backing (not shown). It is within the discretion of the caregiver to cut or trim member 19 to fit the size of the wound 12. Therefore, when member 19 is cut to fit the size of the wound 12, the backing is trimmed as well. This backing is then removed from the member 19 and filed with the patient's records to record the size of the wound 12. It is within the scope of this disclosure for the backing to include an adhesive to stick to a sheet of paper within the patient's records, for example.


Kit 10 includes yet another means for recording the size of the wound 12. For example, member 19 could be silk-screened with dimensional markings. When member 19 is trimmed or cut to fit the wound 12 of the patient, the remaining silk-screened marking on member 19 will indicate the size of the wound 12 without the need for the caregiver to directly measure the size of the wound 12.


In order to accommodate different sized wounds 12, member 19 may be trimmed to fit a particular wound 12. Scissors 24 of kit 10 are used by a caregiver to trim member 19 to fit a particular wound 12. Another member, for example, shown in U.S. Patent Publication No. US 2002/0082567 A1 and incorporated by reference herein, includes scale markings for indicating areas where a user may trim member 19 to fit a particular wound 12. In one embodiment, the scale markings denote measurement sizes, for example, to permit a user to cut the member 19, using scissors 24, to fit a pre-measured wound 12. As mentioned above, the wound measurement device 32 is used to measure the size of the wound 12.


Tape 28 of kit 10 is used at the discretion of the caregiver to help seal film 22 to the patient's healthy skin 62 and/or to help secure tube 41 in place to prevent tube 41 from becoming disengaged from bandage 11, for example. Illustratively, tape 28 is hypo-allergenic.


A patch sheet 94 of kit 10 is shown in FIGS. 7 and 8. Patch sheet 94 is an occlusive or semi-occlusive transparent film dressing, similar to sealing film 22, that is die-cut into strips 96 and patches 98, as shown in FIG. 7. These strips 96 and patches 98 are used by the caregiver to repair any unwanted leaks that may develop in film 22 during the course of treatment.


Patch sheet 94 is made of the same material as sealing film 22 and includes a first adhesive backed polyurethane layer 100 and a second layer 102 removably coupled to first layer 100. As shown in FIG. 7, first layer 100 is die-cut into patches 98 and strips 96 which are coupled to second layer or release liner 102. Release liner 102 is removed to expose an adhesive surface of layer 100. As shown in FIG. 9, patches 98 are circular and are shown in various sizes having ½ inch (12.7 mm), ¾ inch (19.05 mm), and 1 inch (2.54 cm) diameters, for example. Further, strips 96 are shown in various sizes having ½ inch (12.7 mm), ¾ inch (19.05 mm), and 1 inch (2.54 cm) widths. The entire illustrative patch sheet 94 is 6 inches (15.24 cm) by 6 inches (15.24 cm). It is within the scope of this disclosure, however, to include patches and strips of any suitable size and shape for repairing unwanted leaks of the sealing film 22 which occur. It is further within the scope of this disclosure for strips 96 and patches 98 to be dispensed on a roll.


In alternative embodiments, kit 10 further includes one or more of the following: a sterile mask, a gown, or other infection control garments (not shown). The sterile mask, gown, and other garments are worn by the caregiver to help maintain a clean environment and to prevent infection of the wound 12. In another alternative embodiment, kit 10 includes a wound cleanser (not shown) for cleaning wound 12 prior to prior to dressing wound 12 with bandage 11. Current wound cleansers available include Dermal Wound Cleanser by Smith & Nephew, CARRAKLENZ™ by Carrington Laboratories, Inc., and DermalHealth Wound Cleanser by Dumex Medical. It is within the scope of this disclosure, however, to include a kit 10 having other suitable wound cleansers for cleansing and disinfecting the wound surface 14.


A tube guide 110, shown in FIGS. 10-12, is also provided in illustrated kit 10. Tube guide 110 has an aperture 112 for receiving a portion of vacuum/irrigation tube 41. As mentioned above, tube 41 is in communication with port 52 of member 19 and with the vacuum and/or irrigation source 16, 18. Tube guide 110 aides in effectively sealing the film 22 around tube 41 and to the patient's healthy skin 62 around wound 12 to create a sealed environment beneath film 22 and above wound surface 14. Without the use of tube guide 110, film 22 is pinched around the tube 41 by the caregiver to seal the film 22 against the patient's healthy skin 62 surrounding wound 12. Tube guide 110 acts to prevent air leaks into the vacuum space created below film 22.


Guide 110 is manufactured from a low durometer or soft polymer such as PVC, for example. In one embodiment, guide 110 has a width 111 of approximately 1 inch (2.54 cm), a height 113 of approximately ⅜ inch (9.525 mm), and a depth 115 of approximately ⅜ inch (9.525 mm). As shown in FIGS. 10 and 11, aperture 112 of guide 110 has a diameter of ¼ inch (6.35 mm) and is therefore designed to accommodate a vacuum/irrigation tube having a ¼ inch (6.35 mm) outer diameter. It is within the scope of this disclosure, however, to include a guide 110 having any suitable width, height, and depth and including an aperture having any suitable diameter for receiving vacuum/irrigation tubes of various sizes.


Guide 110 includes a flat bottom surface 114 having a pre-applied adhesive 116, as shown in FIG. 13. As shown in FIG. 14, bottom surface 114 is adhered to the healthy skin 62 adjacent wound 12. Guide 110 further includes a curved top surface 118. The bell-shaped contour of top surface 118 allows the sealing film 22 to drape over tube guide 110 and tube 41, rather than be pinched underneath tube 41. Therefore, guide 110 allows a more effective seal to be created around tube 41. The bell-shaped contour of top surface 118 includes a convex upper region 117 that blends smoothly into curved lower regions 119 which terminate at thin end edges 121 adjacent the patient's skin 62.


