The present disclosure relates to steel lintels (also known as angle irons) and, in particular, to accessories or wraps for steel lintels.
Steel lintels, or angle irons, are typically found over window and door openings in residential and commercial properties. The purpose of a steel lintel is to support the weight of the bricks or masonry blocks above the openings. Often the steel lintel is installed as delivered, with a coat of primer paint. Most builders then paint the steel lintel, or some portion thereof, to match the colour of an exterior feature, be it a door or a window frame, or the like. However, when a portion of the steel lintel, painted or otherwise, is exposed to the elements, over time, unsightly rust or corrosion occurs. Often the exposed areas that become corroded include the bottom portion of the steel lintel (above the opening) and at the front edge of the steel lintel.
Various techniques have been developed to address the rusting and corrosion of steel lintels. As mentioned, steel lintels are exposed to the elements making them susceptible to oxidation. This results in an unsightly appearance and a need for regular and costly maintenance, in the form of painting.
Various steel lintel covers are known, but existing designs suffer from several disadvantages because, for example, they trap water and mask an underlying problem. An example of this is found in U.S. Pat. No. 5,584,150 to Newman, which discloses an angle iron cover that is removably secured to an angle iron. According to Newman, rusting (if it occurs) is hidden via a “securing means” (lip) of the cover, the design of which causes water to intrude or pool within. Use of lintel covers of existing designs can accelerate the deterioration of the steel causing damage to the adjacent brick and masonry. Previous lintel covers are not multifunctional in that they may act as a covering and not a flashing as well.
According to current solutions, corrosion can be addressed as part of a regular maintenance program. The corroded material can be removed manually, as by grinding or sanding, and the surface of the steel lintel repainted. Again, this approach is not desirable. Not only is the process labour-intensive, but also limited areas of corrosion can be remediated, and as mentioned, the corrosion could affect materials adjacent to the steel lintel such as the bricks that are more difficult to re-surface.
Improvements in steel lintels and accessories are desirable. For example, there is a need for the design and development of a cover or wrap for steel lintels providing improved or alternative means of water tightness, that is convenient to install, finish and maintain, and that is simple and less costly to manufacture in scale and with fewer parts.
The foregoing examples of the related art and limitations related thereto are intended to be illustrative and not exclusive. Other limitations of the related art will become apparent to those of skill in the art upon a reading of the specification and a review of the drawings.
Examples are illustrated with reference to the attached drawings. It is intended that the examples and figures disclosed herein be considered illustrative rather than restrictive.
The following describes a wrap for a steel lintel positioned above a structural opening of a structure. The wrap includes a plastic sheet member for placement on the steel lintel wherein the plastic member is contoured to cover the steel lintel across a width of the structural opening; and wherein the plastic member extends to cover a lower flange of the steel lintel providing a flashing at an interior angle of the steel lintel.
Throughout the following description, specific details are set forth in order to provide a more thorough understanding to persons skilled in the art. However, well-known elements may not be shown or described in detail to avoid unnecessarily obscuring of the disclosure. Accordingly, the description and drawings are to be regarded in an illustrative, rather than a restrictive, sense.
This disclosure relates generally to steel lintels, or angle irons, and particularly to accessories and wraps for steel lintels.
Referring first to
Use of the term “steel lintel” extends to any structural horizontal block that spans the space or opening between two vertical supports. Often manufactured using structural steel, a lintel could also be made of other materials. The present specification is not intended to be limited to the use of structural steel. With reference to
Use of the term “wrap” extends to any extruded, planar plastic sheet or other sheet-like, water-resistant material. The wrap 102 may be of uniform thickness and uniform profile, in one example. The wrap 102 may feature specific properties such as UV-absorption, texture, oxygen permeation, water resistance, and the like. According to one example, the thickness of the wrap 102 can be designed to be thin enough so as not to compromise the mortar joint in the bricks 104. For example, it has been discovered that a thickness of between 0.045 to 0.055 inches is suitable. Other dimensions are possible without departing from the scope of the present specification. Being fabricated from thin sheets of plastic by extrusion, according to one example, the wrap 102 can be manufactured to fit small and large structural openings, and larger sections of the wrap 102 can be cut into smaller pieces for a precise fit. Generally speaking, the wrap 102 is sized to cover the width of the structural opening; the width of the steel lintel 106 can be longer and is determined by, among other factors, the width of the structural opening and the load to be supported. Advantageously, the wrap 102 is an accessory for use with steel lintels 106 that are in common use.
