The present invention relates generally to wrenches or one way drive devices also known as “spanners” and, more particularly, to “ring” type wrenches.
A wrench is a tool for applying torque to a threaded fastener, such as a nut, bolt, screw or the like, for the purpose of tightening or loosening the fastener. Ring type wrenches are known and function to engage a fastener and drive or rotate the fastener in a given direction. Typically, conventional ring type wrenches have a ring-shaped head with a curved, usually substantially circular, external surface and a hexagonally shaped internal surface (or other shaped internal surface depending on the application of the wrench). In use, the internal surface or surfaces of the wrench head substantially engage the flat surfaces of the fastener (such as a hexagonally shaped fastener head) to put pressure on the fastener surfaces and corners when the fastener is tightened or loosened.
However, if the nut is undersized, damaged or worn, it is likely that the wrench head will “slip” and rotate around the fastener instead of properly gripping or engaging the flats or corners of the fastener. Ring type wrenches are known that, when a force is exerted on the handle and the fastener resists rotation of the socket or ring, the ring may clamp onto the fastener to limit rotation of the ring or head about the fastener. For example, such ring type wrenches are disclosed in U.S. Pat. No. 7,418,890, which is hereby incorporated herein by reference in its entirety. Typically, such ring type wrenches slip around the fastener unless there is enough resistance to rotation of the head by the fastener to cause the ring or head to clamp around the fastener to limit or substantially preclude relative rotation of the ring or head about the fastener.
The present invention provides a ring type wrench with one or more triggers or levers that function to initially clamp a head portion of the wrench onto a fastener or onto a socket so that the wrench may rotate or drive a fastener with no initial movement or torque required to cause the head portion to clamp onto the fastener or socket. The trigger or triggers may be readily pressed or squeezed or moved by a user of the wrench prior to movement of the handle of the wrench so that the initial movement of the handle rotatably drives the fastener.
According to an aspect of the present invention, a wrench for applying a drive torque at a drive element comprises an elongated handle, a clamping element or head having a torque-applying gripping surface, and a trigger or trigger mechanism. The clamping element or head is adjustably or movably mounted at the handle and is adjustable or movable to impart a clamping force at a drive element received at the gripping surface of the clamping element or head. The trigger is configured to adjust or move the clamping element or head relative to the handle to impart the clamping force at the drive element, whereby, responsive to a user actuating the trigger (such as by squeezing or otherwise moving the trigger relative to the handle), the trigger adjusts or moves the clamping element or head relative to the handle to impart an initial clamping force at the drive element irrespective of and/or before any movement of the handle relative to the drive element.
Therefore, the wrench of the present invention provides enhanced rotation of a fastener or drive element via the trigger or triggers and clamping element of the wrench. The trigger provides for an initial clamping force to be generated at the drive element without requiring any handle rotation about an axis of the drive element and without requiring any resistance to rotation by the drive element. Thus, the trigger may be selectively actuated so that, when the trigger is actuated, an initial rotational movement in a selected direction by the wrench handle imparts a corresponding initial rotation of the drive element, thereby enhancing rotational driving or removing of loose fasteners that may not provide enough resistance to otherwise cause the clamping element to clamp onto the drive element.
These and other objects, advantages, purposes, and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
Referring now to the drawings and the illustrative embodiments depicted therein, a wrench 10 comprises a clamping element or head portion 12 (such as a single flexible ring-like head portion or tension ring or split ring), an elongate handle 14 and a circular socket or drive element 16 rotatably disposed within head portion 12 (
For example, a user may position the socket at a fastener (such as a head of a bolt or a nut or the like), and may press or urge or squeeze or otherwise move one of the triggers 20, 21 toward the wrench handle 14 to impart a clamping force of the head portion 12 about the socket 16 to limit or substantially preclude rotation of the socket within the head portion, whereby the user may rotate or move the handle to rotate the fastener, as also discussed below. The user may actuate the trigger to initially clamp the head portion or ring about the socket with little or no movement of the handle, such that the user, when squeezing or otherwise actuating the trigger, may have the first or initial movement of the handle operate to rotatably drive the fastener. Thus, there is little or no play or slack in the wrench and clamping/driving mechanism such that the handle of the wrench does not have to be initially pivoted or rotated about the fastener an initial amount before the head portion will clamp onto the fastener. Thus, the trigger and head portion and socket cooperate to provide initial clamping of the head portion about the socket irrespective of any movement or rotation of the handle relative to the socket or fastener.
The handle portion 14 of wrench 10 may comprise any suitable shape and material (such as any suitable metallic material, such as drop forged steel and/or such as nickel and/or chrome plated metallic material or the like). In the illustrated embodiment, the end portion 14a of handle portion 14 is flattened in a plane that is generally normal to an axis of rotation of the socket 16, while the opposite end portion 14b of handle portion 14 may be flattened in a plane that is generally normal to the plane of the first end portion 14a. Optionally, the opposite end portion 14b may include a box-end wrench 14c or the like (such as a box-end wrench of the same size as the size of the socket so that either end of the wrench 10 may be used on the same fastener).
