The present invention relates to radio frequency identification (RFID), and more particularly to a wrapping with an antenna.
RFID is a technology that incorporates the use of electromagnetic or electrostatic coupling in the radio frequency (RF) portion of the electromagnetic spectrum to uniquely identify an object, animal, or person. With RFID, the electromagnetic or electrostatic coupling in the RF (radio frequency) portion of the electromagnetic spectrum is used to transmit signals. A typical RFID system includes an antenna and a transceiver, which reads the radio frequency and transfers the information to a processing device (reader) and a transponder, or RF label, which contains the RF circuitry and information to be transmitted. The antenna enables the integrated circuit to transmit its information to the reader that converts the radio waves reflected back from the RFID label into digital information that can then be passed on to computers that can analyze the data.
The present invention provides methods and apparatus for a wrapping with an antenna.
In general, in one aspect, the invention features a radio frequency identification (RFID) system including a RFID tag affixed to an asset, the asset surrounded by one or more conductive elements or wires in proximity to the RFID tag to enable radio frequency (RF) signal distribution.
In another aspect, the invention features a radio frequency identification (RFID) system including a RFID reader, and a RFID tag affixed to an asset, the asset surrounded in a wrapping having one or more conductive elements in proximity to the RFID tag to enable radio frequency (RF) signal distribution.
In another aspect, the invention features a system including an asset surrounded in a wrapping having one or more conductive elements to enable radio frequency (RF) signal distribution.
The invention can be implemented to realize one or more of the following advantages.
One or more conductive elements serve as an electrical antenna around a pallet of assets that re-radiates reader energy around the pallet to distribute the energy and improve readability.
One implementation of the invention provides all of the above advantages.
Other features and advantages of the invention are apparent from the following description, and from the claims.
Like reference numbers and designations in the various drawings indicate like elements.
As shown in
Depending on the specific application, radio frequency identification (RFID) interrogators and antennas are configured differently to optimize RFID tag read rates. When writing to RFID tags, accuracy and time are key concerns.
As shown in
As shown in
In general, the position of the RFID tag 12 with respect to the RFID interrogator 16 is key to preventing bad reads, i.e., situations in which the RFID tag 12 is not getting an RF signal from the RFID interrogator 16 or the RFID interrogator 16 is not getting an RF signal from the RFID tag 12. In inventory systems, the majority of bad reads are the result of the tag not getting the signal from the interrogator.
As shown in
In other examples, the conductive element or elements 1108 is/are positioned around the pallet 1102 along with the wrapping 1104. The conductive elements 1108 may or may not be connected to each other. In still other examples, the conductive element or elements 1108 is/are connected to the RFID tag 12.
It is to be understood that the foregoing description is intended to illustrate and not to limit the scope of the invention, which is defined by the scope of the appended claims. Other embodiments are within the scope of the following claims.