As mentioned, the wrap 102 can be fabricated from plastic that is selected to match an exterior feature of the construction project, such as a standardized window frame colour. In other words, the wrap 102 can be colour-coordinated with the project's exterior colour scheme. Advantageously, the exposed areas of the wrap 102 can finish the bottom of the steel lintel 106 and there is no need to paint the steel lintel 106. According to disclosed examples, the wrap 102 functions as a decorative covering for exposed portions of the steel lintel 106 (located in brick buildings) and as a flashing or vapour barrier that diverts the passage of water over the steel lintel 106 and away from the structure 108 thereby preventing water pooling and oxidation of the steel lintel 106.
The term “tape” can refer to house wrap or tuck tape, for example, as sold under the trademark TYVEK. According to one example, the tape 112 can be made of UV resistant poly propylene film that is coated with a high shear, a high tack solvent-based acrylic adhesive. Common applications of the tape 112 include sealing of joints and seams of house wrap. Any tape that provides a vapour barrier can be used without departing from the scope of the present specification. The tape 112 serves to protect the structure 108, which may be made of wood, from weathering. The tape 112 can be a barrier that serves to protect the structure 108 (i.e., the frame) from moisture. Still with reference to
In brick veneer structures, the bricks 104 are laid until an opening is reached at which point bricks 104 are placed around the opening. When a steel lintel 106 is placed in order to lay a brick veneer above the opening, the wrap 102 is installed on the steel lintel 106. The “over-under” design of the wrap 102 allows for complete coverage of the L-shaped steel lintel 106. Bricks 104 are then continued to be laid above the wrap-covered steel lintel 106 across the opening. Bricks 104 are placed in according to a standard, such as the building code.
Additionally, by diverting precipitation away from the structure, the wrap 102 can aid in protecting the steel lintel 106 from weathering, in compliance with the Ontario building code. In this regard, section 9.20.5.1. (5) of the Ontario Building Code states that steel lintels supporting masonry shall be primed or painted or otherwise protected from corrosion. It has been discovered that solely priming or painting steel lintels may not protect the steel lintel from corrosion which results in exposed, unsightly, and maintenance burdened steel lintels.
Furthermore, section 9.27.4.2. (1)(b). states that materials shall be selected for their ability to resist the effects of weathering. Accordingly, there is a motivation to provide an aesthetic flashing or lintel cover designed in such a manner that it diverts moisture away from the structure 108 and prevents the pooling of water over the steel lintel 106. Without the diversion of moisture, steel lintels 106 may not be sufficiently protected from corrosion, nor the effects of weathering. Although there have been products designed to aesthetically cover the steel lintel 106, some prior solutions are limited and function as water traps to expedite the corrosion, thus amplifying weathering effects.
Advantageously, use of the wrap 102 according to disclosed examples can provide a decorative covering for exposed portions of a steel lintel 106, and as a flashing that diverts the passage of water over the steel lintel 106 and away from the structure 108. In doing so the wrap 102 can prevent water pooling and oxidation of the steel lintel 106. Whereas some previous products hug the underside of the steel lintel 106, disclosed examples of the wrap 102 according to the present specification cover an upper surface of the steel lintel 106. A vertical portion or wall of the wrap 102, a hinge bend 116 and an angled flap 114 allows the wrap 102 to wholly cover the steel lintel 106 and be tied into the structure's vapour barrier, whilst accommodating the need for an air space 110 between the bricks 104 and the structure 108.