As best shown in
As best shown in
Ring portion 12a of head portion 12 includes an internal circular surface 12d that receives and slidably engages on outer circular surface 16a of socket 16 when socket 16 is loosely received in head portion 12 and head portion 12 is not clamped onto socket 16. The inside diameter of the head portion and the outside diameter of the outer circular surface of the socket are dimensioned to provide substantially free rotation of the socket relative to the head portion when neither of the triggers is actuated (with limited or reduced interference between the inner surface of the head portion and the outer surface of the socket). As best shown in
Socket 16 may comprise any suitable drive member for engaging or receiving a fastener portion therein (such as a nut or a head of a bolt or the like) to rotatably drive the fastener via rotation of the socket. Socket 16 includes an internal polygonal-shaped surface 16c (which in the illustrated embodiment comprises a hexagonal configuration, but could be any suitable non-circular shape depending on the particular application of the wrench), with each side of the surface 16c comprising a generally flat planar surface for engaging a respective generally flat surface of the fastener received in socket 16. The socket or drive member may comprise any suitable material, such as any suitable metallic material, such as steel and/or such as nickel and/or chrome plated metallic material or the like.
Head portion 12 further includes wings or tabs or arms or triggers 20, 21 extending from respective base portions 12b. In the illustrated embodiment, triggers 20, 21 extend generally along the handle portion 14 and may be curved to form a curved trigger-like shape for receiving or partially receiving a user's finger therein. When a user depresses or squeezes one of the triggers 20, 21 toward the handle portion 14, the force imparted at the trigger 20, 21 causes rotation or adjustment or movement or flexing of head portion 12 relative to handle portion 14 with the movement controlled by the pins or rivets 18 moving along slots 28, 30 of head portion 12.
During use of wrench 10, the socket 16 is positioned at a fastener (such as a hexagonal nut or head of a bolt or the like), with the internal surface 16c of the socket 16 engaging the fastener. If the fastener resists rotation and the handle is moved in a manner that pivots the handle relative to the head portion, movement of or urging of the handle portion in the direction it is desired to rotate the fastener may result in the ring portion 12a of head portion 12 tightening (via closing or partial closing of gap 12c as head portion 12 pivots relative to handle portion 14) onto and around socket 16 to urge and move socket 16 with handle portion 14 (such as in a similar manner as described in U.S. Pat. No. 7,418,890, which is hereby incorporated herein by reference in its entirety). However, optionally, and desirably, the user may, after positioning the socket at the fastener, first (and before any rotation of the handle about the fastener) press or squeeze one of the arms or triggers 20, 21 to preload or preset or clamp the ring portion 12a onto the socket 16 so that even the initial movement of the handle portion drives the socket and thus the fastener in the desired direction.
Thus, the wrench of the present invention is suited for quickly rotating or driving a fastener in either direction when there is little resistance to such driving rotation of the fastener. A user may repeatedly squeeze the appropriate trigger, rotate the handle in the desired driving direction, release the trigger, rotate the handle back in the opposite direction (with the socket and fastener not rotating as the handle is moved or rotated while the trigger is released), and repeat this process to quickly and efficiently drive (or tighten or loosen and remove) a fastener. The initial clamping at the socket by the ring portion of the head portion in response to a user squeezing one of the triggers allows for easier and more controlled driving of the fastener in the desired direction, and does not require any resistance to rotation on the part of the fastener or any initial movement of the handle before its actually drives the fastener, such as is typically needed for conventional ratchets to function.
For example, movement of trigger 20 towards the wrench handle 14 causes that side or portion of the ring portion 12a to move inward (via the rivet moving along a respective slot 28), which results in the gap 12c being reduced, and thus results in an increased or initial clamping force at the outer surface 16a of socket 16 by the ring portion 12a. The increased or initial clamping force via squeezing the trigger is sufficient to drive the fastener even if there is little or no resistance to rotation of the fastener. Once there is sufficient resistance to rotation of the fastener, the wrench head portion and rivets and handle portion function to clamp the head portion tightly onto the socket to drive the socket and fastener, such as in a similar manner as the wrenches described in U.S. Pat. No. 7,418,890, which is hereby incorporated herein by reference in its entirety. As further torque is applied (due to increased resistance to rotation of the fastener as it is tightened), the rivet may move along the slot towards the outer slot end towards the end of the handle portion and the angle or orientation of the slot and the interaction with the rivet causes the ring portion 12a to flex and to reduce or close the gap 12c and increase the clamping force or pressure on the fastener to drive or tighten the fastener. If it is desired to loosen the fastener (or drive it in the opposite direction), the user may depress or squeeze the other trigger 21 toward the handle portion 14, whereby the force imparted at the trigger 21 causes the opposite rotation or movement or flexing of head portion 12 relative to handle portion 14 with the movement controlled by the pins or rivets 18 moving along slots 28, 30 to clamp the ring portion 12a onto the socket 16 for driving the socket and fastener in the opposite direction. The user thus may squeeze a selected or appropriate one of the triggers to drive the socket and fastener in the selected or appropriate direction (for example, by squeezing one trigger the user may drive the socket in one direction and by squeezing the other trigger, the user may drive the socket in the other direction). Optionally, it is envisioned that the wrench may include only one trigger or trigger mechanism, whereby the user may flip the wrench and socket over to change the drive direction of the wrench, while remaining within the spirit and scope of the present invention.
