1. Field of the Invention
The present invention relates to a wrench used for tightening and loosening a fastening member such as a bolt, a nut, or a fastening sleeve for a tool holder, and more particularly, to a wrench which includes a wrench body having a ring portion to be engaged with an outer circumferential surface of the fastening member, and wedge members disposed on the inner circumferential surface of the ring portion and adapted to be caught between the inner circumferential surface of the ring portion and the outer circumferential surface of the fastening member.
2. Description of the Related Art
A fastening member, such as a bolt, a nut, or a fastening sleeve for a tool holder, is configured to be rotated in a tightening direction or a loosening direction; and such a fastening member is tightened or loosened through an operation of rotating, in the tightening or loosening direction, a wrench that is engaged with the outer circumference of the fastening member.
A conventional wrench of such a type is disclosed in, for example, Japanese Patent No. 3155888.
As shown in
The conventional wrench 1 having the above-described configuration is used as follows. When the fastening member 2 is to be tightened by use of the wrench 1, the ring portion 3a of the wrench 1 is engaged with the fastening member 2, and then the wrench 1 is rotated in a direction of arrow A in
When the fastening member 2 is to be loosened by use of the wrench 1, the ring portion 3a of the wrench 1 is engaged with the fastening member 2, and then the wrench 1 is rotated in a direction of arrow B in
In such a conventional wrench 1, in a state in which the ring portion 3a of the wrench 1 is not engaged with the fastening member 2, as shown in
Moreover, the conventional wrench 1 is configured in such a manner that within each groove 5 the wedge member 4 is restrained in the left-hand or right-hand wedge region 5b by means of the corresponding plate spring 9 and the corresponding cylindrical member 8. This hinders smooth movement of the wedge member 4 within the groove 5 from one wedge region 5b to the other wedge region 5b and thus renders the movement unstable. Moreover, attainment of a state where all the wedge members 4 are located in the wedge regions 5b of the same side is not guaranteed; and, in some cases, some wedge members 4 are located in the left-hand wedge regions 5b, whereas the remaining wedge members 4 are located in the right-hand wedge regions 5b. In such a case, some wedge members 4 fail to operate properly, and thus hinder the operation of tightening or loosening the fastening member 2. In order to avoid such a problem, the positions of some wedge members 4 must be corrected such that all the wedge members 4 are located in the wedge regions 5b of the same side. Such position correction operation lowers the efficiency of work for tightening or loosening the fastening member 2.
In view of the foregoing, an object of the present invention is to provide a wrench which enables a changeover operation to move wedge members between free regions and wedge regions and which facilitates tightening or loosening of a fastening member.
The present invention provides a wrench for tightening or loosening a fastening member with respect to another member, which wrench has a changeover mechanism for moving each wedge member between a free region and a wedge region, and enables reliable and stable positioning of each wedge member at a position in which the wedge member faces the free region or a position in which the wedge member faces the wedge region, whereby all the wedge members are simultaneously and stably held in a free state or a caught state. Accordingly, tightening and loosening of a fastening member by use of the wrench can be performed without any problem. Moreover, the work for tightening and loosening of the fastening member can be facilitated, and thereby improving work efficiency.
According to the present invention, since the changeover mechanism includes a positioning mechanism of a click-stop configuration, each wedge member can be positioned, in a more reliable and stable manner, at a position in which the wedge member faces the free region or a position in which the wedge member faces the wedge region.
Further, according to the present invention, since the changeover mechanism includes a changeover lever connected to the retainer, all the wedge members can be easily brought into a free state or a caught state through mere operation of the retainer by use of the changeover lever.
Various other objects, features and many of the attendant advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description of the preferred embodiments when considered in connection with the accompanying drawings, in which:
Embodiments of the present invention will now be described with reference to the drawings.
First, a first embodiment of the present invention will be described with reference to
A wrench 10 shown in
The wrench body 11 has a ring portion 111, and a handle portion 112 projecting from the outer circumference of the ring portion 111. The ring portion 111 has an inner diameter suitable for disengagable engagement with the outer circumference of a fastening member 2.
As shown in FIGS. 3 to 7C, the wedge members 12 each assume a roller-like shape. When the ring portion 111 of the wrench body 11 is engaged with the outer circumference of the fastening member 2 and is rotated in order to tighten or loosen the fastening member 2, each of the wedge members 12 is caught between the inner circumferential surface of the ring portion 111 and the outer circumference of the fastening member 2 to thereby couple the ring portion 111 and the fastening member 2.
