The present disclosure relates to the particulate filtering of engine exhaust gases.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
In the automotive industry, environmental concerns require a continued reduction in the amount of particulates, including soot particulates and non-combusted particulates, discharged from engines. Various attempts have been made to decrease these particulate emissions from the use of fuels, such as diesel. Typical catalytic converters often do not work well with some engines, since the temperatures within them are too low to effectively burn carbon, oil, and unburned fuel particles. Currently, research has been performed using exhaust gas filtering systems having a particulate filter inserted in an exhaust pipe of the engine to collect the particulates. In general, the particulate filter is made of a porous ceramic body, which defines a plurality of exhaust gas passages therein. When exhaust gas passes through porous walls of the particulate filter, which define the exhaust gas passages, the particulates are adsorbed and collected by the porous walls of the particulate filter.
When the collected particulates are accumulated in the particulate filter, pressure loss is increased, and the engine performance is deteriorated. Thus, the collected particulates need to be combusted and removed from the particulate filter to regenerate the particulate filter at appropriate timing. The regeneration of the particulate filter is performed by increasing the temperature of the particulate filter through a heating means, such as a burner or a heater or through supply of hot exhaust gas to the particulate filter in post fuel injection.
In view of the above, there remains a demand for a passive exhaust filter system that can successfully remove particulate matter. It is also desirable that the filter system be regenerable and reliable over long periods of time without maintenance.
The present disclosure provides a passive particulate filter assembly for filtering exhaust. In various embodiments, the assembly includes a housing unit defining a filtering chamber having an inlet port and an outlet port. A cylindrical inner core member is disposed in the filtering chamber and is surrounded by a pleated cylindrical filter pack having first and second opposite ends. An end cap couples the first end of the filter pack and is configured to prevent exhaust flow there through. An end plate is coupled to the second end of the filter pack and is configured to secure the filter pack to the housing unit. The filter pack comprises a woven metal fiber medium preferably manufactured from stainless steel or a nickel-chromium-iron alloy having an average porosity of between about 2 to about 15 μm.
In other embodiments, the present disclosure provides a passive particulate filter assembly including a housing unit defining a filtering chamber having an inlet port and an outlet port. A perforated cylindrical inner core member is disposed within the filtering chamber. A pleated cylindrical filter pack having a dual layer woven sintered metal fiber medium surrounds the inner core member and has first and second opposite ends. The innermost layer of the filter pack has an average porosity of between about 2 to about 7 μm and the outermost layer of the filter pack has an average porosity of between about 7 to about 15 μm. An end cap is coupled to the first end of the filter pack and configured to prevent exhaust flow there through. A flanged end plate is coupled to the second end of the filter pack and is configured to secure the filter pack to the housing unit. In various embodiments, the filter assembly is configured such that the exhaust travels from the inlet port into the filtering chamber and passes inwardly through the dual layer filter pack to an interior of the inner core member and exits through the outlet port.
In still other embodiments, the present disclosure provides an exhaust gas filtering system for a diesel engine. The system includes a passive diesel particulate filter assembly including a housing unit defining a filtering chamber having a cylindrical inner core member surrounded by a dual layer woven sintered metal fiber medium. The innermost layer of the filter pack has an average porosity of between about 2 to about 7 μm and the outermost layer of the filter pack has an average porosity of between about 7 to about 15 μm. The system further includes a secondary injection assembly coupled to the housing unit and configured to selectively heat the diesel exhaust to a temperature suitable for regeneration of the passive diesel particulate filter.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
As shown, the assembly includes a housing unit that defines a filtering chamber and includes an inlet housing 22 having an inlet port 24 and coupled to an outlet housing 26 having an outlet port 28. As further shown in
In various embodiments, the surface area of the pleated filter pack 32 is between about 2.5 to about 8 times the engine displacement volume, preferably from about 4 to about 8 times the engine displacement volume. For example, a six liter engine may have a filter assembly having a total surface area of between about 15 to about 48 ft2, and more preferably between about 24 to about 48 ft2. The surface area may also be dependent upon the desired filtration efficiency, which may vary according to the present teachings from as low as about 20% up to 100% efficiency.