Guide 110 has a slit or opening 120 between a first surface 122 and a second surface 124 of guide 110. Opening 120 is in communication with aperture 112. As shown in FIGS. 12 and 13, surfaces 122 and 124 are parallel with respect to each other and are inclined with respect to the bottom surface 114. Opening 120 provides access to aperture 112. Tube 41 is placed within aperture 112 by separating surfaces 122, 124 away from each other and sliding tube 41 through the enlarged opening 120 to be received within aperture 112. A diameter of aperture 112 is approximately the same as an outer diameter of tube 41 to create a generally air tight seal between tube guide 110 and tube 41 to prevent outside air from the atmosphere around bandage 11 from entering the space above the wound 12 and possibly contaminating the wound surface 14. Opening 120 causes guide 110 to be flexible such that surfaces 122, 124 are movable relative to the bottom portion 114 and are urged to abut each other when sealing film 22 is placed over guide 110.


Sealing film 22 is placed over the wound 12 and seals against the curved top surface 118 of guide 110 rather than sealing directly against tube 41. As stated above, the contour of top surface 118 allows film 22 to drape over guide 110 to seal to top surface 118 of guide 110. Opening 120 is therefore sealed by film 22. It is also within the scope of this disclosure to extrude a vacuum/irrigation tube having the profile of the guide 110, thus eliminating the need for guide 110.


The components of kit 10 may be used in the following order. For example, the gloves 26 and other infection control garments may be used first. Next, the scissors 24 may be used to remove an old dressing, for example. A caregiver may next use a wound cleanser included in kit 10 to clean wound 12 and one of the cotton-tipped applicators 30 to measure the depth of the wound 12. Wound measurement device 32 may be used next, for example, to trace and record the perimeter of wound 12. Gauze 20 may next be used by the caregiver to clean the wound surface 14 or absorb fluid collected at the wound surface 14, for example. Skin protectant 34 may then be used to protect the patient's healthy skin 62 surrounding the wound 12. Next, the caregiver may place the member 19 on top of the wound surface 14 and finally cover the member 19 and the wound 12 with sealing film 22. The tape and patch sheet 94 may be used to repair any leaks which develop in the sealing film 22.


It is within the scope of this disclosure to package all components of kit 10 in sterile conditions so that each component of kit 10 is sterile and ready for use. It is further within the scope of this disclosure to package all components of kit 10 in such a manner that they are generally presented to the caregiver in the sequence that they are required during the dressing change of the wound 12, as described above. The packaging material of the kit 10 may be a thermo-formed, plastic tray with a clear polyurethane lid, for example. The tray may be formed to include individually shaped cavities to form pouches for each component.


Kit 10 may also include one or more vents, venting lines, valves, stopcocks, and multi-lumen tubes or tube sets. Vents or venting lines may be provided to circulate air through bandage 11, for example. Valves or stopcocks may be provided to direct flow between vacuum source 16 and bandage 11 and between irrigation source 18 and bandage 11, such as switch valve 55 diagrammatically illustrated in FIG. 1. Multi-lumen tubes may connect member 19, or another such wound dressing member, with vents and/or stopcocks. Multi-lumen tubes may provide multiple passageways for air, vacuum suction, and or irrigation fluids, for example. Such vents, stopcocks and multi-lumen tubes are disclosed in PCT International Publication No. WO 03/057070; which was filed concurrently herewith; which is titled VENTED VACUUM BANDAGE AND METHOD which is hereby incorporated by reference herein.


Kit 10 may also include wound inserts or wound packing for use with tunneled and/or undermined wounds, for example. Such inserts are provided to generally fill the open space created by various wound tunnels and/or undermined portions of wounds. Illustrative wound inserts are disclosed in PCT International Publication No. WO 2004/01820; which was filed concurrently herewith; which is title WOUND PACKING FOR PREVENTING WOUND CLOSURE which is hereby incorporated by reference herein.


Kit 10 may also include collars to provide external catheter access (for tube 41, for example) to vacuum bandage 11, and bandage packing to be placed between member 19 and sealing film 22. Illustrative collars and bandage packing can be found in PCT International Publication No. WO 03/073970; which was filed concurrently herewith; which is titled EXTERNAL CATHETER ACCESS TO VACUUM BANDAGE which is hereby incorporated by reference herein; and in PCT International Publication NO. WO 03/057071; which was filed concurrently herewith; which is titled VACUUM BANDAGE PACKING which is hereby incorporated by reference herein.


Although this invention has been described in detail with reference to certain embodiments, variations and modifications exist within the scope and spirit of the invention as described and defined in the following claims.