The retainer 13 is adapted to hold the wedge members 12 at uniform intervals along the inner circumferential surface of the ring portion 111. The retainer 13 is disposed inside the ring portion 111 to be rotatable along the inner circumferential surface of the ring portion 111. Reference numeral 17 denotes a ring-shaped cover member for holding the retainer 13 carrying the wedge members 12 in order to prevent the retainer 13 from coming off the ring portion 111. The cover member 17 is fitted to a stepped portion 111a provided at one end of the ring portion 111, and is secured to the ring portion 111 by means of a screw 18.
More specifically, as shown in FIGS. 3 to 6, the retainer 13 assumes a cylindrical shape having a diameter corresponding to the inner diameter of the ring portion 111. The retainer 13 has a wall thickness smaller than the diameter of the roller-shaped wedge members 12. Elongated holes 131 for accommodating the wedge members 12 are formed in the retainer 13 at eleven of twelve locations which are determined, for example, by dividing the circumference of the retainer 13 at predetermined intervals of 30 degrees. The elongated holes 131 extend parallel to the axis of the retainer 13. As shown in FIGS. 6 to 7C, each wedge member 12 is movably held in the corresponding elongated hole 131 in such a manner that the wedge member 12 can be rotated about its axis. An engagement groove 132 is formed at either end of each elongated hole 131. Small-diameter boss portions 121 provided at opposite ends of each wedge member 12 are movably held in the corresponding engagement grooves 132, whereby the wedge member 12 is prevented from coming off toward the interior of the retainer 13. An engagement portion 133 to which the changeover mechanism 15 is coupled is formed at the remaining one location of the above-described twelve locations.
The wedge guide grooves 14 are adapted to maintain the wedge members 12 in a free state in which the wedge members 12 move freely between the bottoms of the wedge guide grooves 14 and the outer circumferential surface of the fastening member 2 or to maintain the wedge members 12 in a caught state in which the wedge members 12 are caught between the bottoms of the wedge guide grooves 14 and the outer circumferential surface of the fastening member 2. The wedge guide grooves 14 are formed on the inner circumferential surface of the ring portion 111 to be arranged along the circumferential direction of the ring portion 111 at intervals corresponding to those of the wedge members 12.
As shown in
The changeover mechanism 15 is adapted to operate the retainer 13 in order to move each wedge member 12 to a position at which the wedge member 12 faces the free region 141 of the corresponding wedge guide groove 14, a position at which the wedge member 12 faces the left-hand wedge region 142 of the corresponding wedge guide groove 14, or a position at which the wedge member 12 faces the right-hand wedge region 143 of the corresponding wedge guide groove 14.
As shown in
As shown in
Of the three engagement holes 164a to 164c, the engagement hole 164a is used to position the retainer 13 at a neutral position N at which each wedge member 12 faces the corresponding free region 141; the engagement hole 164b is used to position the retainer 13 at a tightening position L at which each wedge member 12 faces the corresponding left-hand wedge region 142; and the engagement hole 164c is used to position the retainer 13 at a loosening position UL at which each wedge member 12 faces the corresponding right-hand wedge region 143.
Next, operation of the wrench 10 having the above-described configuration will be described.
When a fastening member 2 is to be tightened, the changeover lever 152 of the changeover mechanism 15 is first rotated to the neutral position N in order to cause the steel ball 162 of the positioning mechanism 16 to engage the engagement hole 164a. In this state, each of the wedge members 12 held by the retainer 13 is caused to face the free region 141 of the corresponding wedge guide groove 14, as shown in
Subsequently, the ring portion 111 of the wrench body 11 is engaged with the fastening member 2, and then the changeover lever 152 of the changeover mechanism 15 is rotated to the tightening position L. As a result, each of the wedge members 12 held by the retainer 13 is caused to face the left-hand wedge region 142 of the corresponding wedge guide groove 14, as shown in
When the wrench 10 is to be removed from the fastening member 2 after completion of tightening of the fastening member 2, the wrench body 11 is rotated slightly in the direction opposite the direction of arrow A of
Notably, the changeover lever 152 of the changeover mechanism 15 may be rotated to the neutral position N after the wedge members 12 are released from the caught state. In this case, the operation of removing the wrench 10 from the fastening member 2 becomes easier.
When the fastening member 2 is to be loosened, as in the case where the fastening member 2 is to be tightened, the changeover lever 152 of the changeover mechanism 15 is first rotated to the neutral position N in order to cause the steel ball 162 of the positioning mechanism 16 to engage the engagement hole 164a. In this state, each of the wedge members 12 held by the retainer 13 is caused to face the free region 141 of the corresponding wedge guide groove 14, so that each of the wedge members 12 enters a free state.
