This invention relates to a woven mat fabric with fused layers comprising a plurality of woven layers, where each woven layer contains a plurality of fusible warp elements interwoven with a plurality of fusible weft elements. The weft and warp elements within each layer are fused to one another, but the weft and warp elements of one layer are not consolidated to the weft and warp elements of the adjacent layers. Methods of forming the interwoven composite are also provided.
It has been proposed to form tape structures from polypropylene film coated with a layer of propylene copolymer including ethylene units such that the coating has a lower softening point than the core. Such tape structures are disclosed, for example, in U.S. Pat. No. 5,578,370 the teachings of which are hereby incorporated by reference in their entirety. U.S. Patent Application 2004/0242103A1 (incorporated by reference) has also proposed to form monoaxially drawn tape structures characterized by substantial draw ratios and incorporating a central layer of a polyolefin with one or two covering layers of a polyolefin from the same class as the central layer. The DSC melting point of the outer layers is lower than that of the central layer to facilitate heat bonding. Such drawn tape elements may be interwoven so as to form a mat structure which is then subjected to heat thereby fusing the tape elements in place. Multiple layers of such interwoven mat structures may be combined to form moldable structures of substantial thickness that may be shaped into three-dimensional configurations.
While the moldable mat structures of the prior art are highly useful for a number of end uses, the past constructions are generally not susceptible to strong bonding to underlying substrates such as adhesives, foams, rubbers and the like. In some applications it may be desirable to bond such structures to underlying substrate structures. Accordingly, the need exists to provide a system that facilitates bonding to such substrates while nonetheless maintaining the desirable features of moldability provided by prior mat structures. There also exists a need for a moldable mat structure with increased physical properties, such as strength.
The present invention provides advantages and/or alternatives over the prior art by providing a woven mat fabric with fused layers comprising a plurality of woven layers, where each woven layer contains a plurality of warp elements interwoven with a plurality of weft elements. The warp and weft elements contain polymeric strips which have a core layer disposed in layered relation with at least one surface layer. The core layer contains a first strain oriented polymer composition and having a first softening point and the surface layer contains a second polymer composition having a softening point lower than the first softening point. The weft and warp elements within each layer are fused to one another, but the weft and warp elements of one layer are not consolidated to the weft and warp elements of the adjacent layers.
The accompanying drawings which are incorporated in and which constitute a part of this specification illustrate several exemplary constructions and procedures in accordance with the present invention and, together with the general description of the invention given above and the detailed description set forth below, serve to explain the principles of the invention wherein:
Exemplary embodiments of the present invention will now be described by reference to the accompanying drawings, in which, to the extent possible, like reference numerals are used to designate like components in the various views. Turning now to the drawings,
It is contemplated that the core layer 12 of the film 10 is preferably made up of a molecularly-oriented thermoplastic polymer. The core layer 12 is compatibly bonded to each of surface layers 14, 14′ between their contiguous surfaces. It is further contemplated that the surface layers 14, 14′ have a softening temperature, or melting temperature, lower than that of the core layer 12. By way of example only, it is contemplated that the core layer 12 is a polyolefin polymer such as polypropylene, polyethylene. According to one potentially preferred practice, the core layer 12 may be polypropylene or polyethylene. The core layer 12 may account for about 50-99 wt. of the film 10, while the surface layers 14, 14′ account for about 1-50 wt. % of the film 10. The core layer 12 and surface layers 14, 14′ being made up of the same class of materials to provide an advantage with regard to recycling, as the core layer 12 may include production scrap.
In an embodiment with a core layer 12 of polypropylene, the material of surface layers 14, 14′ is preferably a copolymer of propylene and ethylene or an α-olefin. Particularly advantageous results have been achieved by using a random copolymer of propylene-ethylene. It may be preferred to use said copolymer with an ethylene content of about 1-25 mol. %, and a propylene content of about 75-99 mol. %. It may be further preferred to use said copolymer with a ratio of about 95 mol. % propylene to about 5 mol. % ethylene. Instead of said copolymer or in combination therewith, a polyolefin, preferably a polypropylene homopolymer or polypropylene copolymer, prepared with a metallocene catalyst, may be used for the surface layers 14, 14′. It is also contemplated that materials such as (poly-4-methyl-1-pentene) (PMP) and polyethylene may be useful as a blend with such copolymers in the surface layers 14, 14′. The surface layer material should be selected such that the softening point of the surface layer 14, 14′ is at least about 10° C. lower than that of the core layer 12, and preferably between about 15-40° C. lower. The upper limit of this difference is not thought to be critical, and the difference in softening points is typically less than 70° C.
