Wrench

Information

  • Patent Grant
  • 10668600
  • Patent Number
    10,668,600
  • Date Filed
    Thursday, June 6, 2019
    5 years ago
  • Date Issued
    Tuesday, June 2, 2020
    4 years ago
Abstract
A wrench has a roller motion transmission mechanism that changes reciprocating motion of a driving member to unidirectional rotational motion of a driven member. The wrench as a head with an inside cylindrical wall surrounding a body with a plurality of protrusions. Each protrusion has a ramp inclined toward the cylindrical wall. A wedging member comprising a cylindrical roller engages each ramp and inside cylindrical wall of the head. A cage anchored to the protrusions retains the wedging members in engagement with the ramps and the inside cylindrical wall of the head.
Description
FIELD OF THE INVENTION

The invention relates to hand tools for turning fasteners. The hand tools are wrenches with motion transmitting mechanisms operable to rotate fasteners in response to angular movements in one direction and prevent rotation of the fasteners in response to movements in a reverse direction.


BACKGROUND OF THE INVENTION

Ratchet wrenches having motion transmission mechanisms are used in automotive, industrial, farm shop and home applications to install and remove threaded fasteners. The motion transmission mechanisms used in ratchet wrenches have structures that are operable to transmit torque applied to the handles of the wrenches to driven bodies or spindles coupled to threaded fasteners and alternatively prevent the transfer of torque to the driven bodies or spindles. Ratchet wrench motion transmission mechanisms with a driving gear and a spring loaded pawl are used to rotate a fastener in one direction and prevent rotation of the fastener in a reverse direction without removing the wrench from the fastener. A large amount of angular movement of the handle of these ratchet wrenches are required to rotate a fastener. The required angular movement of the handle of the ratchet wrench eliminates the use of the ratchet wrench in confined environments. Ratchet wrenches having motion transmission mechanisms that operate with a minimum of back lash or lost motion during the reverse movement have cylindrical rollers that engage ramps on driven bodies and cylindrical walls of drive members. Springs and elastic members are interposed between the rollers and driven bodies to hold the rollers in wedging position between the ramps and cylindrical walls of the drive members, such as the heads of wrenches.


Ratchet wrenches having cylindrical rollers biased with springs into engagement with inclined ramps on driven bodies and cylindrical walls of the heads of the wrenches are shown and described in the following U.S. patents and U.S. published patent application.


C. B. Lowry and R. Bernhard in U.S. Pat. No. 835,448 discloses a wrench with a handle joined to a head having an internal cylindrical wall. A body with a plurality of steel inserts providing ramps for rollers retained in carriages. Each carriage retains two rollers in engagement with two ramps and adjacent cylindrical wall of the head. Coil springs engage the body and carriages to bias the carriages to hold the rollers in wedging engagement with the ramps and adjacent cylindrical wall of head whereby clockwise movement of the handle and head rotates the body and counterclockwise movement of the handle and head does not rotate the body. The carriage is not anchored to the body.


S. O. Lawrence in U.S. Pat. No. 1,511,226 discloses a wrench having a handle joined to a head. The head has a cylindrical inside surface surrounding an opening for accommodating a body. The outer portion of the body has a series of pockets accommodating cylindrical rollers that wedge between the body and head for rotation in one direction and to release the rollers to prevent the body from rotation in a reverse direction. In order to avoid lost motion of the rollers, flat springs engage the rollers to hold the rollers in wedging positions in the pockets.


R. A. Johnson in U.S. Pat. No. 2,529,947 discloses a roller clutch wrench having a head at the outer end of a handle. The head has an internal cylindrical surface surrounding an opening. A clutch body located in the opening has spaced notches with ramps. Ridges located between the ramps contact the cylindrical surface of the head. A roller located in each pocket is biased with a spring into wedging contact with the ramp and cylindrical surface of the head whereby clockwise movement of the handle and head rotates the clutch body and counterclockwise movement of the handle and head does not rotate the clutch body.


C. T. Chang in U.S. Pat. No. 6,253,646 discloses a wrench having a handle joined to a head. The head has an inside circumferential wall having a plurality of arcuate recesses. A body with a cylindrical outer wall is located in an opening surrounded by wall with the recesses. Rollers located in the recesses engage the outer wall of the body to transmit torque from the head to the body during angular movement of the head and handle. A ring located on the body has C-shaped portions accommodating the rollers. A control device mounted on the head is used to rotate the ring to concurrently shift the ring to selectively move the rollers to clockwise and counterclockwise positions. A modification of the wrench has a head with a continuous inside cylindrical wall. The body has a plurality of ramps providing pockets for rollers. The ring biases the rollers into engagement with the inside cylindrical wall of the body whereby on angular movement of the handle in a clockwise direction the roller wedges between the ramps and inside cylindrical wall to rotate the body and on movement of the handle in a counterclockwise direction the rollers move to non-wedging locations in the pockets. The wrench is an improvement of a ratchet wrench having anti-reverse rollers and elastic members that bias the rollers into contact with ramps and a cylindrical wall of the head of the wrench.


M. Wang in U.S. Patent Application Publication No. 2018/0079055 discloses wrenches having unidirectional motion transmission mechanisms for rotating a nut or bolt head. Each wrench has a handle joined to a head having an internal cylindrical wall surrounding an opening. A body having inclined ramps is interposed in the opening and retained in the head. A cylindrical roller engages each ramp and adjacent cylindrical wall of the head. A spring between the body and roller biases the roller into contact with the ramp and adjacent cylindrical wall of the head. Movement of the handle and head in a clockwise direction wedges the roller into torque transmitting relationship with the ramp and cylindrical wall of the head thereby rotating the body. Movement of the handle and head in the opposite direction releases the torque transmitting relationship of the roller with respect to the ramp and cylindrical wall of the head whereby the body does not reverse rotate when the handle and head are moved in the reverse direction. One embodiment of the wrench has a holder having slots for accommodating the rollers. Elastic members or springs bias the rollers into contact with ramps and cylindrical wall of the head.