Subsequently, the ring portion 111 of the wrench body 11 is engaged with the fastening member 2, and then the changeover lever 152 of the changeover mechanism 15 is rotated to the loosening position UL. As a result, each of the wedge members 12 held by the retainer 13 is caused to face the right-hand wedge region 143 of the corresponding wedge guide groove 14, as shown in
When the wrench 10 is to be removed from the fastening member 2 after completion of loosening of the fastening member 2, the wrench body 11 is rotated slightly in the direction opposite the direction of arrow B of
Notably, the changeover lever 152 of the changeover mechanism 15 may be rotated to the neutral position N after the wedge members 12 are released from the caught state. In this case, the operation of removing the wrench 10 from the fastening member 2 becomes easier.
In the wrench 10 according to the present embodiment, the retainer 13, which holds the plurality of wedge members 12 arranged in the circumferential direction of the ring portion 111, is disposed inside the ring portion 111 to rotate along the inner circumferential surface of the ring portion 111; the wedge guide grooves 14 are formed on the inner circumferential surface of the ring portion 111 to be arranged at intervals corresponding to those of the wedge members 12, wherein each of the wedge guide grooves 14 has a free region 141 for maintaining a wedge member 12 in a free state in which the wedge member 12 moves freely relative to the outer circumferential surface of the fastening member 2, and left-hand and right-hand wedge regions 142 and 143, each maintaining the wedge member 12 in a caught state in which the wedge member 12 is caught by the outer circumferential surface of the fastening member 2; the changeover mechanism 15 for operating the retainer 13 is provided on the wrench body 11; and, by means of the changeover mechanism 15, the retainer 13 is moved to the position at which each wedge member 12 faces the free region 141 of the corresponding wedge guide groove 14, the position at which each wedge member 12 faces the left-hand wedge region 142 of the corresponding wedge guide groove 14, or the position at which each wedge member 12 faces the right-hand wedge region 143 of the corresponding wedge guide groove 14. Therefore, each wedge member 12 can be positioned, in a reliable and stable manner, to the position at which the wedge member 12 faces the corresponding free region 141, the position at which the wedge member 12 faces the corresponding left-hand wedge region-142, or the position at which the wedge member 12 faces the corresponding right-hand wedge region 143. In addition, all the wedge members 12 can be simultaneously held in a free state or a caught state. Therefore, tightening and loosening of the fastening member 2 by use of the wrench 10 can be performed without any problem. Moreover, the work for tightening and loosening of the fastening member 2 can be facilitated, and thereby improving work efficiency.
In the present embodiment, since the changeover mechanism 15 is provided with the positioning mechanism 16 of a click-stop configuration, each wedge member 12 can be positioned, in a more reliable and stable manner, to the position at which the wedge member 12 faces the corresponding free region 141, the position at which the wedge member 12 faces the corresponding left-hand wedge region 142, or the position at which the wedge member 12 faces the corresponding right-hand wedge region 143.
Further, since the changeover mechanism 15 has the changeover lever 152 connected to the retainer 13, all the wedge members 12 can be easily brought into the free state or the caught state through a simple operation of rotating the retainer 13 by use of the changeover lever 152.
Next, a second embodiment of the present invention will be described with reference to
A wrench 20 shown in FIGS. 8 to 10 is adapted to be engaged with a cylindrical hole 2Aa of a fastening member 2A, such as a bolt having a cylindrical hole in its head portion, in order to tighten or loosen the fastening member 2A with respect to another member. The wrench 20 includes a wrench body 21, wedge members 22, a retainer 23, wedge guide grooves 24, and a changeover mechanism 25.
The wrench body 21 has a handle portion 211, a cylindrical base portion 212 provided at one end of the handle portion 211, and a cylindrical body 213 concentrically provided on one end surface of the cylindrical base portion 212 and having a diameter smaller than that of the base portion 212. A fitting portion 214 for rotatably supporting one end of the retainer 23 is formed at a step portion between the base portion 212 and the cylindrical body 213.
As shown in FIGS. 8 to 11C, the wedge members 22 each assume a roller-like shape. When the fastening member 2A is tightened or loosened by means of the wrench body 21, each of the wedge members 22 is caught between the outer circumferential surface of the cylindrical body 213 and the inner circumference of the fastening member 2A to thereby couple the cylindrical body 213 and the fastening member 2A.