Claims
  • 1. A wound vacuum therapy dressing kit for use with a wound drainage system having a vacuum source, the kit comprising: a wound dressing member having a wound contacting surface configured to be in contact with and generally conform to a wound surface of a patient, the member being adapted to be coupled to the vacuum source for communicating suction from the vacuum source to the wound surface,a sealing film for placement over the member and configured to adhere to a patient's healthy skin surrounding the wound, anda wound measurement device comprising a perforated transparent film without adhesive including a first portion and a second portion removably coupled to the first portion and configured to be pulled from the first portion, the film configured to be folded such that (i) substantially all of a first surface of the first portion contacts a first surface of the second portion and (ii) the second surface of the second portion is configured for placement adjacent the wound surface, a second surface of the first portion including an exposed drawing surface and a grid that overlies the second portion when the first portion is folded relative to the second portion.
  • 2. The kit of claim 1, further including a tube guide configured to be coupled to the healthy skin adjacent the wound and having an aperture configured to receive a portion of a vacuum tube of the wound vacuum drainage system that extends between the member and the vacuum source.
  • 3. The kit of claim 2, wherein the tube guide includes a curved upper surface and the sealing film is configured to drape over and seal to the curved upper surface.
  • 4. The kit of claim 3, wherein the tube guide includes a generally flat bottom surface and an adhesive layer coupled to the bottom surface.
  • 5. The kit of claim 2, wherein the tube guide further includes a first end and a second end spaced apart from the first end to define an opening in communication with the aperture and configured to pass the vacuum tube therethrough for placement of the vacuum tube within the aperture.
  • 6. The kit of claim 1, further including a patch sheet having a first adhesive layer and a second layer removably coupled to the first layer.
  • 7. The kit of claim 6, wherein the first layer of the patch sheet includes patches and strips configured to be removed from the second layer of the patch sheet and placed over unwanted leaks in the film for use with the sealing film to seal about the member and create a vacuum space above the wound.
  • 8. The kit of claim 7, wherein each of the patches has a diameter of ½ inch (12.7 mm), ¾ inch (19.05 mm), or 1 inch (2.54 cm).
  • 9. The kit of claim 7, wherein each of the strips is 6 inches (15.24 cm) in length and has a width of ½ inch (12.7 mm), ¾ inch (19.05 mm), or 1 inch (2.54 cm).
  • 10. The kit of claim 1, wherein the sealing film includes multiple release liners removably coupled to an adhesive back polyurethane layer.
  • 11. The kit of claim 1, wherein the second portion of the wound measurement device includes a ruler.
  • 12. The kit of claim 11, wherein the first portion of the wound measurement device further includes an information recording area for recording a patient's data information.
  • 13. A wound vacuum therapy dressing kit for use with a wound drainage system having a vacuum source, the kit comprising: a generally non-compressible wound dressing member having a wound contacting surface configured to be in contact with and generally conform to a wound surface of a wound,a sealing film for placement over the member and configured to adhere to a patient's healthy skin surrounding the wound,a patch sheet having a first adhesive layer and a second layer removably coupled to the first layer, the first layer having a patches and strips configured to be removed from the second layer and placed over unwanted leaks in the film,infection control garments,applicators configured to measure a depth of the wound, andscissors configured to trim the member to fit the wound, wherein the kit further comprises a wound measurement device comprising a transparent film including a first portion and a second portion removably coupled to the first portion, the film configured to be folded such that (i) substantially all of a first surface of the first portion contacts a first surface of the second portion and (ii) the second surface of the second portion is configured for placement adjacent the wound surface, a second surface of the first portion including an exposed drawing surface and a grid that overlies the second portion when the first portion is folded relative to the second portion, and wherein the film is perforated.
