The present disclosure relates generally to wound therapy systems and devices, and more particularly to a dressing kit for use with negative pressure wound therapy.
Negative pressure wound therapy (NPWT) is a type of wound therapy that involves applying negative pressure (relative to atmospheric pressure) to a wound bed to promote wound healing. NPWT systems often include a dressing that covers the wound bed. Once applied to the wound bed, the dressing typically remains in place for several days before the dressing is removed. A patient or caregiver may desire to inspect the wound bed during this time to monitor the progress of healing and make adjustments to treatment as needed for various regions of the wound bed.
Various dressing materials are known to provide various therapeutic benefits to the wound when used in NPWT. Meanwhile, different therapeutic benefits may be suited for different portions of a wound bed. For example, one portion of the wound bed may require a dressing with high fluid absorption, while another portion may benefit from debridement by a relatively rough dressing material. A caregiver may therefore desire to use various dressing materials to treat a single wound bed. It would be beneficial to provide an NPWT dressing that provides in-situ wound viewing capability and/or that permits customization with various other dressing materials to facilitate discrete, regional changes to the wound therapy provided with the dressing.
One implementation of the present disclosure is dressing. The dressing includes a foam layer, a plurality of cores extending substantially through the foam layer, and a drape sealable over the foam layer and a wound bed. The drape is couplable to a pump operable to create a negative pressure in the substantially-airtight volume. Each core is substantially removable from the foam layer to reveal a channel through the foam layer. Each core is defined by perforations that facilitate separation of the core from the foam layer.
In some embodiments, each core is substantially removable from the foam layer by cutting a hole through the drape at a location of the core and extracting the core from the foam layer through the hole. In some embodiments, the dressing also includes a patch sealable over the hole to reseal the substantially-airtight volume. In some embodiments, a cutting template positioned between the drape and the selected core facilitates cutting the hole through the drape. In some embodiments, the wound bed is visible through the channel when the core is removed. In some embodiments, the channel is configured to receive a replacement core. The foam layer and the replacement core have one or more differing physical characteristics.
Another implementation of the present disclosure is a dressing kit. The dressing kit includes a foam layer with a plurality of removable cores extending therethrough. The dressing kit also includes a drape configured to seal the foam layer over a wound bed. The drape allows a hole to be created therethrough. The hole allows one of the plurality of removable cores to be removed from the foam layer to create a channel through the foam layer. The dressing kit also includes one or more patches. Each patch is sealable to the drape to close the hole in the drape.
In some embodiments, the dressing kit also includes a variety of replacement cores configured to be received by the channel. The variety of replacement cores are associated with a variety of therapeutic benefits. In some embodiments, the replacement cores include one or more of a high-density core, a low-density core, a debridement core, a cleansing core, a silver ion foam core, a hydrophobic core, a hydrophilic core, or a fluid collection core.
In some embodiments, the dressing kit also includes one or more cutting templates. Each cutting template is positionable between one of the plurality of removable cores and the drape to facilitate creation of the hole. In some embodiments, each cutting template has a shape that matches a cross-sectional shape of one or more of the plurality of removable cores.
In some embodiments, the dressing kit also includes a trackpad couplable to the drape. The trackpad is configured to provide fluid communication between the wound bed and a pump operable to create a negative pressure at the wound bed. In some embodiments, replacing one or more of the removable cores with one or more of the variety of replacement cores alters a compressibility profile of the foam dressing.
Another implementation of the present disclosure is a method for treating a wound. The method includes placing a foam layer on the wound. A plurality of cores extends through the foam layer. The method also includes sealing the foam layer over the wound with a drape, cutting a hole through the drape, removing a first core of the plurality of cores through the hole to create a channel through the foam layer to the wound, placing the first core or a replacement core in the channel, and sealing the hole with a patch.
In some embodiments, the replacement core has one or more material properties different than the first core. In some embodiments, the replacement core includes a high-density core, a low-density core, a debridement core, a cleansing core, a sliver foam core, a hydrophobic core, a hydrophilic core, or a fluid collection core.
In some embodiments, the method also includes targeting a therapy to a portion of the wound visible through the channel by selecting the replacement core from a kit of replacement cores having various therapeutic benefits and placing the replacement core in the channel proximate the portion. The replacement core is configured to provide the therapy.
In some embodiments, the method also includes cutting a plurality of additional holes through the drape, removing additional cores of the plurality of cores through the plurality of additional holes, replacing the additional cores with a plurality of replacement cores, and resealing the holes with a plurality of patches.