As mentioned above, the film 10 may be cut into a multiplicity of longitudinal strips of a desired width by slitting the film 10 in a direction transverse to the layered orientation of core layer 12 and surface layers 14, 14′. The strips of film 10 are then drawn in order to increase the orientation of the core layer 10 so as to provide increased strength and stiffness to the material. After the drawing process is complete, the resulting strips are in the range of about 1.5 to about 5 millimeters wide.
By way of example only, and not limitation, one tape film material that may be particularly useful is believed to be marketed under the trade designation PURE by Lankhorst/Indutech having a place of business in Sneek, The Netherlands.
By way of example only, the formation of mat fabric 20 as described may be understood through reference to the simplified schematic in
In order to securely fuse the warp strips 24 to the fill strips 26 while maintaining the interwoven spatial relation between them, it is contemplated that the warp strips 24 and the fill strips 26 will preferably be heated, under pressure, to a temperature above the softening point of surface layers 14, 14′ and below that of the core layer 12. In so doing, the surface layers 14, 14′ will melt while the core layer 12 will remain substantially solid and highly oriented. As the mat fabric 20 then cools, the surface layers 14, 14′ will fuse together, thereby forming a solid matrix through which is woven the highly oriented, stiff structure of the core layer 12. The overall structure may thereafter be subjected to three-dimensional molding under heat and pressure at temperatures above the softening point of the surface layers 14, 14′ so as to yield complex shapes.
As illustrated in
Consolidation of multiple layers is preferably carried out at suitable temperature and pressure conditions to facilitate both interface bonding fusion and partial migration of the melted surface layer material between the layers. Heated batch or platen presses may be used for multi-layer consolidation. However, it is contemplated that any other suitable press may likewise be used to provide appropriate combinations of temperature and pressure. According to a potentially preferred practice, heating is carried out at a temperature of about 130-160° C. and a pressure of about 0.5-70 bar. When exposed to such an elevated temperature and pressure, the surface layers 14, 14′ will melt while the core layer 12 will remain substantially solid. Upon cooling, the surface layers 14, 14′ will fuse thereby forming a matrix through which the stiff core layers 12 are distributed. According to a potentially preferred practice, cooling is carried out under pressure to a temperature less than about 115° C. It is contemplated that maintaining pressure during the cooling step tends to inhibit shrinkage. Without wishing to be limited to a specific theory, it is believed that higher pressures may facilitate polymer flow at lower temperatures. Thus, at the higher end of the pressure range, (greater than about 20 bar) the processing temperature may be about 90-135° C. Moreover, the need for cooling under pressure may be reduced or eliminated when these lower pressures are utilized.
Due at least in part to the biaxial orientation of the interwoven, highly oriented core layers 12, which are securely held within a matrix of the fused surface layers 14, 14′, a composite structure formed from the woven fabric 20 as described will exhibit excellent mechanical strength characteristics in both the planar and normal directions at a low weight. This favorable combination of high strength and low weight makes such a composite suitable for variety of uses. Moreover, such structures are highly adaptable to forced three-dimensional molding procedures at temperatures above the softening point of the surface layers 14, 14′.