  • 14. A wound vacuum therapy dressing kit for use with a wound drainage system having a vacuum source, the kit comprising: a wound dressing member having a wound contacting surface configured to be in contact with and generally conform to a wound surface of a patient, the member being adapted to be coupled to the vacuum source for communicating suction from the vacuum source to the wound surface, anda wound measurement device comprising a transparent film including a first portion and a second portion removably coupled to the first portion, the film configured to be folded such that (i) substantially all of a first surface of the first portion contacts a first surface of the second portion and (ii) the second surface of the second portion is configured for placement adjacent the wound surface, a second surface of the first portion including an exposed drawing surface and a grid that overlies the second portion when the first portion is folded relative to the second portion, wherein the film is perforated and wherein the film is configured to allow the second portion to be pulled from the first portion.
  • 15. A wound vacuum therapy dressing kit for use with a wound drainage system having a vacuum source, the kit comprising: a wound dressing member having a wound contacting surface configured to be in contact with and generally conform to a wound surface of a patient, the member being adapted to be coupled to the vacuum source for communicating suction from the vacuum source to the wound surface, anda wound measurement device comprising a transparent film including a first portion and a second portion removably coupled to the first portion, the film configured to be folded such that (i) substantially all of a first surface of the first portion contacts a first surface of the second portion and (ii) the second surface of the second portion is configured for placement adjacent the wound surface, a second surface of the first portion including an exposed drawing surface and a grid that overlies the second portion when the first portion is folded relative to the second portion, wherein the second portion of the wound measurement device includes a ruler.
  • 16. The kit of claim 14, wherein the kit further comprises a tube guide configured to be coupled to healthy skin adjacent the wound and having an aperture configured to receive a portion of a vacuum tube of the wound drainage system that extends between the member and the vacuum source.
  • 17. The kit of claim 16, wherein the tube guide includes a generally flat bottom surface and an adhesive layer coupled to the bottom surface.
  • 18. The kit of claim 16, wherein the tube guide includes a generally convex top surface.
  • 19. The kit of claim 14, wherein the member comprises a generally non-porous and generally non-compressible material.
  • 20. The kit of claim 19, wherein the member is made of a medical grade silicone.
  • 21. The kit of claim 19, wherein the wound contacting surface of the member includes holes in communication with the wound surface and the member further includes a port and a passageway between the port and each hole.
  • 22. The kit of claim 13, wherein the second portion of the wound measurement device includes a ruler.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a U.S. national counterpart application of international application Ser. No. PCT/US02/41231 filed Dec. 20, 2002, which claims the benefit of U.S. provisional application Ser. No. 60/344,620 filed Dec. 26, 2001.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US02/41231 12/20/2002 WO 00 5/21/2004
Publishing Document Publishing Date Country Kind
WO03/057307 7/17/2003 WO A
US Referenced Citations (516)
Number Name Date Kind
774529 Nieschang Nov 1904 A
1000001 Holz Aug 1911 A
1355846 Rannells Oct 1920 A
1385346 Taylor Jul 1921 A
1709520 Chandler Apr 1929 A
1936129 Fisk Nov 1933 A
2078180 Kronenberg Apr 1937 A
2195771 Estler Apr 1940 A
2221758 Elmquist Nov 1940 A
2338339 LaMere et al. Jan 1944 A
2443481 Sene Jun 1948 A
2547758 Keeling Apr 1951 A
2560915 Bamberger Jul 1951 A
2573791 Howells Nov 1951 A
2577945 Atherton Dec 1951 A
2632443 Lesher Mar 1953 A
2682873 Evans et al. Jul 1954 A
2910763 Lauterbach Nov 1959 A
2969057 Simmons Jan 1961 A
3026874 Stevens Mar 1962 A
3066672 Crosby, Jr. et al. Dec 1962 A
3315665 MacLeod Apr 1967 A
3367332 Groves Feb 1968 A
