1. Field of the Invention
This invention generally relates to woven preforms and particularly relates to woven preforms used in bonding of components at structural joints.
2. Description of the Related Art
When joining components in a structural joint, layers of fabric infused with a polymer resin can be used to join the components. For example, two components are brought to the desired positions and orientation, and layers of composites are adhered to the outer surfaces of the components: one portion of the fabric adhering to one component, another portion adhering to the other component. Multiple layers of fabric are stacked to increase the strength of the joint and to form a desired radius of curvature at the intersection.
While this method works, the joint can be improved by having fibers that extend through the intersection of the components, connecting the composite layers on both sides of the joint. A three-dimensional (3-D), woven, textile preform provides for fibers that extend through the intersection of a joint. The preform is infused with a resin that is cured to form a rigid polymer matrix surrounding the fibers of the preform.
Weave patterns for woven composite textiles have been used in the past which can provide for various shapes of three-dimensional preforms. However, these weave patterns were typically single-layer connectors, for example, U.S. Pat. No. 4,671,470 to Jonas, in which is disclosed an H-shaped connector for connecting a wing spar to a sandwich skin structure. Also, three-dimensional preforms have been woven to fill gaps formed during layup of composite layers into tight radius intersections. A gap-filling preform is disclosed in U.S. Pat. No. 5,026,595 to Crawford, Jr., et al.
However, these prior-art preforms have been limited in their ability to withstand high out-of-plane loads, to be woven in an automated loom process, and to provide for varying thickness of portions of the preform. Weave construction and automation of preform weaving was in its infancy and provided only a small advantage over conventional laminated, fiber-wound, or braided composites, limiting the versatility of the preforms.
There is a need for an improved preform having a modified weave architecture, providing the preform with symmetrical load-carrying ability and symmetrical load distribution. In addition, there is a need for an improved preform having a modified taper and weave sequence for forming the taper. Also, there is a need for a preform having tracer fibers for identifying selected portions of the preform or selected locations of the preform.
A preform for structural joints has a three-dimensional weave architecture with fill fibers woven to provide layer-to-layer interlocking of layers of warp fiber as well as interlocking of fibers within each layer. The woven preform transfers out-of-plane loading through directed fibers to minimize inter-laminar tension. The preform has a base and at least two legs extending from the base, the base and legs each having at least two layers of warp fibers.
The fill fibers follow a weave sequence that carries them through a portion of the base, then into the legs, then through the opposite portion of the base, and back through the entire base to return to the starting point of the fill tow. The legs are connected at a symmetrical, distributed-column intersection, with an odd number of columns of warp fibers being located between the legs. This allows for symmetry about a central plane in the weave pattern, providing symmetrical load-carrying ability. The outer ends of the base and legs preferably have tapers formed from terminating layers of warp fibers in a stepped pattern.
Tracer fibers, comprising a colored strand and an x-ray opaque strand, are located in the preform at selected locations as a warp fiber. The colored strand preferably has a color that contrasts with the surrounding fill and warp fibers, allowing the user to visually determine a selected location on the preform or to identify a portion of the preform. The x-ray opaque strand allows a user to determine the location using an x-ray image of the preform. For example, the tracer fibers may be located at the beginning of the tapers, identifying where the thickness of the leg or base begins to decrease for accurate dimensional inspection of the preform. Also, tracer fibers having different colors may be used on different sections of the preform, allowing the user to distinguish the legs and the base for ensuring proper orientation of the preform in the composite structure.
The novel features believed to be characteristic of the invention are set forth in the appended claims. The invention itself however, as well as a preferred mode of use, further objects and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings.
All warp fibers 15 in preform 11 are generally parallel to each other, with slight undulations along the longitudinal length of each fiber 15, and are arranged in generally vertical columns. Preform 11 is preferably woven from materials used for typical composite structures, for example, fiberglass and carbon fibers, and is woven to have a base 17 and at least two legs 19, 21 extending from base 17, forming a pi-shaped profile. Base 17 and legs 19, 21 each comprise at least two layers of warp fibers 15 and are shown as having optional tapered edges. For ease of weaving, preform 11 is woven with legs 19, 21 laid over against base 17, though legs 19, 21 are intended for use in an upright position, forming a clevis. Base 17 is shown having eight layers of warp fibers 15, and legs 19, 21 are shown having four layers of warp fibers 15.