In some embodiments, the plurality of replacement cores has a variety of densities. The method also includes customizing a compressibility profile of the foam layer by arranging the plurality of replacement cores to provide the foam layer with a variable density.
Referring now to
The therapy device 102 is configured to provide negative pressure wound therapy by reducing the pressure at wound bed 108. More particularly, therapy device 102 includes a pump 114 operable to draw a negative pressure (relative to atmospheric pressure) at wound bed 108 by removing wound exudate, air, and other fluids or debris from the foam layer 112 via tube 104. Wound exudate may include water and dissolved solutes such as blood, plasma proteins, white blood cells, platelets, and red blood cells. Removing fluid from the wound bed 108 helps to minimize fluid pooling in the wound bed 108 and prevent complications associated with maceration in order to promote wound healing. Negative pressure at the wound bed 108 may increase blood flow to the wound bed 108, reduce infection risks, and provide other benefits to the patient.
In use, the dressing 106 may preferably remain adhered to a patient for several days to minimize disruptions to the healing of the wound bed 108. During that time period, as described in detail below, the dressing 106 is configured to allow a caregiver to access the wound bed 108 and customize therapy for the wound bed 108 without removing the dressing 106. The dressing 106 thus allows a caregiver to continue to monitor the wound bed 108 and update treatment as needed without removing the dressing 106 or significantly disrupting the healing process.
Referring now to
The foam layer 112 includes a plurality of removable cores (e.g., modules, etc.), shown in the embodiment of
In the embodiments shown herein, each removable core 201-209 is substantially cylindrical. In various other embodiments, the removable cores 201-209 may be rectangular prisms, pyramidal sections, conical sections, frustoconical sections, and/or some other form including an irregular or customizable form. The removable cores 201-209 extend through the foam layer 112 and may be coterminous with the foam layer 112 (i.e., each removable core 201-209 may have a height equal to a thickness of the foam layer 112). The removable cores 201-209 are each shown to include a dimple 210 that may facilitate identification, location, and manipulation of the removable cores 201-209. The removable cores 201-209 may be manufactured from the same material and have the same properties as the rest of the foam layer 112, or may have a different color, density, or other property to facilitate identification, location, and manipulation of the removable cores 201-209.
The removable cores 201-209 are each removable from the foam layer 112. Before removal, each removable core 201-209 may be attached to the foam layer 112 by several foam “bridges” separated by perforations. In other words, each removable core 201-209 may be defined by a ring of perforations that extends around the removable core 201-209. Each removable core 201-209 is thereby configured to be selectively removed from the foam layer 112 by tearing or cutting the foam bridges (i.e., tearing along the perforations) to separate the removable core 201-209 from the foam layer 112. The selected removable core 201-209 can then be freely extracted from the foam layer 112.
As shown in
Referring now to
Still referring to
The foam layer 112 of the dressing kit 300 is described above with reference to
The trackpad 302 is configured to couple the drape 110 to the tube 104 to place the dressing 106 in fluid communication with the therapy device 102. The trackpad 302 includes an adhesive to couple the trackpad 302 to the drape 110. The tube 104 is coupled to the trackpad 302 such that fluid can flow through the trackpad 302 and into the tube 104. When the dressing 106 is applied to a wound bed 108 as described herein, the trackpad 302 allows air to flow from the foam layer 112 to the therapy device 102 such that the pump 114 can create a negative pressure at the wound bed 108. The trackpad 302 may also include one or more sensors to facilitate NPWT.
The cutting templates 304 of the dressing kit 300 are configured to assist a user in cutting a hole through the drape 110 through which a removable core 201-209 can be removed and/or through which the tube 104 may be placed in fluid communication with the foam layer 112 by the trackpad 302. Various designs for the cutting templates 304 are possible, for example as shown and described in U.S. Provisional Patent Application No. 62/656,642 filed Apr. 12, 2018, incorporated by reference in its entirety herein, and U.S. Design Patent Application 29/643,866, filed Apr. 12, 2018 incorporated by reference in its entirety herein. The dressing kit 300 may include any suitable number of cutting templates 304 (e.g., one, three, five), for example an equal number of cutting templates 304 and removable cores 201-209.