In various embodiments, the particulate filter assembly of the present teachings is regenerated by a secondary injection means in order to combust the accumulated particulate matter that is trapped within the filter pack. Accordingly, each of the components of the filter assembly 20 is highly resistant to high temperatures. One common approach for regeneration is to heat the incoming exhaust to a temperature suitable for burning and combusting the accumulated particulate matter.
Typically, at the time of injecting fuel into the corresponding combustion chamber from the fuel injection valve, post fuel injection or retardation of fuel injection timing is performed, or alternatively the degree of opening the throttle valve is reduced in comparison to the normal degree of opening the throttle valve that is set for a normal operating period of the exhaust filtering system. In this way, the temperature of the incoming exhaust is increased as a portion of the combustion energy is converted into heat energy rather than being converted in rotational drive force due to, for example, a delay in ignition timing. Thus, exhaust gas of a higher temperature is introduced. Similarly, when the degree of opening of the throttle valve is reduced in comparison to the normal degree of opening of the throttle valve, the flow rate of intake air is reduced, and the thermal capacity of the gas supplied into the corresponding combustion chamber of the engine is reduced and the exhaust gas temperature is increased. It should also be noted that a plurality of regenerating means can be provided, and an appropriate one of the regenerating means can be used based on the operating state of the engine. Additionally, a burner or heater can also be used in place of, or in addition to, the regeneration means. The unique filter pack assembly of the present disclosure is configured to operate having a regeneration fuel penalty of less than about 3%.
There are many methods known in the art that can be used to determine the amount of collected particulates in the filter pack and when regeneration is necessary. One common way to determine the state of charging of the particulate filter is to monitor the back pressure in the exhaust gas system. Typical means may include the use of a differential pressure sensor to determine the backpressure of the filter assembly. A differential pressure sensor measures the pressure difference between an upstream side of the filter assembly and a downstream side of the filter assembly. Typically a signal is sent to a controller for example, an engine control unit (ECU) that controls an exhaust gas recirculation (EGR) valve. Although the back pressure itself does not always represent a suitable criterion for the specific charging state, since any holes present in a layer of soot may well in fact result in a relatively low back pressure falsely indicating too low a charging state, additional certainty in determining the charging state can nevertheless be provided by monitoring the back pressure.
While temperature alone may not represent a suitable criterion for effective secondary injection of fuel for regeneration purposes, it should be understood that secondary injection or after-injection of fuel in each instance serves the purpose of raising the exhaust gas temperature by means of an exothermal reaction that takes place within a specific exhaust temperature. Thus, an exhaust gas temperature sensor and an air/fuel ratio sensor may be arranged at the outlet of the filter assembly to serve as further sensing means to provide data to a controller for determining the proper regeneration times. Alternatively, provisions can be made such that the time between regenerations does not exceed a threshold value. Similarly, reactivation of the regeneration times may be based upon predetermined factors depending upon the use of the engine.
This application claims priority from U.S. Provisional Patent Application No. 60/754,999, filed Dec. 29, 2005.
Number | Name | Date | Kind |
---|---|---|---|
2975586 | Bray | Mar 1961 | A |
3105752 | Bruce | Oct 1963 | A |
3857688 | Wisnewski | Dec 1974 | A |
4149862 | Sewell, Sr. | Apr 1979 | A |
4567725 | Shinzawa et al. | Feb 1986 | A |
5212948 | Gillingham et al. | May 1993 | A |
5238474 | Kahlbaugh et al. | Aug 1993 | A |
5293742 | Gillingham et al. | Mar 1994 | A |
5682740 | Kawamura | Nov 1997 | A |
5776419 | Ihara et al. | Jul 1998 | A |
6857525 | Parent | Feb 2005 | B2 |
6942708 | Peter et al. | Sep 2005 | B2 |
7153345 | Li et al. | Dec 2006 | B2 |
7294162 | Anderson et al. | Nov 2007 | B2 |
20040131511 | Marrecau et al. | Jul 2004 | A1 |
20040148916 | Merkel | Aug 2004 | A1 |
20040216451 | LaBarge et al. | Nov 2004 | A1 |
20040226443 | Gillingham et al. | Nov 2004 | A1 |
Number | Date | Country |
---|---|---|
2432454 | May 2001 | CN |
07-008727 | Jan 1995 | JP |
Number | Date | Country | |
---|---|---|---|
20070151231 A1 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
60754999 | Dec 2005 | US |