In either of the above fastener driving operations, the closing of the gap 12c together with the resilience of the ring headed portion 12a cause the ring portion 12a to engage and clamp onto the outer cylindrical surface 16a of socket 16 to securely clamp and hold the socket relative to the head portion 12 while tightening or loosening the fastener. In either operation, the triggers provide an initial clamping of the ring portion onto the socket prior to any rotational movement of the handle and without any resistance to such rotation at the fastener. Thus, the wrench and triggers of the present invention allow a user to clamp the ring portion onto the socket such that even the initial movement of the wrench handle functions to drive the fastener in the desired direction. The triggers may also function to allow the user to select the rotational drive direction of the wrench (for example, the user may squeeze or actuate one trigger to cause the wrench to drive the fastener in one direction, such as to tighten the fastener, and may squeeze or actuate the other trigger to cause the wrench to drive the fastener in the other direction, such as to loosen the fastener). Although shown and described as having the ring portion 12a clamp onto a socket 16 to drive the fastener, it is envisioned that the wrench may not include a separate socket or drive element and that the head portion may have an inner hexagonal or other non-circular shape for directly engaging and clamping onto a hexagonal or non-circular shaped fastener to drive the fastener in a similar manner as described above. Optionally, the socket or drive element may comprise a square shaft drive element or the like, whereby a selected socket may be readily attached at the drive element so that different socket sizes may be used on the wrench, while remaining within the spirit and scope of the present invention.
Although shown in
For example, and with reference to
Optionally, the end of the wrench opposite the socket may comprise a handle portion or any suitable open ended or box wrench or closed-ended wrench or the like. For example, and with reference to
Referring now to
As shown in
In the illustrated embodiment (and as can be seen with reference to
Thus, the wrench of the present invention has a fulcrum sandwiched inside of the shaft of the wrench handle with a pivot point more towards the drive end of the handle (to provide greater force at the head portion and reduced travel in response to a lesser force applied at the trigger portions) and with thumb/finger triggers at or near the ergonomic hand-grip part of the handle (so a user may readily press or actuate or squeeze the desired trigger portion while holding the wrench at the grip portion during use of the wrench). When the triggers are depressed in either direction, the activator end or drive end of the fulcrum applies the appropriate pressure to the end of the head portion or socket clamping ring. In turn, the head portion or socket clamping ring instantly (with zero degrees of movement or rotation of the handle) grabs the socket so that the initial movement or rotation of the handle drives or turns the socket and fastener. Release of the trigger allows the socket or square drive insert to rotate freely in either direction. The drive direction can be changed by depressing either trigger to engage the clamping ring when rotating in either direction.
While the embodiments shown and described herein are shown to have a polygonal internal surface of the socket, such as hexagonal, such internal surfaces may comprise any suitable surface or shape depending on the particular application of the wrench. For example, any non-circular shape may be selected to correspond to the shape of the targeted fastener to which the wrench is to be applied. Optionally, the socket may comprise a square drive element or insert for attachment of a selected hexagonal socket or twelve point socket or the like. Optionally, the wrench of the present invention may not have a circular socket, and instead the head portion may have a desired engaging surface for engaging a fastener (such as a partial hexagonal shape or non-circular shape or circular shape), whereby the triggers may cause initial clamping of the head portion onto and around the fastener head. Wherever a cylindrical/circular construction is used, it may be desirable for clamping onto fasteners having burred edges or cylindrical sockets provided with internal polygonal surfaces to engage a bolt head having similarly polygonal external surfaces.
Therefore, the present invention provides a wrench or socket with a ratchet type mechanism (such as a gearless or toothless ratchet mechanism or substantially infinitely adjustable ratchet mechanism or the like) that allows for substantially free rotation of the socket within the head portion or tension ring when neither of the triggers is moved or squeezed or actuated, yet provides an initial clamping force by the head portion or tension ring on the socket to limit or substantially preclude relative rotation between the head portion and socket to facilitate driving of the socket (and fastener received therein) even when there is little or no resistance to rotation of the socket and/or fastener. The present invention thus provides enhanced control of the wrench and allows the user of the wrench to apply the wrench in areas with little clearance or room to move the handle, whereby the ease of squeezing/actuating the trigger and releasing the trigger provides for quick and controlled driving of the socket with little movement of the handle portion of the wrench and irrespective of any movement of the handle portion relative to the socket and/or fastener.