3382867 Reaves May 1968 A
3430631 Abramson Mar 1969 A
3492991 Dyer, Jr. Feb 1970 A
3520300 Flower, Jr. Jul 1970 A
3528416 Chamberlain Sep 1970 A
3568675 Harvey Mar 1971 A
3585742 Tyler Jun 1971 A
3599639 Spotz Aug 1971 A
3610238 Rich, Jr. Oct 1971 A
3623087 Gallichotte Nov 1971 A
3626087 Tomioka Dec 1971 A
3648692 Wheeler Mar 1972 A
3682180 McFarlane Aug 1972 A
3683894 Villari Aug 1972 A
3721244 Elmaleh Mar 1973 A
3752158 Kariher Aug 1973 A
3753439 Brugarolas et al. Aug 1973 A
3782377 Rychlik Jan 1974 A
3812972 Rosenblum May 1974 A
3814095 Lubens Jun 1974 A
3817145 Cohen Jun 1974 A
3823720 Tribble Jul 1974 A
3826254 Mellor Jul 1974 A
3831588 Rinder Aug 1974 A
3860008 Miner et al. Jan 1975 A
3874387 Barbieri Apr 1975 A
3903882 Augurt Sep 1975 A
3924624 Schachet Dec 1975 A
3935863 Kliger Feb 1976 A
3954105 Nordby et al. May 1976 A
3982546 Friend Sep 1976 A
4004590 Muriot Jan 1977 A
4013076 Puderbaugh et al. Mar 1977 A
RE29319 Nordby et al. Jul 1977 E
RE029321 Holbrook Jul 1977 E
4058123 May Nov 1977 A
4080970 Miller Mar 1978 A
4096853 Weigand Jun 1978 A
4112947 Nehring Sep 1978 A
4139004 Gonzalez, Jr. Feb 1979 A
4149541 Gammons et al. Apr 1979 A
4165748 Johnson Aug 1979 A
4178974 Levin Dec 1979 A
4184510 Murry et al. Jan 1980 A
4191204 Nehring Mar 1980 A
4224941 Stivala Sep 1980 A
4233969 Lock et al. Nov 1980 A
4245630 Lloyd et al. Jan 1981 A
4250882 Adair Feb 1981 A
4256109 Nichols Mar 1981 A
4261363 Russo Apr 1981 A
4275721 Olson Jun 1981 A
4284079 Adair Aug 1981 A
4297995 Golub Nov 1981 A
4333468 Geist Jun 1982 A
4341209 Schaar Jul 1982 A
4373519 Errede et al. Feb 1983 A
4382441 Svedman May 1983 A
4392853 Muto Jul 1983 A
4392858 George et al. Jul 1983 A
4399816 Spangler Aug 1983 A
4419097 Rowland Dec 1983 A
4457755 Wilson Jul 1984 A
4460370 Allison et al. Jul 1984 A
4465062 Versaggi et al. Aug 1984 A
4465485 Kashmer et al. Aug 1984 A
4469092 Marshall et al. Sep 1984 A
4475909 Eisenberg Oct 1984 A
4480638 Schmid Nov 1984 A
4508533 Abramson Apr 1985 A
4525156 Benusa et al. Jun 1985 A
4525166 Leclerc Jun 1985 A
4525374 Vaillancourt Jun 1985 A
4533352 Van Beek et al. Aug 1985 A
4533419 Pieslak et al. Aug 1985 A
4540412 Van Overloop Sep 1985 A
4543100 Brodsky Sep 1985 A
4548202 Duncan Oct 1985 A
4551139 Plaas et al. Nov 1985 A
4553967 Ferguson et al. Nov 1985 A
4569348 Hasslinger Feb 1986 A
4569674 Phillips et al. Feb 1986 A
4573965 Russo Mar 1986 A
4579555 Russo Apr 1986 A
4605399 Weston et al. Aug 1986 A
4608041 Nielsen Aug 1986 A
4614794 Easton et al. Sep 1986 A
4624656 Clark et al. Nov 1986 A
4633863 Filips et al. Jan 1987 A
4637819 Ouellette et al. Jan 1987 A
4640688 Hauser Feb 1987 A
4641643 Greer Feb 1987 A
4645492 Weeks Feb 1987 A
4655210 Edenbaum et al. Apr 1987 A
4655754 Richmond et al. Apr 1987 A
4661093 Beck et al. Apr 1987 A
4664652 Weilbacher May 1987 A
4664662 Webster May 1987 A
4667666 Fryslie May 1987 A
4679590 Hergenroeder Jul 1987 A
4710165 McNeil et al. Dec 1987 A
4713051 Steppe et al. Dec 1987 A
4717332 Edens Jan 1988 A
4717382 Clemens et al. Jan 1988 A
4733659 Edenbaum et al. Mar 1988 A
4735606 Davison Apr 1988 A
4735610 Akkas et al. Apr 1988 A
4740202 Stacey et al. Apr 1988 A
4743232 Kruger May 1988 A
4747166 Kuntz May 1988 A
4758220 Sundblom et al. Jul 1988 A
4759354 Quarfoot Jul 1988 A
4765316 Marshall Aug 1988 A
4778446 Jensen Oct 1988 A
4778456 Lokken Oct 1988 A
4787888 Fox Nov 1988 A
4798578 Ranford Jan 1989 A
4820265 DeSatnick et al. Apr 1989 A
4820284 Hauri Apr 1989 A
4826494 Richmond et al. May 1989 A
4826949 Stanko May 1989 A
4834110 Richard May 1989 A
4838883 Matsuura Jun 1989 A
4840187 Brazier Jun 1989 A
4841962 Berg et al. Jun 1989 A
4850350 Jackson Jul 1989 A
4863449 Therriault et al. Sep 1989 A
4872450 Austad Oct 1989 A
4878901 Sachse Nov 1989 A
4890608 Steer Jan 1990 A
4897081 Poirier et al. Jan 1990 A
4900302 Newton Feb 1990 A
4902508 Badylak et al. Feb 1990 A
4906233 Moriuchi et al. Mar 1990 A
4906240 Reed et al. Mar 1990 A
4915694 Yamamoto et al. Apr 1990 A
4917112 Kalt Apr 1990 A
4919654 Kalt Apr 1990 A
4921492 Schultz et al. May 1990 A
4930997 Bennett Jun 1990 A
4941882 Ward et al. Jul 1990 A
4953565 Tachibana et al. Sep 1990 A
4956178 Badylak et al. Sep 1990 A
4957492 McVay Sep 1990 A
4962761 Golden Oct 1990 A
4969880 Zamierowski Nov 1990 A
4969881 Viesturs Nov 1990 A
4970298 Silver et al. Nov 1990 A
4985019 Michelson Jan 1991 A
4988336 Kohn Jan 1991 A
4990144 Blott Feb 1991 A
4991574 Pocknell Feb 1991 A
4994022 Steffler et al. Feb 1991 A
4997425 Shioya et al. Mar 1991 A
5000172 Ward Mar 1991 A
5000741 Kalt Mar 1991 A