According to one contemplated practice, the fill (weft) strips and/or the warp strips of the multilayer polymeric film may be partially or completely replaced by elements of different composition and physical property chosen to impart certain characteristics to the fabric and/or composite. In one embodiment, the replacement elements are of a material with a softening point at least 10° C. different than the surface layer(s) of the majority warp and/or weft elements. In some embodiments, the replacement elements have a higher softening point than the surface layer(s) of the warp and weft elements, and in other embodiments, the replacement elements have a lower softening temperature. Preferably, the replacement elements are of a material with a softening point at least 20° C. different than the surface layer(s) of the majority warp and/or weft elements. In another embodiment, the replacement elements comprise a material with a different chemical composition than the core and/or surface of the warp and/or weft elements. Having a different chemical composition, in this application, means that materials having a different molecular composition or having the same chemicals at different ratios or concentrations. In another embodiment, the replacement elements are non-olefin. In another embodiment, the inserted material may be tape elements, monofilament fiber, or multifilament yarns. By way of example, and not limitation, at least some portion of the weft and/or warp elements of different composition have a different composition elements may be cotton, polyester, nylon, or blends thereof. As a further non-limiting example, some or all of the weft elements may be an anti-ballistic multifilament yarns such as KEVLAR® or the like. Other nonlimiting examples of anti-ballistic yarns include high tenacity yarns exhibiting greater than 10 grams, more preferably 18 grams, per denier for specific strength, or “tenacity”. One high tenacity yarn is an aramid yarn available as Kevlar® from E. I. du Pont de Nemours and Company or Twaron® from Teijin Twaron. The chemical structure is below:
Another high tenacity yarn is a PBO yarn [poly(p-phenylene-2,6-benzobisoxazole)] available as Zylon® from Toyobo Co., Ltd. The chemical structure is below:
Another high tenacity yarn is a Polyarylate (liquid crystal polymer) available as Vectran® from Kuraray Co., Ltd. The chemical structure is below:
The replacement elements in one embodiment are weft elements replacing some or all of the fusible mono-axially drawn tape elements which may be implemented in a manufacturing setup easily. In another embodiment, the fusible mono-axially drawn tape elements warp elements are replaced by inserted elements. In a third embodiment, the replacement elements replace some of the fusible mono-axially drawn tape elements in both the warp and weft directions. This allows for flexibility of the physical properties of the final composite structure. Preferably, the inserted or replacement material in the warp and/or weft direction is less than 50% by weight of the composite. For the composite to have structural integrity, at least some of the fusible mono-axially drawn tape elements must cross over one another to be able to fuse together.
The inserted material may be tape form or standard cylindrical form or any other weaveable material. The material can have a smooth or a textured surface. Furthermore, any or all of the material can undergo flame retardant (FR) chemical treatment by means well known to those of skill in the art in order to impart flame retardant characteristics uniformly throughout the mat fabric or to discrete zones within the mat fabric. The flame retardant yarns might include those that are non-combustible such as glass, aramid, partially oxidized acrylonitrile, carbon fiber, ceramics and the like. They could also be yarns that are coated, impregnated, or have the following chemical groups incorporated into the structure of the fiber. These FR chemical groups include halogens, antimony, melamine, and phosphorous. In one embodiment, the material used is non-olefin.
The selection of inserted material may be used to control properties of the finished construction. These properties can be uniformly distributed throughout the construction by utilizing the appropriate weft element exclusively. Alternatively, discrete zones of the desired characteristic can be achieved by utilizing the appropriate weft element in a particular area of mat fabric 20 and then changing the nature of the weft element. By way of example and not limitation, according to one contemplated practice, several layers of mat fabric 20 may be stacked in layered relation prior to the application of heat and pressure in order to form a multilayered composite structure. The layers of fabric 20 may be formed from a single sheet of fabric that is repeatedly folded over itself. As can be readily appreciated, if the single sheet contains discrete areas in which different weft elements have been employed, then the multilayered woven composite will also contain discrete zones of differing characteristics depending upon the weft elements. Alternatively, the layers of fabric 20 may be formed from several discrete overlaid sheets. As will be readily apparent, the various layers of mat fabric may contain the same or different weft elements. Furthermore, a multilayered woven composite may be formed by heating, under pressure, several woven composites previously formed from single or multiple layers of mat fabric 20. In one embodiment, 10 or more layers are fused together to form an anti-ballistics panel. Any of these methods may be employed to form a woven composite with any desired thickness or number of layers. Furthermore, the predetermined selection of the material may be used to control properties of the final structure.
As a non-limiting example, it is highly desirable in many different applications to increase the adhesive properties of the composite structure in order to facilitate bonding between the composite and another material or adhesive. One potential way to accomplish this enhanced bonding is by replacing the fill strips in one or more of the outermost fabric mat structures with non-olefin materials such as cotton, polyester, nylon and blends thereof. As can be readily appreciated, after heating under pressure, this will result in a multilayered woven composite in which the materials with enhanced bonding capabilities are concentrated in the outermost zones (outer surface) of the composite, thus facilitating bonding to other materials such as polyurethane foams as one non-limiting example.