Optionally, as shown, warp fibers 15 in base 17 have a smaller cross-sectional area than warp fibers 15 in legs 19, 21. This allows the use of a greater number of warp fibers 15 in weaving base 17 to have approximately the same overall size as for base 17 having a fewer number of larger warp fibers 15. The additional columns provide for doubled interlocking between layers of warp fibers 15 in base 17 and provide for a greater resolution on the optional tapered edges of base 17, creating smoother tapers. By using smaller warp fibers 15 only in base 17 and not in legs 19, 21, the increase in time required to weave the architecture on a weaving loom is minimized while still providing a stronger base 17 in preform 11 through a greater amount of interlocking of warp fibers 15.
Referring to
The general weave sequence begins with fill fiber 13 at position A and extending toward position C at the left of base 17. From position C, fill fiber 13 extends toward the center of base 17 to either position B1 or B2, from which fill fiber 13 extends upward out of base 17 and into leg 19 to position D at the left end (or upper end during use) of leg 19. Fill fiber 13 then extends back into base 17 at position B1 or B2, passes through central columns of warp fibers 15 located between legs 19, 21, then out of position B3 or B4 and into leg 21 to position E. Fill fiber 13 extends from position E back into base 17 at position B3 or B4 and returns to position A. To complete the sequence, another pass is made from position A to position C then back to position A, without fill fiber 13 entering legs 19, 21. Terminating layers of warp fibers 15 in a stepped pattern forms tapered edges on base 17 and legs 19, 21, such as taper 22 on the right lateral edge of base 17 and taper 23 on leg 21.
To complete one unit cell, or vertical section, the passes of fill fiber 13 across preform 11 are repeated for adjacent layers of warp fibers 15 until all layers are interlocked. The complete architecture shown in
Preform 11 is improved from previous woven preforms in providing a highly symmetrical, distributed intersection of legs 19, 21 with base 17. Arrows are used to indicate the direction a particular portion of the fill fibers 13 is traveling in the description of the figure, though the weave can also be done in the reverse order or in an altered sequence of passes between left and right edges of base 17. Base 17 has three central columns 27 of warp fibers, comprising columns e, f, and g, and two separator columns of warp fibers, columns d and h, which are the adjacent columns to either lateral side of central columns 27. The use of an odd number of central columns 27 allows weave to form an approximately mirror image to either lateral side of a central plane of symmetry bisecting column f, improving the symmetry of load distribution within base 17. While shown as having three central columns 27, the preferred embodiment of preform 11 may have any odd number of central columns 27, the number of central columns determining the nominal width of the clevis formed when legs 19, 21 are in an upstanding position.
To symmetrically introduce loads from legs 19, 21 into base 17, such as loads from a member (not shown) bonded between upstanding legs 19, 21, the portions of fill fibers 13 connecting legs 19, 21 are divided into groups 29, 31, 33, 35 of equal or substantially equal numbers of fiber portions. Each group 29, 31, 33, 35 intersects base 17 between one of separator column d, h and central columns 27 or between one of separator column d, h and the remaining right or left lateral columns adjacent that separator column d, h. For example, group 29 extends between layers 2 and 4 of leg 19 and base 17, intersecting base 17 between columns c and d. Likewise, group 31 intersects base 17 between columns d and e, group 33 intersects base 17 between columns g and h, and group 35 intersects base 17 between columns h and i.
Though shown in the preferred location at approximately the center of preform 11, central columns 27 may comprise columns of warp fibers 15 located laterally from the center of preform 11. For example, columns b, c, and d may comprise the central columns, and columns a and e may act as the separator columns. This offsets legs 19, 21 toward an outer edge of base 17, though still providing symmetry in the weave of base 17 about columns b, c, and d and providing the symmetrical distribution of the load from legs 19, 21 into base 17.
As shown by the arrowheads in the figure, the weave sequence produces within each group 29, 31, 33, 35 two fiber portions that exit base 17 and two fiber portions that enter base 17. The fiber portions within each group extend from alternating layers 1, 2, 3, 4 of legs 19, 21 and are distributed into the weave of base 17 among layers 5, 6, 7, 8, 9, 10, 11, 12, further enhancing symmetrical load distribution. For example, the fiber portions of group 31 intersect base 17 between columns d and e, the fiber portions extending to and from layers 1 and 3 of leg 19. To illustrate the incorporation into base 17 of portions within groups 29, 31, 33, 35, the weave path of portions 37, 39 of group 31 and portions 41, 43 of group 33 are described below.