5002528 Palestrant Mar 1991 A
5002529 Cunningham Mar 1991 A
5003971 Buckley Apr 1991 A
5014389 Ogilvie et al. May 1991 A
5034003 Denance Jul 1991 A
5034006 Hosoda et al. Jul 1991 A
5035865 Inaba et al. Jul 1991 A
5037397 Kalt et al. Aug 1991 A
5042978 Quenin et al. Aug 1991 A
5045777 Itagaki Sep 1991 A
5060662 Farnswoth, III Oct 1991 A
5071409 Rosenberg Dec 1991 A
5073172 Fell Dec 1991 A
5080650 Hirsch et al. Jan 1992 A
5086170 Luheshi et al. Feb 1992 A
5086763 Hathman Feb 1992 A
5086764 Gilman Feb 1992 A
5092858 Benson et al. Mar 1992 A
5100396 Zamierowski Mar 1992 A
5101808 Kobayashi et al. Apr 1992 A
5106362 Gilman Apr 1992 A
5106629 Cartmell et al. Apr 1992 A
5134994 Say Aug 1992 A
5135518 Vera Aug 1992 A
5146925 Snow Sep 1992 A
5147338 Lang et al. Sep 1992 A
5149331 Ferdman et al. Sep 1992 A
5152757 Eriksson Oct 1992 A
5160322 Scheremet et al. Nov 1992 A
5167613 Karami et al. Dec 1992 A
5167622 Muto Dec 1992 A
5170781 Loomis Dec 1992 A
5176502 Sanderson et al. Jan 1993 A
5176663 Svedman et al. Jan 1993 A
5176667 DeBring Jan 1993 A
5181908 Bell Jan 1993 A
5189609 Tivig et al. Feb 1993 A
5197948 Ghodsian Mar 1993 A
5215522 Page et al. Jun 1993 A
5215539 Schoolman Jun 1993 A
5224929 Remiszewski Jul 1993 A
5228431 Giarretto Jul 1993 A
5230350 Fentress Jul 1993 A
5232453 Plass et al. Aug 1993 A
5238654 Nohl et al. Aug 1993 A
5249121 Baum et al. Sep 1993 A
5256418 Kemp et al. Oct 1993 A
5261893 Zamierowski Nov 1993 A
5263922 Sova et al. Nov 1993 A
5265605 Afflerbach Nov 1993 A
5275826 Badylak et al. Jan 1994 A
5278100 Doan et al. Jan 1994 A
5279550 Habib et al. Jan 1994 A
5281422 Badylak et al. Jan 1994 A
5291887 Stanley et al. Mar 1994 A
5298015 Komatsuzaki et al. Mar 1994 A
5314409 Sarosiek et al. May 1994 A
5330452 Zook Jul 1994 A
5335651 Foster et al. Aug 1994 A
5338293 Jeppsson et al. Aug 1994 A
5342293 Zanger Aug 1994 A
5342301 Saab Aug 1994 A
5342376 Ruff Aug 1994 A
5344415 DeBusk et al. Sep 1994 A
5349965 McCarver Sep 1994 A
5352463 Badylak et al. Oct 1994 A
5358494 Svedman Oct 1994 A
5370610 Reynolds Dec 1994 A
5372821 Badylak et al. Dec 1994 A
5374254 Buma Dec 1994 A
5376252 Ekstrom et al. Dec 1994 A
5380280 Peterson Jan 1995 A
5395315 Griep Mar 1995 A
5409013 Clement Apr 1995 A
5413788 Edwards et al. May 1995 A
5419768 Kayser May 1995 A
5431622 Pyrozyk et al. Jul 1995 A
5437622 Carion Aug 1995 A
5437651 Todd et al. Aug 1995 A
5445604 Lang Aug 1995 A
5445833 Badylak et al. Aug 1995 A
5447505 Valentine et al. Sep 1995 A
5449383 Chatelier et al. Sep 1995 A
5451215 Wolter Sep 1995 A
5451373 Lewis et al. Sep 1995 A
5478333 Asherman, Jr. Dec 1995 A
5484420 Russo Jan 1996 A
5484427 Gibbons Jan 1996 A
5484428 Drainville et al. Jan 1996 A
5487889 Eckert et al. Jan 1996 A
5516533 Badylak et al. May 1996 A
5520652 Peterson May 1996 A
5527293 Zamierowski Jun 1996 A
5531670 Westby et al. Jul 1996 A
5533981 Mandro et al. Jul 1996 A
5534346 Robinson Jul 1996 A
5542918 Atkinson Aug 1996 A
5549584 Gross Aug 1996 A
5554389 Badylak et al. Sep 1996 A
5556375 Ewall Sep 1996 A
5558639 Gangemi et al. Sep 1996 A
5573784 Badylak et al. Nov 1996 A
5578022 Scherson et al. Nov 1996 A
5578662 Bennett et al. Nov 1996 A
5607388 Ewall Mar 1997 A
5621035 Lyles et al. Apr 1997 A
5624418 Shepard Apr 1997 A
5628735 Skow May 1997 A
5629186 Yasukawa et al. May 1997 A
5631011 Wadström May 1997 A
5635201 Fabo Jun 1997 A
5636643 Argenta et al. Jun 1997 A
5641518 Badylak et al. Jun 1997 A
5645081 Argenta et al. Jul 1997 A
5645860 Knapp et al. Jul 1997 A
5655258 Heintz Aug 1997 A
5656027 Ellingboe Aug 1997 A
5662598 Tobin Sep 1997 A
5662624 Sundstrom et al. Sep 1997 A
5662625 Westwood Sep 1997 A
5669892 Keogh et al. Sep 1997 A
5672152 Mason et al. Sep 1997 A
5674193 Hayes Oct 1997 A
5678564 Lawrence et al. Oct 1997 A
5681290 Alexander Oct 1997 A
5690815 Krasnoff et al. Nov 1997 A
5695998 Badylak et al. Dec 1997 A
5697920 Gibbons Dec 1997 A
5711969 Patel et al. Jan 1998 A
5718955 McGuire et al. Feb 1998 A
5735833 Olson Apr 1998 A
5741237 Walker Apr 1998 A
5749842 Cheong et al. May 1998 A
5753267 Badylak et al. May 1998 A
5755791 Whitson et al. May 1998 A
5759570 Arnold Jun 1998 A
5762640 Kajiwara et al. Jun 1998 A
5762966 Knapp et al. Jun 1998 A
5780281 Yasukawa et al. Jul 1998 A
5782871 Fujiwara et al. Jul 1998 A
5795584 Totakura et al. Aug 1998 A
5800383 Chandler et al. Sep 1998 A
5817145 Augustine et al. Oct 1998 A
5827246 Bowen Oct 1998 A
5827296 Morris et al. Oct 1998 A
5855619 Caplan et al. Jan 1999 A
5866414 Badylak et al. Feb 1999 A
5881723 Wallace et al. Mar 1999 A
5902874 Roby et al. May 1999 A
