The present invention relates to a woven article and a method for detecting a stress distribution of the woven article under stress, and more particularly, to a method to obtain the stress distribution through the change of the resistance value after a woven article is under stress.
Long sitting, long standing, bad posture or excessive exercise may cause varicose veins in the legs or neck/waist soreness, and the muscle stress will change accordingly.
That is, by obtaining abnormal changes of muscle stress, people can instantly correct the bad posture or take a rest.
A conventional method to know the change of muscle stress uses many stress detectors. The stress detectors are attached to the muscles to get the change of muscle stress.
However, the stress detectors are expensive. The method of using many stress detectors to know the stress on the muscles is not cost-effective.
The primary object of the present invention is to provide a woven article and a method for detecting a stress distribution of the woven article under stress.
According to one aspect of the present invention, a method for detecting a stress distribution of a woven article under stress is provided. The method comprises the steps of: defining more than one direction on a woven body; connecting a plurality of spaced metallic yarns to the woven body, the metallic yarns each extending in the direction; exerting a stress on the woven body and providing a resistance sensor to detect a resistance value generated by the metallic yarns on the woven body; and obtaining a stress distribution of the woven body under stress according to the resistance value detected by the resistance sensor.
Preferably, the metallic yarns are combined with the woven body in a plurality of directions so that the metallic yarns are arranged in a staggered manner. The metallic yarns generating the resistance value in different directions are intersected to form a compressive area. In different compressive areas, a stress distribution ratio of each of the compressive areas is obtained by averaging the resistance values of the plurality of metal yarns of each of the compressive areas. After an actual stress of one of the compressive areas is measured, the actual stress of each of the compressive areas is obtained according to the stress distribution ratio.
Preferably, the metallic yarns are combined with the woven body in three to five directions so that the metallic yarns are staggered in the three to five directions to obtain the compressive area.
According to another aspect of the present invention, a woven article is provided. The woven article comprises a woven body, a plurality of metallic yarns, and a resistance sensor. The woven body defines more than one direction thereon. The metallic yarns are connected to the woven body and spaced apart from each other. The metallic yarns each extend in the direction. The resistance sensor is connected with each of the metallic yarns.
Preferably, a distance between adjacent two of the metallic yarns in the same direction is in the range of 2-4 cm.
Preferably, the distance between adjacent two of the metallic yarns in the same direction is 3 cm.
Preferably, the metallic yarns are combined with the woven body in three to five directions so that the metallic yarns are staggered in the three to five directions.
Preferably, the resistance sensor is connected with each of the metallic yarns in a vertical direction thereof.
Preferably, each of the metallic yarns is connected to the woven body in a criss-cross pattern.
According to the above technical features, the present invention can achieve the following effects:
1. When the woven article is under stress, through the change of the resistance value, the stress distribution can be obtained. When there are multiple compressive areas, the resistance ratio between the multiple compressive areas can be obtained. By detecting the actual stress of a single compressive area, the actual stress of the other multiple compressive areas can be obtained according to the resistance ratio.
2. The metallic yarns are cheap. After multiple compressive areas are detected, only a single stress detector is used to detect the actual stress of a single compressive area to obtain the actual stress of all the compressive areas. Thus, the cost of use is lower.
Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings.
Based on the above technical features, the effects of the woven article and the method for detecting the stress distribution of the woven article under stress of the present invention will be clearly shown in the following embodiments.
Referring to
The woven body (1) defines more than one direction thereon, including a first direction (2) and a second direction (3) in this embodiment. A plurality of metallic yarns (4) are provided and connected on the woven body (1).
Referring to
Therefore, according to the resistance values generated by the metallic yarns (4), the stress distribution of the user's shank under stress can be obtained. As shown in
The user uses a stress detector to measure the actual stress of one of the compressive areas (6) (using the stress detector to detect the stress on the user's shank is the prior art, so it won't be described hereinafter). The actual stress of each compressive area (6) can be obtained according to the stress distribution ratio of each compressive area (6). The metallic yarn (4) is cheaper than the stress detector. Therefore, after multiple compressive areas (6) are detected, only a single stress detector is used to detect the actual stress of a single compressive area (6) to obtain the actual stress of all the compressive areas (6). Thus, the cost of use is lower.
Furthermore, the distance between two adjacent metallic yarns (4) is 3 cm. This spacing design can detect the different compressive areas (6) on the user's shank more accurately.
Referring to
Referring to
Although particular embodiments of the present invention have been described in detail for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the present invention. Accordingly, the present invention is not to be limited except as by the appended claims.