The retainer 23 is adapted to hold the wedge members 22 at uniform intervals along the outer circumferential surface of the cylindrical body 213. As shown in
Specifically, after the retainer 23.1s fitted onto the cylindrical body 213, one annular support portion 23a is fitted into the fitting portion 214 of the base portion 212, and the other annular support portion 23b is fitted into a cap-shaped support member 28, which is fixed to a lower end of the cylindrical body 213 (as viewed in
As shown in FIGS. 9 to 11C, elongated holes 231 for accommodating the wedge members 22 are formed in the retainer 23 at eleven of twelve locations which are determined, for example, by dividing the circumference of the retainer 23 at predetermined intervals of 30 degrees. The elongated holes 231 extend parallel to the axis of the retainer 23. Each wedge member 22 is movably held in the corresponding elongated hole 231 in such a manner that the wedge member 22 can be rotated about its axis. Contrary to the first embodiment, the wedge members 22 are supported in such a manner that the wedge members 22 are prevented from coming off toward the exterior of the retainer 23. An engagement portion 233 to which the changeover mechanism 25 is coupled is formed at the one remaining location of the above-described twelve locations.
The wedge guide grooves 24 are adapted to maintain the wedge members 22 in a free state in which the wedge members 22 move freely between the bottoms of the wedge guide grooves 24 and the inner circumferential surface of the cylindrical hole 2Aa of the fastening member 2A and to maintain the wedge members 22 in a caught state in which the wedge members 22 are caught between the bottoms of the wedge guide grooves 24 and the inner circumferential surface of the cylindrical hole 2Aa of the fastening member 2A. The wedge guide grooves 24 are formed on the outer circumferential surface of the cylindrical body 213 to be arranged along the circumferential direction of the cylindrical body 213 at intervals corresponding to those of the wedge members 22.
As shown in
The changeover mechanism 25 is adapted to operate the retainer 23 in order to move each wedge member 22 to a position at which the wedge member 22 faces the free region 241 of the corresponding wedge guide groove 24, a position at which the wedge member 22 faces the left-hand wedge region 242 of the corresponding wedge guide groove 24, or a position at which the wedge member 22 faces the right-hand wedge region 243 of the corresponding wedge guide groove 24.
As shown in
As shown in
Of the three engagement holes 264a to 264c, the engagement hole 264a is used to position the retainer 23 at a neutral position N at which each wedge member 22 faces the corresponding free region 241; the engagement hole 264b is used to position the retainer 23 at a tightening position L at which each wedge member 22 faces the corresponding left-hand wedge region 242; and the engagement hole 264c is used to position the retainer 23 at a loosening position UL at which each wedge member 22 faces the corresponding right-hand wedge region 243.
Next, operation of the wrench 20 having the above-described configuration will be described.
When the fastening member 2A is to be tightened, the changeover lever 252 of the changeover mechanism-25 is first rotated to the neutral position N in order to cause the steel ball 262 of the positioning mechanism 26 to engage the engagement hole 264a. In this state each of the wedge members 22 held by the retainer 23 is caused to face the free region 241 of the corresponding wedge guide groove 24, as shown in
Subsequently, the cylindrical body 213 of the wrench body 21, together with the retainer 23, is engaged with the cylindrical hole 2Aa of the fastening member 2A, and then the changeover lever 252 of the changeover mechanism 25 is rotated to the tightening position L. As a result, each of the wedge members 22 held by the retainer 23 is caused to face the left-hand wedge region 242 of the corresponding wedge guide groove 24, as shown in
When the wrench 20 is to be removed from the fastening member 2A after completion of tightening of the fastening member 2A, the wrench body 21 is rotated slightly in the direction opposite the direction of arrow A of
Notably, the changeover lever 252 of the changeover mechanism 25 may be rotated to the neutral position N after the wedge members 22 are released from the caught state. In this case, the operation of removing the wrench 20 from the fastening member 2A becomes easier.
When the fastening member 2A is to be loosened, as in the case where the fastening member 2A is to be tightened, the changeover lever 252 of the changeover mechanism 25 is first rotated to the neutral position N in order to cause the steel ball 262 of the positioning mechanism 26 to engage the engagement hole 264a. In this state, each of the wedge members 22 held by the retainer 23 is caused to face the free region 241 of the corresponding wedge guide groove 24, whereby each of the wedge members 22 enters a free state.