5902875 Roby et al. May 1999 A
5911222 Lawrence et al. Jun 1999 A
5914387 Roby et al. Jun 1999 A
5919476 Fischer et al. Jul 1999 A
5921972 Skow Jul 1999 A
5928174 Gibbins Jul 1999 A
5931304 Hammond Aug 1999 A
5941859 Lerman Aug 1999 A
5942496 Bonadio et al. Aug 1999 A
5947914 Augustine Sep 1999 A
5951295 Lyles et al. Sep 1999 A
5954680 Augustine Sep 1999 A
5961480 Augustine Oct 1999 A
5962427 Goldstein et al. Oct 1999 A
5964721 Augustine Oct 1999 A
5964723 Augustine Oct 1999 A
5986163 Augustine Nov 1999 A
5997568 Liu Dec 1999 A
6010527 Augustine et al. Jan 2000 A
6013048 Podany et al. Jan 2000 A
6017493 Cambron et al. Jan 2000 A
6039724 Seifert et al. Mar 2000 A
6045518 Augustine Apr 2000 A
6045541 Matsumoto et al. Apr 2000 A
6051747 Lindqvist et al. Apr 2000 A
6056730 Greter May 2000 A
6071254 Augustine Jun 2000 A
6071267 Zamierowski Jun 2000 A
6071304 Augustine et al. Jun 2000 A
6080189 Augustine et al. Jun 2000 A
6080243 Insley et al. Jun 2000 A
6093160 Augustine et al. Jul 2000 A
6093230 Johnson, III et al. Jul 2000 A
6095992 Augustine Aug 2000 A
6099567 Badylak et al. Aug 2000 A
6110197 Augustine et al. Aug 2000 A
6113561 Augustine Sep 2000 A
6117111 Fleischmann Sep 2000 A
6135116 Vogel et al. Oct 2000 A
6142982 Hunt et al. Nov 2000 A
6143945 Augustine et al. Nov 2000 A
6149614 Dunshee et al. Nov 2000 A
6171344 Atala Jan 2001 B1
6174306 Fleischmann Jan 2001 B1
6203563 Fernandez Mar 2001 B1
6206931 Cook et al. Mar 2001 B1
6207875 Lindqvist et al. Mar 2001 B1
6213965 Augustine et al. Apr 2001 B1
6213966 Augustine Apr 2001 B1
6217535 Augustine Apr 2001 B1
6235009 Skow May 2001 B1
6235047 Augustine et al. May 2001 B1
6241697 Augustine Jun 2001 B1
6241698 Augustine Jun 2001 B1
6241747 Ruff Jun 2001 B1
6244311 Hand et al. Jun 2001 B1
6244698 Hand et al. Jun 2001 B1
6248084 Augustine et al. Jun 2001 B1
6254557 Augustine et al. Jul 2001 B1
6254580 Svedman Jul 2001 B1
6259067 Faries, Jr. et al. Jul 2001 B1
6264622 Augustine Jul 2001 B1
6264979 Svedman Jul 2001 B1
6267740 Augustine et al. Jul 2001 B1
6283931 Augustine Sep 2001 B1
6284941 Cox et al. Sep 2001 B1
6287316 Agarwal et al. Sep 2001 B1
6290685 Insley et al. Sep 2001 B1
6293917 Augustine et al. Sep 2001 B1
6325798 Edwards et al. Dec 2001 B1
6345623 Heaton et al. Feb 2002 B1
6364853 French et al. Apr 2002 B1
6394142 Woelfel et al. May 2002 B1
6398767 Fleischmann Jun 2002 B1
6410427 Hu Jun 2002 B1
6440427 Wadström Aug 2002 B1
6458109 Henley et al. Oct 2002 B1
6471685 Johnson Oct 2002 B1
6472581 Muramatsu et al. Oct 2002 B1
6488643 Tumey et al. Dec 2002 B1
6491682 Paderni Dec 2002 B2
6491693 Lytinas Dec 2002 B1
6493568 Bell et al. Dec 2002 B1
6500112 Khouri Dec 2002 B1
6520982 Boynton et al. Feb 2003 B1
6553998 Heaton et al. Apr 2003 B2
6557704 Randolph May 2003 B1
6559773 Berry May 2003 B1
6599277 Neubert Jul 2003 B2
6626891 Ohmstede Sep 2003 B2
6638270 Johnson Oct 2003 B2
6648862 Watson Nov 2003 B2
6663349 Discenzo et al. Dec 2003 B1
6685681 Lockwood et al. Feb 2004 B2
6691047 Fredericks Feb 2004 B1
6695823 Lina et al. Feb 2004 B1
6695824 Howard et al. Feb 2004 B2
6719779 Daoud Apr 2004 B2
6749592 Lord Jun 2004 B2
6752794 Lockwood et al. Jun 2004 B2
6755807 Rick, Jr. et al. Jun 2004 B2
6764462 Risk, Jr. et al. Jul 2004 B2
6767334 Randolph Jul 2004 B1
6800074 Henley et al. Oct 2004 B2
6814079 Heaton et al. Nov 2004 B2
6824533 Risk, Jr. et al. Nov 2004 B2
6855135 Lockwood et al. Feb 2005 B2
6856821 Johnson Feb 2005 B2
6936037 Bubb et al. Aug 2005 B2
6951553 Bubb et al. Oct 2005 B2
6966889 Saab Nov 2005 B2
6979324 Bybordi et al. Dec 2005 B2
6994702 Johnson Feb 2006 B1
6994708 Johnson Feb 2006 B2
7004915 Boynton et al. Feb 2006 B2
7022113 Lockwood et al. Apr 2006 B2
7070584 Johnson et al. Jul 2006 B2
7077832 Fleischmann Jul 2006 B2
7108683 Zamierowski Sep 2006 B2
7117869 Heaton et al. Oct 2006 B2
7128735 Weston Oct 2006 B2
7144390 Hannigan et al. Dec 2006 B1
7195624 Lockwood et al. Jul 2007 B2
7245291 Sharif et al. Jul 2007 B2
7276051 Henley et al. Oct 2007 B1
7338482 Lockwood et al. Mar 2008 B2
20010029956 Argenta et al. Oct 2001 A1
20010034499 Sessions et al. Oct 2001 A1
20010043943 Coffey Nov 2001 A1
20010052681 Deavila Dec 2001 A1
20020065494 Lockwood et al. May 2002 A1
20020077661 Saadat Jun 2002 A1
20020082668 Ingman Jun 2002 A1
20020085952 Ellingboe et al. Jul 2002 A1
20020115951 Norstrem et al. Aug 2002 A1
20020115952 Johnson et al. Aug 2002 A1
20020120185 Johnson Aug 2002 A1
20020143286 Tumey Oct 2002 A1
20020161317 Risk et al. Oct 2002 A1
20020193723 Batdorf, Sr. et al. Dec 2002 A1