Changes and modifications to the specifically-described embodiments may be carried out without departing from the principles of the present invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law, including the doctrine of equivalents.
The present application claims the filing benefit of U.S. provisional application Ser. No. 61/371,275, filed Aug. 6, 2011, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
208057 | Beck | Sep 1878 | A |
610450 | Johnston | Sep 1898 | A |
651574 | Meredith | Jun 1900 | A |
1215726 | Shew | Feb 1917 | A |
1286926 | Brightly | Dec 1918 | A |
1526304 | Chamberlain | Feb 1925 | A |
1664391 | Aschroft | Apr 1928 | A |
1675748 | Bunker | Jul 1928 | A |
2013209 | Hargreaves | Sep 1935 | A |
2331339 | Morris | Oct 1943 | A |
2764049 | Hartung | Sep 1956 | A |
2766648 | Jazwieck | Oct 1956 | A |
2824476 | Wilson | Feb 1958 | A |
2846910 | Brown | Aug 1958 | A |
2991545 | Wuischpard | Jul 1961 | A |
3015245 | Dracka | Jan 1962 | A |
3023652 | Feldman | Mar 1962 | A |
3044335 | Keranen | Jul 1962 | A |
3575036 | Hoffman et al. | Apr 1971 | A |
3656376 | Campbell et al. | Apr 1972 | A |
3670604 | Fromell | Jun 1972 | A |
4038987 | Komiya | Aug 1977 | A |
4084456 | Pasbrig | Apr 1978 | A |
4485700 | Colvin | Dec 1984 | A |
4488461 | Hurtig | Dec 1984 | A |
4513642 | Castner, Sr. et al. | Apr 1985 | A |
4532833 | Downs | Aug 1985 | A |
4534246 | McNulty | Aug 1985 | A |
4546678 | Stuckey | Oct 1985 | A |
4611514 | Hyde | Sep 1986 | A |
4651597 | Yang | Mar 1987 | A |
4747328 | Howard | May 1988 | A |
4762032 | Chow | Aug 1988 | A |
4967612 | Sparling | Nov 1990 | A |
4970917 | McCollom | Nov 1990 | A |
4970919 | Snyder | Nov 1990 | A |
5056383 | Halpin | Oct 1991 | A |
5101693 | Chambers | Apr 1992 | A |
5528963 | Wei | Jun 1996 | A |
5557992 | Macor | Sep 1996 | A |
5713248 | Franco | Feb 1998 | A |
5967002 | Pijanowski | Oct 1999 | A |
6006634 | Byers | Dec 1999 | A |
6016723 | Hillinger | Jan 2000 | A |
6070499 | Wisbey | Jun 2000 | A |
6189419 | Pijanowski | Feb 2001 | B1 |
6237448 | Haxton | May 2001 | B1 |
6311584 | Chu | Nov 2001 | B1 |
6516688 | Albertson | Feb 2003 | B2 |
6978701 | Buchanan | Dec 2005 | B1 |
6988430 | Putney et al. | Jan 2006 | B1 |
7062994 | Chen | Jun 2006 | B2 |
7073413 | Duffy et al. | Jul 2006 | B2 |
7197964 | Buchanan | Apr 2007 | B2 |
7418890 | Buchanan | Sep 2008 | B2 |
20050061115 | Duffy et al. | Mar 2005 | A1 |
20050160881 | Niven | Jul 2005 | A1 |
20050247168 | Buchanan | Nov 2005 | A1 |
20060236818 | Buchanan | Oct 2006 | A1 |
20080223179 | Nash et al. | Sep 2008 | A1 |
20100058896 | Abel et al. | Mar 2010 | A1 |
Number | Date | Country |
---|---|---|
599682 | Jul 1937 | DE |
1110580 | Jul 1961 | DE |
1603875 | Sep 1971 | DE |
2522696 | Dec 1976 | DE |
0122179 | Oct 1984 | EP |
1510293 | Mar 2005 | EP |
592653 | Aug 1925 | FR |
393243 | Jun 1933 | GB |
658879 | Oct 1951 | GB |
2007567 | May 1979 | GB |
WO2010069865 | Jun 2010 | WO |
Entry |
---|
International Search Report and Written Opinion for corresponding PCT Application No. PCT/US2011/046353, dated May 30, 2012. |
Number | Date | Country | |
---|---|---|---|
20120031238 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
61371275 | Aug 2010 | US |