The weave pattern of preform 11 in layer 12 of base 17 continues upward until all layers have been woven together, the pattern then restarting at the edge of base 17, as described above. Fill fiber 13 passes rightward interlocking layers 10 and 12 at columns a, b, and c, then emerges as portion 37 under warp fiber c11 and passes between fibers d9 and d10. Portion 37 extends upward and out of base 17 between columns d and e, then into layer 3 of leg 19 for a leftward pass interlocking warp fibers 15 of layer 3 only. Fill fiber 13 wraps around the left-most warp fiber 15 of layer 3 (as shown in FIG. 1), then returns rightward, interlocking layers 3 and 4 of leg 19. Fill fiber 13 emerges from leg 19 as portion 39, passing over warp fiber c3 and turns downward into base 17 between columns d and e. Portion 39 passes under warp fiber e11, continuing the interlocking of layers 10 and 11 within central columns 27 (e, f, and g), emerging as portion 41 between column g and h. Portion 41 extends upward out of base 17 into leg 21, interlocking warp fibers 15 of layer 3 only. As portion 41 reaches the right lateral edge of leg 21, it returns as portion 43, which interlocks layers 3 and 4 of leg 21, then reenters base 17 between columns g and h. Portion 43 crosses column h between warp fibers h9 and h10, then begins the interlocking of the right lateral warp fibers in layers 10 and 11 of base 17, extending to the right lateral edge before reversing to make the subsequent leftward pass. The alternating distribution of portions of fibers from layers 1, 2, 3, and 4 into groups 29, 31, 3, 35, as well as the staggered locations where fiber portions cross separator columns d, h provide improved load distribution throughout the layers of base 17.
During the main portion of the weave sequence, each rightward pass of fill fiber 13 interlocks adjacent layers of warp fibers 15 and terminates at taper 22, looping to return through base 17 in a leftward pass in the adjacent upper layer. As fill fiber 13 terminates the rightward pass, an improved weave pattern directs the end portions in an end sequence alternating between layers. For example, fiber portion 45 is the end portion of the rightward pass interlocking layers 11 and 12, and portion 45 wraps over warp fiber u11 and under warp fiber v11. Fiber portion 45 then loops upward to layer 10, passing under u10 and over t10, beginning the leftward pass that interlocks warp fibers 15 of layer 10 only. This end sequence also occurs at layers 7 and 9.
On layers 6, 8, and 10, the end sequence occurs with the rightward pass stopping short of the ends of the layers. For example, as fill fiber 13 passes rightward while interlocking layers 10 and 11, which terminate at columns u and v, respectively, fiber portion 47 passes under fiber t11 and extends upward between columns t and u. Portion 47 wraps over fiber t9, then begins a leftward pass, interlocking the fibers of layer 9 only. These sequences leave fibers q6, s8, and u10 on the outside of the adjacent portions of fill fiber 13.
Since the weave sequence for preform 11 begins with fill fiber 13 passing over warp fiber x12, it is also required that the sequence ends by passing fill fiber 13 under x12 for positioning fill fiber 13 to restart the sequence. To provide for the proper position and capture fibers q6, s8, and u10, a specific end sequence is preferred. As the weave sequence is completed, fill fiber 13 makes a final rightward pass in layers 5 and 6, fill fiber 13 interlocking warp fibers 15 in layers 5 and 6 across upper surface 49 of base 17. Fiber portion 51 passes over fiber o5, then under p6 and over q6. This type of sequence continues downward along taper 22, with portion 51 passing over fibers s8 and u10, capturing these warp fibers 15 in the weave sequence. Portion 51 then passes under warp fiber v12, over w12, then under x12 to the starting position of the weave sequence.
Completed, woven, pi-shaped preform 11 is shown in
An additional feature of preform 11 is the replacement of warp fibers 15 at selected locations in preform 11 with tracer fibers 59, shown in FIG. 5. Useful locations include the inner boundary of tapers 22 on base 17 and tapers 23 on legs 19, 21, such as at locations 55 and 57 of tapers 22 and 23, respectively.
Referring to
Typically, preforms are woven using one type of fiber, for example, carbon (graphite) fibers, for both the warp and fill fibers. However, preforms may also be hybrid weave patterns that use fibers made form multiple materials, such as carbon and glass fibers. These patterns can result in preforms having higher toughness, reduced cost, and optimized thermal-expansion characteristics. The weave patterns comprise all warp fibers of one type and all fill fibers of another type, or the weave may have warp and/or fill fibers of alternating types arranged in a “checkerboard” pattern throughout the layers.