Subsequently, the cylindrical body 213 of the wrench body 21, together with the retainer 23, is engaged with the cylindrical hole 2Aa of the fastening member 2A, and then the changeover lever 252 of the changeover mechanism 25 is rotated to the loosening position UL. As a result, each of the wedge members 22 held by the retainer 23 is caused to face the right-hand wedge region 243 of the corresponding wedge guide groove 24, as shown in
When the wrench 20 is to be removed from the fastening member 2A after completion of loosening of the fastening member 2A, the wrench body 21 is rotated slightly in the direction opposite the direction of arrow B of
Notably, the changeover lever 252 of the changeover mechanism 25 may be rotated to the neutral position N after the wedge members 22 are released from the caught state. In this case, the operation of removing the wrench 20 from the fastening member 2A becomes easier.
In the wrench 20 according to the present embodiment, the retainer 23, which holds the plurality of wedge members 22 arranged in the circumferential direction of the cylindrical body 213, is disposed outside the cylindrical body 213 to rotate around the outer circumferential surface of the cylindrical body 213; the wedge guide grooves 24 are formed on the outer circumferential surface of the cylindrical body 213 to be arranged at intervals corresponding to those of the wedge members 22, wherein each of the wedge guide grooves 24 has a free region 241 for maintaining a wedge member 22 in a free state in which the wedge member 22 moves freely relative to the inner circumferential surface of the cylindrical hole 2Aa of the fastening member 2A, and left-hand and right-hand wedge regions 242 and 243, each maintaining the wedge member 22 in a caught state in which the wedge member 22 is caught by the inner circumferential surface of the cylindrical hole 2Aa of the fastening member 2A; the changeover mechanism 25 for operating the retainer 23 is provided on the wrench body 21; and, by means of the changeover mechanism 25, the retainer 23 is moved to the position at which each wedge member 22 faces the free region 241 of the corresponding wedge guide groove 24, the position at which each wedge member 22 faces the left-hand wedge region 242 of the corresponding wedge guide groove 24, or the position at which each wedge member 22 faces the right-hand wedge region 243 of the corresponding wedge guide groove 24. Therefore, each wedge member 22 can be positioned, in a reliable and stable manner, to the position at which the wedge member 22 faces the corresponding free region 241, the position at which the wedge member 22 faces the corresponding left-hand wedge region 242, or the position at which the wedge member 22 faces the corresponding right-hand wedge region 243. In addition, all the wedge members 22 can be simultaneously held in a free state or a caught state. Therefore, tightening and loosening of the fastening member 2A having the cylindrical hole 2Aa by use of the wrench 20 can be performed without any problem. Moreover, the work for tightening and loosening of the fastening member 2A can be facilitated, thereby improving work efficiency.
In the present embodiment, since the changeover mechanism 25 is provided with the positioning mechanism 26 of a click-stop configuration, each wedge member 22 can be positioned, in a more reliable and stable manner, to the position at which the wedge member 22 faces the corresponding free region 241, the position at which the wedge member 22 faces the corresponding left-hand wedge region 242, or the position at which the wedge member 22 faces the corresponding right-hand wedge region 243.
Further, since the changeover mechanism 25 has the changeover lever 252 connected to the retainer 23, all the wedge members 22 can be easily brought into the free state or the caught state through a simple operation of rotating the retainer 23 by use of the changeover lever 252.
The changeover mechanisms 15 and 25 of the present invention are not limited to those having structures shown in the above-described embodiments. For example, a changeover lever different from those used in the above-described embodiments may be connected directly to the retainer 13 (23), and through operation of this changeover lever, each wedge member 12 (22) may be positioned to the position at which the wedge member 12 (22) faces the corresponding free region 141 (241), the position at which the wedge member 12 (22) faces the corresponding left-hand wedge region 142 (242), or the position at which the wedge member 12 (22) faces the corresponding right-hand wedge region 143 (243).
Further, the positioning mechanisms 16 and 26 of the changeover mechanisms 15 and 25 of the above-described embodiments may be omitted.
Moreover, in the above-described embodiments, the wedge guide grooves 14 of the ring portion 111 and the wedge guide grooves 24 of the cylindrical body 213 are each composed of the free region 141 or 241, the left-hand wedge region 142 or 242, and the right-hand wedge region 143 or 243. However, the present invention is not limited thereto, and each of the wedge guide grooves 14 or 24 may be composed of a free region and a single wedge region on the left-hand or right-hand side.
Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the present invention may be practiced otherwise than as specifically described herein.
Number | Date | Country | Kind |
---|---|---|---|
2002-199882 | Jul 2002 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | 10616285 | Jul 2003 | US |
Child | 11123991 | May 2005 | US |