20030032951 Rittman, III et al. Feb 2003 A1
20030077311 Vyakarnam et al. Apr 2003 A1
20030093041 Risk et al. May 2003 A1
20030143352 Yang et al. Jul 2003 A1
20030208149 Coffey Nov 2003 A1
20030219469 Johnson et al. Nov 2003 A1
20030225441 Boynton et al. Dec 2003 A1
20040030304 Ingman Feb 2004 A1
20040039415 Zamierowski Feb 2004 A1
20040064111 Lockwood et al. Apr 2004 A1
20040167482 Watson Aug 2004 A1
20040225208 Johnson Nov 2004 A1
20040243073 Lockwood et al. Dec 2004 A1
20040249353 Risks, Jr. et al. Dec 2004 A1
20040260230 Randolph Dec 2004 A1
20050004534 Lockwood et al. Jan 2005 A1
20050010153 Lockwood et al. Jan 2005 A1
20050033197 Cottler Feb 2005 A1
20050065484 Watson, Jr. Mar 2005 A1
20050070858 Lockwood et al. Mar 2005 A1
20050085795 Lockwood et al. Apr 2005 A1
20050090787 Risk, Jr. et al. Apr 2005 A1
20050131327 Lockwood et al. Jun 2005 A1
20050177190 Zamierowski Aug 2005 A1
20050182445 Zamierowski Aug 2005 A1
20050182446 DeSantis Aug 2005 A1
20050234485 Seegert et al. Oct 2005 A1
20050234510 Zamierowski Oct 2005 A1
20050240220 Zamierowski Oct 2005 A1
20050283105 Heaton et al. Dec 2005 A1
20060015087 Risk, Jr. et al. Jan 2006 A1
20060029650 Coffey Feb 2006 A1
20060029675 Ginther Feb 2006 A1
20060041247 Petrosenko et al. Feb 2006 A1
20060079852 Bubb et al. Apr 2006 A1
20060129137 Lockwood et al. Jun 2006 A1
20060149170 Boynton et al. Jul 2006 A1
20060149171 Vogel et al. Jul 2006 A1
20060173253 Ganapathy et al. Aug 2006 A1
20060189910 Johnson et al. Aug 2006 A1
20060213527 Argenta et al. Sep 2006 A1
20070005028 Risk, Jr. et al. Jan 2007 A1
20070014837 Johnson et al. Jan 2007 A1
20070021697 Ginther et al. Jan 2007 A1
20070021698 Fleischmann Jan 2007 A1
20070032778 Heaton et al. Feb 2007 A1
20070038172 Zamierowski Feb 2007 A1
20070156104 Lockwood et al. Jul 2007 A1
Foreign Referenced Citations (121)
Number Date Country
550575 Aug 1982 AU
745271 Apr 1999 AU
755496 Feb 2002 AU
1127488 Jul 1982 CA
2005436 Jun 1990 CA
2303085 Mar 1999 CA
0372727 Mar 1923 DE
26 40 413 Mar 1978 DE
28 09 828 Sep 1978 DE
3102674 Sep 1982 DE
3539533 May 1987 DE
40 12 232 Oct 1991 DE
4111122 Apr 1993 DE
43 06 478 Sep 1994 DE
29504378 Oct 1995 DE
29715634 Nov 1997 DE
19722075 Oct 1998 DE
0064055 Oct 1945 DK
0 100 148 Feb 1984 EP
0117632 Sep 1984 EP
0 161 865 Nov 1985 EP
0 358 302 Mar 1990 EP
0424165 Apr 1991 EP
0485657 May 1992 EP
0547496 Jun 1993 EP
0853 950 Jul 1998 EP
0 777 504 Oct 1998 EP
0 880 953 Dec 1998 EP
1 088 569 Apr 2001 EP
1100574 May 2001 EP
1 190 732 Mar 2002 EP
1 018 967 Aug 2004 EP
1726276 Nov 2006 EP
500253 Mar 1920 FR
1303238 Jul 1962 FR
3090 Jun 1902 GB
641061 Aug 1950 GB
692578 Jun 1953 GB
1549756 Aug 1979 GB
1584772 Feb 1981 GB
2 195 255 Apr 1988 GB
2 197 789 Jun 1988 GB
2220357 Jan 1990 GB
2 235 877 Mar 1991 GB
2307180 May 1997 GB
2307180 May 1997 GB
2329127 Mar 1999 GB
2333965 Aug 1999 GB
2336546 Oct 1999 GB
2342584 Apr 2000 GB
2344531 Jun 2000 GB
2351025 Dec 2000 GB
2356148 May 2001 GB
199304 Jan 1989 HU
20557 Apr 1990 HU
51150 Apr 1990 HU
P9006526 Jan 1993 HU
P9302966 Jul 1996 HU
76351 Aug 1997 HU
215563 Aug 1997 HU
1666 Dec 1999 HU
4-129536 Apr 1992 JP
6-327761 Nov 1994 JP
0084485 Oct 1935 SE
71559 Apr 2002 SG
587941 Jan 1978 SU
1268175 Nov 1986 SU
WO8002182 Oct 1980 WO
WO8704626 Aug 1987 WO
WO 8904158 May 1989 WO
WO9010424 Sep 1990 WO
WO 9011795 Oct 1990 WO
WO 9100718 Jan 1991 WO
WO9108793 Jun 1991 WO
WO 9116030 Oct 1991 WO
WO9212750 Aug 1992 WO
WO9219313 Nov 1992 WO
WO 9220299 Nov 1992 WO
WO9309715 Mar 1993 WO
WO 9309727 May 1993 WO
WO 9400090 Jan 1994 WO
WO 9420041 Sep 1994 WO
9605873 Feb 1996 WO
WO 9605873 Feb 1996 WO
WO 9615745 May 1996 WO
WO9718007 May 1997 WO
WO9802205 Jan 1998 WO
9838944 Sep 1998 WO
9901173 Jan 1999 WO
WO 9913793 Mar 1999 WO
WO9923990 May 1999 WO
9959816 Nov 1999 WO
WO 0007653 Feb 2000 WO
WO 0015277 Mar 2000 WO
0021586 Apr 2000 WO
WO 0021586 Apr 2000 WO
WO 0026100 May 2000 WO
WO0028890 May 2000 WO
WO 0030567 Jun 2000 WO
WO 0032247 Jun 2000 WO
WO 0038552 Jul 2000 WO
WO 0038755 Jul 2000 WO
WO 0042958 Jul 2000 WO
WO 0059418 Oct 2000 WO
WO 0059424 Oct 2000 WO
WO 0061206 Oct 2000 WO
WO 0064394 Nov 2000 WO
WO 0134223 May 2001 WO
WO 0137922 May 2001 WO
WO 0149233 Jul 2001 WO
0185248 Nov 2001 WO
0189431 Nov 2001 WO
WO 0185248 Nov 2001 WO
WO 0189431 Nov 2001 WO
WO0238091 May 2002 WO
0243634 Jun 2002 WO
03005943 Jan 2003 WO
03045492 Jun 2003 WO
WO03057071 Jul 2003 WO
WO03057307 Jul 2003 WO
2003101508 Dec 2003 WO
Related Publications (1)
Number Date Country
20040243073 A1 Dec 2004 US
Provisional Applications (1)
Number Date Country
60344620 Dec 2001 US