The patches 306 of the dressing kit 300 are configured to reseal holes cut in the drape 110 using the cutting templates 304. The patches 306 are made of a substantially air-impermeable material and include an adhesive that allows the patches 306 to be sealed to the drape 110. The patches 306 may be shaped substantially the same as the cutting templates 304 but with a slightly larger area (i.e., an area greater than the area of a hole made using a cutting template 304). The patches 306 may include an adhesive or other coupling that allows the patches 306 to be selectively and repeatedly sealed to the drape 110, removed from the drape 110, and resealed to the drape 110. Each patch 306 may include an adhesive-free tab that facilitates removal of the patch 306 from the drape 110. The dressing kit 300 may include any number of patches 306 (e.g., 3, 5, 10), for example the same number of patches 306 as removable cores 201-209.
The replacement cores 308 of the drape 110 are configured to take the place of the removable cores 201-209 in the foam layer 112. Accordingly, the replacement cores 308 are sized and shaped substantially the same as the removable cores 201-209. The replacement cores 308 may differ from the removable cores 201-209 in chemical composition, density, color, absorptivity, and/or some other physical characteristics. In some embodiments, a replacement core 308 may include layers of varied materials or densities.
The dressing kit 300 may include a variety of replacement cores 308 associated with one or more of a variety of therapeutic benefits. In various embodiments, the variety of replacement cores 308 includes, by way of non-limiting example, one or more of a high-density core, a low-density core, a debridement core, a cleansing core, a sliver ion foam core, a hydrophobic core, a hydrophilic core, and/or a fluid collection core. The variety of replacement cores 308 allows a replacement core 308 to be selected from the dressing kit 300 and inserted into the foam layer 112 to customize a treatment profile of the dressing 106.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
While the dressing 106 is in the configuration shown in
Referring now to
Referring now to
Referring now to
The wound bed 108 may be further inspected and the dressing 106 may be further customized following similar steps to those shown in
Although
Referring now to
The dressing 1700 includes an adhesive border 1702 surrounding a treatment portion 1704. The adhesive border 1702 includes an adhesive configured to adhere the dressing 1700 to a patient with the treatment portion 1704 positioned at a wound bed 108. The adhesive border 1702 may form a substantially airtight seal with the patient's skin (e.g., with the periwound 400) to allow a negative pressure to be created and maintained at the wound bed 108.
The treatment portion 1704 includes a fenestrated film layer 1800 that abuts the wound bed 108 when the dressing 1700 is applied, a foam layer 1802 that abuts the fenestrated film layer 1800, and a drape layer 1804 that abuts the foam layer 1802. The fenestrated film layer 1800 provides a surface that encourages wound healing while allowing air and fluid to flow therethrough. The foam layer 1802 may be manufactured from a polyurethane foam, for example V.A.C.® GranuFoam™ by Acelity. The drape layer 1804 may be substantially impermeable to air and fluid, combining with the adhesive border 1702 to provide a substantially airtight volume at the wound bed 108. The substantially airtight volume includes the foam layer 1802 and the fenestrated film layer 1800. The drape layer 1804 is couplable to a trackpad 302 to allow a negative pressure to be established and maintained at the wound bed 108 by the pump 114 of the therapy device 102. The dressing 1700 may be manufactured and distributed as a unified product (i.e., as opposed to a dressing kit for user-assembly).
The foam layer 1802 includes removable cores 1806. In the embodiment shown in
As shown in
As utilized herein, the terms “approximately,” “about,” “substantially,” and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numerical ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and are considered to be within the scope of the disclosure.
Other arrangements and combinations of the elements described herein and shown in the Figures are also contemplated by the present disclosure. The construction and arrangement of the systems and apparatuses as shown in the various exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.). For example, the position of elements can be reversed or otherwise varied and the nature or number of discrete elements or positions can be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. Other substitutions, modifications, changes, and omissions can be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present disclosure.