The invention may be further understood by reference to the following non-limiting examples.
A tie layer was formed by weaving a multiplicity of fusible mono-axially drawn tape elements as previously described having dimensions of 2.2 mm wide and 65 microns thick in the warp direction with alternating picks of the mono-axially drawn tape elements having a denier of 1020 and cotton 2/1 yarn in a twill weave. This tie layer was stacked between 3 layers of Kraft paper (B staged phenolic saturated Kraft paper) and 2 layers of mats woven with the fusible mono-axially drawn tape elements in both the warp and weft. The layers were consolidated by placing in a platen press at 285° F. and applying pressure of 450 psi. After 4 minutes, the composite was cooled to 200° F. Subsequently, the pressure was released and the composite removed from the press.
A composite was formed from 3 layers of Kraft paper (B staged phenolic saturated Kraft paper) and 3 layers of fabric mat woven with mono-axially drawn tape elements (2.2 mm wide and 60 micron thick) in both the warp and weft directions. No cotton yarns were used. The layers were consolidated by placing in a platen press at 285° F. and applying pressure of 450 psi. After 4 minutes, the composite was cooled to 200° F. Subsequently, the pressure was released and the composite was removed from the press.
Peel strength data of the composites produced in accordance with the above examples are delineated in Table 1. Samples were tested using a 1″×6″ sample peeled at 90 degrees (ASTM D5170). The average peel force required to separate the consolidated sheets containing mono-axially drawn tape elements from the Kraft paper is reported.
Control example 2 was formed of mono-axially drawn tape elements (2.2 mm wide and 60 micron thick) as described in the specification in both the warp and weft directions constructed on a Dornier rapier loom. The woven material was constructed using 11 epi×15 ppi. The tape elements had a linear weight of 1020 denier (or 1133 dtex). With this construction, the areal weight becomes and 0.024 lb/ft2. 10 layers were consolidated as described below.
In examples 2, 3, and 4, Twaron®, Zylon®, and Vectran® multifilament yarns were inserted in the filling direction respectively. The woven material was made on the same loom and from the same warp as the 100% tape element samples. The multifilament yarns were inserted in an alternating pattern along with the tape elements. In this way, every other filling yarn was tape yarn with multifilament yarns in between. The specific yarns used were 1500 denier Twaron® with 11 ppi (0.024 lb/ft2), 1000 denier Zylon® with 15 ppi (0.024 lb/ft2), and 1500 denier Vectran® with 12 ppi (0.024 lb/ft2). The woven material of these 3 materials was designed to have the same areal weight (or areal density) as control example 2, which was 0.024 lb/ft2.
The procedure for consolidating the woven fabrics of control examples 2 and examples 2-4 for use in the ball burst tests was as follows:
Performance testing was carried out using Ball Burst test (ASTM D6797) as a guideline. The test implement was a spherical steel ball with a diameter of 0.6″ (15.2 mm) and was driven at an incident rate of 20 in/min (508 mm/min). Circular samples of 4″ (102 mm) diameter were rigidly clamped with an unclamped area of diameter 2″ (51 mm). Load and displacement were recorded for each sample with results summarized in the following table.
These test results showed that the samples containing Twaron®, Zylon®, and Vectran® (Examples 2-4) had greater ball burst physical properties than the 100% tape element samples.
While the present invention has been illustrated and described in relation to certain potentially preferred embodiments and practices, it is to be understood that the illustrated and described embodiments and practices are illustrative only and that the present invention is in no event to be limited thereto. Rather, it is fully contemplated that modifications and variations to the present invention will no doubt occur to those of skill in the art upon reading the above description and/or through practice of the invention. It is therefore intended that the present invention shall extend to all such modifications and variations as may incorporate the broad aspects of the present invention within the full spirit and scope of the following claims and all equivalents thereto.
This application is a continuation of co-pending application Ser. No. 11/518,964, filed on Sep. 11, 2006, which claims priority to U.S. Provisional Patent Application Ser. No. 60/720,824, filed on Sep. 27, 2005. Both of these documents are incorporated in their entirety herein.
Number | Date | Country | |
---|---|---|---|
60720824 | Sep 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11518964 | Sep 2006 | US |
Child | 13083661 | US |