According to disclosed examples, the wrap 102 is tied into the vapour barrier house wrap by tape 112 providing a means of sealing the air space 110 creating a flashing functionality from the structure 108 to a base of the steel lintel 106. In brick-veneer structures, an air space 110 is left between the structure 108 and the bricks 104 to absorb the moisture generated from transitions in temperatures (e.g., hot to cold). Importantly, the air space 110 acts as a drainage system for moisture allowing the fluid to run down the side of the structure 108. Over openings, the vapour barrier can be draped over the steel lintel 106 to prevent the collection of water over windows and doors inserted into the openings. This may result in a pooling of water around the steel lintel 106 which can expedite the oxidation of the steel lintel 106. Lintel covers of previous designs sometimes feature a lip at the end of the lower flange of the steel lintel 106 that worsens the problem of pooling of water at an interior angle of the steel lintel 106. In instances where the vapour barrier is not draped over the steel lintel 106, moisture would drain down the air space 110 along the face of the structure 108, past the steel lintel 106 until it reached the installed windows and doors. This moisture would then pool over the windows and doors resulting in rotting of the window and door frames, and possibly the structure 108. Not draping the vapour barrier wrap over the steel lintel 106 is a common occurrence in new developments and often leads to the rotting of the window and door frames. Wraps according to examples of the present specification help to protect the steel lintel 106 from oxidation resulting in pooling of water around the steel lintel 106 when the vapour barrier and wrap 102 are installed correctly. In instances where the vapour barrier is not draped over the steel lintel 106, a hinge bend 116 allows the wrap 102 to be tied into the vapour barrier, by taping, thus sealing the air space 110. An angled flap 114 connected to the hinge bend 116 diverts moisture flow away from the structure 108 and into the brick weep holes (discussed below with reference to
Now with reference to
The wrap 102 is taped into the vapour barrier using tape 112 which allows moisture to drain over and around the steel lintel 106 through the weep holes 204 in the bricks. Area 110 depicts the air space left between the bricks and the structure 108. The importance of protecting this air space 110 is discussed with reference to
In a structure 108 that utilizes a house wrap as a vapour barrier, the wrap 102 can be directly taped to the vapour barrier using tape 112. This eliminates the need to drape the vapour barrier over the steel lintel 106. Vapour barriers that do not facilitate the use of tape 112 require the vapour barrier to be draped over the steel lintel 106. The direct taping of the wrap 102 to the structure 108 and vapour barrier is enabled with the articulating features of the hinge bend 116 and the angled flap 114 as described in the present specification.
Turning now to
According to some examples, the location of the hinge bend 116 can be adjusted during fabrication or installation of the wrap 102. The hinge bend 116 can be located at any position along the vertical dimension of the angled flap 114. For example, locating the hinge bend 116 closer to the top end of the wrap 102 permits the angled flap 114 to be oriented at a position that is closer to vertical. On the other hand, locating the hinge bend 116 away from the top end of the wrap 102 permits the angled flap 114 to be oriented at about a forty-five degree angle from the vertical portion 308 to the structure 108. Other angle measurements are possible without departing from the scope of the present specification. As well, the wrap 102 can include more than one hinge bend 116 and/or angled flap 114. According to one example, the angle of the angled flap 114 changes based on the location of the hinge bend 116.
Advantageously, use of the wrap 102 prevents moisture from making its way down the structure 108 and onto the top of window 208 (or door openings) minimizing water damage. As well, use of the wrap 102 provides a decorative covering for exposed steel lintels in brick veneer building. Furthermore, use of the wrap 102 provides a flashing that diverts the passage of water over the steel lintel 106 and away from the structure 108, thereby preventing water pooling and rust oxidation of the steel lintels. Still further, use of the wrap 102 seals the air space 110 and diverts moisture over and around the steel lintel 106.
The present specification provides a wrap for a steel lintel positioned above a structural opening of a structure including a plastic sheet member for placement on the steel lintel. The plastic sheet member is contoured to cover the steel lintel across a width of the structural opening. The plastic sheet member extends to cover a lower flange of the steel lintel providing a flashing at an interior angle of the steel lintel. The wrap can be fabricated from extruded plastic and maintains a uniform thickness and uniform profile across the width.
A top end of the plastic sheet member includes a flap and a hinge bend. When installed, a sealed air space is formed at a location between the structure and the steel lintel.
A tape seals the flap to the structure, creating a vapour barrier to prevent an intrusion of moisture within the sealed air space, behind the steel lintel.
The plastic sheet member includes a finished portion extending to cover a lower surface of the lower flange of the steel lintel.
The structural opening can be a window and the finished portion of the plastic sheet member can be colour-matched to a frame of window.
The flap can be adjustable to accommodate a size of the sealed air space.
Some of the bricks installed with the wrap include weep holes that channel water from the sealed air space, flowing over the wrapped steel lintel and into the weep holes where the water continues to drain downwards along the structure.
In one example, the plastic sheet member covers the steel lintel except for a rear vertical portion of the steel lintel.
According to disclosed examples, a method of installing wrap includes the steps of: terminating a house wrap at a level of a steel lintel positioned above a structural opening; placing the wrap on the steel lintel so that the wrap is contoured to cover the steel lintel across a width of the structural opening; installing bricks on top of the wrapped steel lintel and maintaining the sealed air space between the bricks and the structure; bending the top end of the plastic sheet member to be proximate to the house wrap; and taping the top end of the plastic sheet member to the house wrap forming a vapour barrier.
While a number of exemplary aspects and examples have been discussed above, those of skill in the art will recognize certain modifications, permutations, additions and sub-combinations thereof.