This application claims the benefit of priority to U.S. Provisional Application No. 62/699,888, filed on Jul. 18, 2018, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1355846 | Rannells | Oct 1920 | A |
2547758 | Keeling | Apr 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans et al. | Jul 1954 | A |
2910763 | Lauterbach | Nov 1959 | A |
2969057 | Simmons | Jan 1961 | A |
3066672 | Crosby, Jr. et al. | Dec 1962 | A |
3367332 | Groves | Feb 1968 | A |
3520300 | Flower, Jr. | Jul 1970 | A |
3568675 | Harvey | Mar 1971 | A |
3648692 | Wheeler | Mar 1972 | A |
3682180 | McFarlane | Aug 1972 | A |
3826254 | Mellor | Jul 1974 | A |
4080970 | Miller | Mar 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4139004 | Gonzalez, Jr. | Feb 1979 | A |
4165748 | Johnson | Aug 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4233969 | Lock et al. | Nov 1980 | A |
4245630 | Lloyd et al. | Jan 1981 | A |
4256109 | Nichols | Mar 1981 | A |
4261363 | Russo | Apr 1981 | A |
4275721 | Olson | Jun 1981 | A |
4284079 | Adair | Aug 1981 | A |
4297995 | Golub | Nov 1981 | A |
4333468 | Geist | Jun 1982 | A |
4373519 | Errede et al. | Feb 1983 | A |
4382441 | Svedman | May 1983 | A |
4392853 | Muto | Jul 1983 | A |
4392858 | George et al. | Jul 1983 | A |
4419097 | Rowland | Dec 1983 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4475909 | Eisenberg | Oct 1984 | A |
4480638 | Schmid | Nov 1984 | A |
4525166 | Leclerc | Jun 1985 | A |
4525374 | Vaillancourt | Jun 1985 | A |
4540412 | Van Overloop | Sep 1985 | A |
4543100 | Brodsky | Sep 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4551139 | Plaas et al. | Nov 1985 | A |
4569348 | Hasslinger | Feb 1986 | A |
4605399 | Weston et al. | Aug 1986 | A |
4608041 | Nielsen | Aug 1986 | A |
4640688 | Hauser | Feb 1987 | A |
4655754 | Richmond et al. | Apr 1987 | A |
4664662 | Webster | May 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4733659 | Edenbaum et al. | Mar 1988 | A |
4743232 | Kruger | May 1988 | A |
4758220 | Sundblom et al. | Jul 1988 | A |
4787888 | Fox | Nov 1988 | A |
4826494 | Richmond et al. | May 1989 | A |
4838883 | Matsuura | Jun 1989 | A |
4840187 | Brazier | Jun 1989 | A |
4863449 | Therriault et al. | Sep 1989 | A |
4872450 | Austad | Oct 1989 | A |
4878901 | Sachse | Nov 1989 | A |
4897081 | Poirier et al. | Jan 1990 | A |
4906233 | Moriuchi et al. | Mar 1990 | A |
4906240 | Reed et al. | Mar 1990 | A |
4919654 | Kalt | Apr 1990 | A |
4941882 | Ward et al. | Jul 1990 | A |
4953565 | Tachibana et al. | Sep 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4985019 | Michelson | Jan 1991 | A |
5037397 | Kalt et al. | Aug 1991 | A |
5086170 | Luheshi et al. | Feb 1992 | A |
5092858 | Benson et al. | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5134994 | Say | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5215522 | Page et al. | Jun 1993 | A |
5232453 | Plass et al. | Aug 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5278100 | Doan et al. | Jan 1994 | A |
5279550 | Habib et al. | Jan 1994 | A |
5298015 | Komatsuzaki et al. | Mar 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5344415 | DeBusk et al. | Sep 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5437622 | Carion | Aug 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5527293 | Zamierowski | Jun 1996 | A |
5549584 | Gross | Aug 1996 | A |
5556375 | Ewall | Sep 1996 | A |
5607388 | Ewall | Mar 1997 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
6071267 | Zamierowski | Jun 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
6241747 | Ruff | Jun 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6493568 | Bell et al. | Dec 2002 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6814079 | Heaton et al. | Nov 2004 | B2 |
20020077661 | Saadat | Jun 2002 | A1 |
20020115951 | Norstrem et al. | Aug 2002 | A1 |
20020120185 | Johnson | Aug 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20120116334 | Albert | May 2012 | A1 |
20160120706 | Collinson et al. | May 2016 | A1 |
20170007751 | Hartwell | Jan 2017 | A1 |
20170143552 | Hartwell | May 2017 | A1 |
Number | Date | Country |
---|---|---|
550575 | Mar 1986 | AU |
745271 | Mar 2002 | AU |
755496 | Dec 2002 | AU |
2005436 | Jun 1990 | CA |
26 40 413 | Mar 1978 | DE |
43 06 478 | Sep 1994 | DE |
29 504 378 | Sep 1995 | DE |
0100148 | Feb 1984 | EP |
0117632 | Sep 1984 | EP |
0161865 | Nov 1985 | EP |
0358302 | Mar 1990 | EP |
1018967 | Jul 2000 | EP |
692578 | Jun 1953 | GB |
2 195 255 | Apr 1988 | GB |
2 197 789 | Jun 1988 | GB |
2 220 357 | Jan 1990 | GB |
2 235 877 | Mar 1991 | GB |
2 329 127 | Mar 1999 | GB |
2 333 965 | Aug 1999 | GB |
4129536 | Aug 2008 | JP |
71559 | Apr 2002 | SG |
8002182 | Oct 1980 | WO |
8704626 | Aug 1987 | WO |
90010424 | Sep 1990 | WO |
93009727 | May 1993 | WO |
94020041 | Sep 1994 | WO |
9605873 | Feb 1996 | WO |
9718007 | May 1997 | WO |
9913793 | Mar 1999 | WO |