The advantages of the present invention include the ability to weave a high strength and easy-to-use preform for assembling components into structures. The improved weave interlocks the warp fibers of each layer and interlocks the layers to each other, while distributing loads through the preform in a highly symmetrical manner. By having an odd number of columns of warp fibers in the base between the legs of the preform, a weave pattern can be mirrored about a central plane of symmetry. Tracer fibers used as warp fibers at selected locations allow a user to identify locations on the preform or portions of the preform.
While the invention has been shown in only some of its forms, it is not thus limited but is susceptible to various changes and modifications without departing from the spirit thereof.
Benefit is herein claimed of the filing date under 35 USC § 119 and/or § 120 and CFR 1.78 to U.S. Provisional Patent Application Ser. No. 60/322,205, filed on Sep. 12, 2001, entitled “Preform Weave Patterns.”
Number | Name | Date | Kind |
---|---|---|---|
4063684 | O'Brian et al. | Dec 1977 | A |
4376710 | Gardos et al. | Mar 1983 | A |
4379798 | Palmer et al. | Apr 1983 | A |
4669523 | Sabatie et al. | Jun 1987 | A |
4671470 | Jonas | Jun 1987 | A |
4717302 | Adams et al. | Jan 1988 | A |
4778637 | Adams et al. | Oct 1988 | A |
4782864 | Abildskov | Nov 1988 | A |
4786548 | Place, Jr. | Nov 1988 | A |
4902326 | Jarmon | Feb 1990 | A |
4922968 | Bottger et al. | May 1990 | A |
5026595 | Crawford, Jr. et al. | Jun 1991 | A |
5042565 | Yuen et al. | Aug 1991 | A |
5085252 | Mohamed et al. | Feb 1992 | A |
5108830 | Osaka et al. | Apr 1992 | A |
5137058 | Anahara et al. | Aug 1992 | A |
5184706 | Christensen | Feb 1993 | A |
5236020 | Sakatani et al. | Aug 1993 | A |
5263516 | van Schuylenburch | Nov 1993 | A |
5270094 | Anahara et al. | Dec 1993 | A |
5334414 | Edie et al. | Aug 1994 | A |
5343897 | Sakatani et al. | Sep 1994 | A |
5348056 | Tsuzuki | Sep 1994 | A |
5397595 | Carroll et al. | Mar 1995 | A |
5399418 | Hartmanns et al. | Mar 1995 | A |
5451448 | Sawko et al. | Sep 1995 | A |
5465760 | Mohamed et al. | Nov 1995 | A |
5487941 | Pepin | Jan 1996 | A |
5540260 | Mood | Jul 1996 | A |
5540877 | Repetto et al. | Jul 1996 | A |
5616175 | Walsh | Apr 1997 | A |
5651474 | Callaghan et al. | Jul 1997 | A |
5657795 | Sawko et al. | Aug 1997 | A |
5720339 | Glass et al. | Feb 1998 | A |
5759620 | Wilson et al. | Jun 1998 | A |
5767023 | Berger et al. | Jun 1998 | A |
5783279 | Edgson et al. | Jul 1998 | A |
5785094 | Yoshida | Jul 1998 | A |
5804277 | Ashbee | Sep 1998 | A |
5833802 | Yasui et al. | Nov 1998 | A |
5840221 | Lau et al. | Nov 1998 | A |
5952075 | Clarke et al. | Sep 1999 | A |
5962135 | Walker et al. | Oct 1999 | A |
5981022 | Min et al. | Nov 1999 | A |
6003563 | Uchida et al. | Dec 1999 | A |
6010652 | Yoshida | Jan 2000 | A |
6013226 | Steel et al. | Jan 2000 | A |
6019138 | Malck et al. | Feb 2000 | A |
6124015 | Baker et al. | Sep 2000 | A |
6129122 | Bilisik | Oct 2000 | A |
6207598 | Lee et al. | Mar 2001 | B1 |
6228453 | Fareed et al. | May 2001 | B1 |
6338367 | Khokar | Jan 2002 | B1 |
6470916 | Uchida et al. | Oct 2002 | B1 |
6555488 | Qiu et al. | Apr 2003 | B1 |
6712099 | Schmidt et al. | Mar 2004 | B2 |
6742547 | Bryn et al. | Jun 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20030056847 A1 | Mar 2003 | US |
Number | Date | Country | |
---|---|---|---|
60322205 | Sep 2001 | US |