WO-2014020443 | Feb 2014 | WO |
WO-2015110410 | Jul 2015 | WO |
WO-2015110410 | Jul 2015 | WO |
WO-2015193257 | Dec 2015 | WO |
WO-2015193257 | Dec 2015 | WO |
Entry |
---|
“A randomised controlled trial of the clinical effectiveness of multi-layer silicone foam dressings for the prevention of pressure injuries in high-risk aged care residents: The Border III Trial”, Santamaria Nick et al., first published Apr. 10, 2018, International Wound Journal, vol. 15, Issue 3. (Year: 2018). |
International Search Report and Written Opinion in International Application No. PCT/US2019/042009, dated Oct. 7, 2019. |
Louis C. Argenta, MD and Michael J. Morykwas, PHD; Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Clinical Experience; Annals of Plastic Surgery; vol. 38, No. 6, Jun. 1997; pp. 563-576. |
Susan Mendez-Eatmen, RN; “When wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24. |
James H. Blackburn II, MD et al.: Negative-Pressure Dressings as a Bolster for Skin Grafts; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457; Lippincott Williams & Wilkins, Inc., Philidelphia, PA, USA. |
John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letter to the Editor, British Journal of Plastic Surgery, 1998, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK. |
S.E. Greer, et al. “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin” British Journal of Plastic Surgery (2000), 53, pp. 484-487. |
George V. Letsou, MD., et al; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, 31, 1990, pp. 634-639. |
Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80. |
International Search Report for PCT International Application PCT/GB95/01983; dated Nov. 23, 1995. |
PCT International Search Report for PCT International Application PCT/GB98/02713; dated Jan. 8, 1999. |
PCT Written Opinion; PCT International Application PCT/GB98/02713; dated Jun. 8, 1999. |
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; dated Jan. 15, 1998 & Apr. 29, 1997. |
PCT Written Opinion, PCT International Application PCT/GB96/02802; dated Sep. 3, 1997. |
Dattilo, Philip P., Jr., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5. |
Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof. |
Davydov, Yu. A., et al; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof. |
Yusupov. Yu.N., et al; “Active Wound Drainage”, Vestnki Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof. |
Davydov, Yu.A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirugi, Oct. 1988, pp. 48-52, and 8 page English translation thereof. |
Davydov, Yu.A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof. |
Chariker, Mark E., M.D., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63. |
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24. |
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, pp. 2. |
Svedman, P.: “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534. |
Chinn, Steven D. et al.: “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81. |
Arnljots, Björn et al.: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., No. 19, 1985, pp. 211-213. |
Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221. |
Svedman, P. et al.: “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous of Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133. |
N.A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of Soft Tissues,” Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986); pp. 94-96 (copy and certified translation). |
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246. |
G. {hacek over (Z)}ivadinovi?, V. ?uki?, {hacek over (Z)}. Maksimovi?, ?. Radak, and p. Pe{hacek over (s)}ka, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (copy and certified translation). |
F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585. |
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (copy and certified translation). |
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370. |
D.E. Tribble, An Improved Sump Drain-Irrigation Device of Simple Construction, Archives of Surgery 105 (1972) pp. 511-513. |
M.J. Morykwas, L.C. Argenta, E.I. Shelton-Brown, and W. McGuirt, “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies and Basic Foundation,” Annals of Plastic Surgery 38 (1997), pp. 553-562 (Morykwas I). |
C.E. Tennants, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax,” Journal of the American Medical Association 64 (1915), pp. 1548-1549. |
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211. |
V.A. Solovev et al., Guidelines, The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”). |
V.A. Kuznetsov & N.a. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”). |
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”). |
V.A.C. ® Therapy Clinical Guidelines: A Reference Source for Clinicians; Jul. 2007. |
Number | Date | Country | |
---|---|---|---|
20200023106 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
62699888 | Jul 2018 | US |