SUMMARY OF THE INVENTION

The invention relates to a hand tool used to rotate threaded fasteners, such as nuts and bolts. The hand tool is a roller type ratchet wrench having a handle joined to a head accommodating a spindle or body. The body has a bore accommodating a fastener to rotate the fastener with the body. A plurality of teeth or protrusions on the body have ramps inclined relative to the cylindrical wall of the head. Wedging elements or members engage the ramps and cylindrical wall. An annular cage anchored to the protrusions retains the wedging members in operative engagement with the cylindrical wall of the head. Movement of the handle and head in one direction moves all the wedging members into driving or wedging relations with the ramps and cylindrical wall of the head whereby the body and fastener held by the body are rotated. Movement of the handle and head in a direction or reverse or opposite the one direction releases the wedging members from their wedging relation with the ramps and cylindrical wall of the head to inhibit rotation of the body in a reverse direction. The wrench has a minimum of lost motion during its reverse direction so that the wrench can be used in confined environments.


A motion transmission mechanism is included in the wrench to convert reciprocating motion of the handle to unidirectional rotational motion of the body. The motion transmission mechanism comprise a first member having a cylindrical wall. A second member includes a plurality of protrusions extended toward the cylindrical wall. Each protrusion includes a ramp inclined outwardly toward the cylindrical wall. A wedging member engages each ramp and the cylindrical wall. A cage located adjacent the protrusions holds each wedging member in a location on a ramp whereby all of the wedging members concurrently engage ramps and the cylindrical wall of the first member. The cage and protrusions include cooperating members that anchor the cage on the protrusions to prevent movement of the cage relative to the second member and hold the wedging members in engagement with the ramps and cylindrical wall of the first member whereby movement of the first member in one direction results in unidirectional rotational movement of the second member and movement of the first member in a direction opposite the one direction does not rotate the second member.





DESCRIPTION OF THE DRAWING


FIG. 1 is a front elevational view of a first embodiment of the combination box and roller wrench of the invention;



FIG. 2 is an enlarged side elevational view of the head end of the wrench of FIG. 1;



FIG. 3 is a top plan view of FIG. 2;



FIG. 4 is a partly sectioned end elevational view of FIG. 2;



FIG. 5 is a bottom plan view of FIG. 2;



FIG. 6 is an enlarged top plan view of the head of the wrench of FIG. 1;



FIG. 7 is a sectional view taken along line 7-7 of FIG. 6;



FIG. 8 is a top plan view of the driven body of the wrench shown in FIGS. 1 to 5;



FIG. 9 is a bottom side elevational view of FIG. 8;



FIG. 10 is a sectional view taken along line 10-10 of FIG. 8;



FIG. 11 is an enlarged profile view of one of the protrusions shown in FIG. 8;



FIG. 12 is a top plan view, partly sectioned, of the combined driven body and roller cage of the wrench of FIG. 1;



FIG. 13 is a bottom side elevational view of FIG. 12;



FIG. 14 is a sectional view taken along line 14-14 of FIG. 12;



FIG. 15 is an enlarged front elevational view of a cylindrical roller separated from the roller cage;



FIG. 16 is an end view of FIG. 15;



FIG. 17 is a top plan view of the first member of the roller cage;



FIG. 18 is a bottom side elevational view of FIG. 17;



FIG. 19 is an enlarged bottom plan view of FIG. 17;



FIG. 20 is an enlarged sectional view taken along line 20-20 of FIG. 19;



FIG. 21 is an enlarged sectional view taken along line 21-21 of FIG. 19;



FIG. 22 is a top plan view of the second member of the roller cage;



FIG. 23 is a bottom elevational of FIG. 22;



FIG. 24 is a bottom plan view of FIG. 22;



FIG. 25 is an enlarged sectional view taken along line 25-25 of FIG. 22;



FIG. 26 is a sectional view showing the combined first and second members of the roller cage;



FIG. 27 is an enlarged sectional view taken along line 27-27 of FIG. 2;



FIG. 28 is an enlarged sectional view of a section of the head of the wrench showing protrusions of the driven body, the cage, a roller and the cylindrical wall of the head;



FIG. 29 is a front elevational view of a second embodiment of the combination box and roller wrench of the invention;



FIG. 30 is a left side view of FIG. 29;



FIG. 31 is an enlarged top plan view of the driven member of the wrench of FIG. 29;



FIG. 32 is a bottom elevational view of FIG. 31;



FIG. 33 is an enlarged top plan view of the combined annular cage and driven member of the wrench of FIG. 29;



FIG. 34 is a bottom elevational view of FIG. 33;



FIG. 35 is a front elevational view of a cylindrical roller of the wrench of FIG. 29;



FIG. 36 is an end view of FIG. 35;



FIG. 37 is an enlarged sectional view taken along the line 37-37 of FIG. 29;



FIG. 38 is an enlarged sectional view taken along the line 38-38 of FIG. 30;



FIG. 39 is an enlarged section of FIG. 38; and



FIG. 40 is a sectional view taken along the line 40-40 of FIG. 39.





DESCRIPTION OF THE INVENTION

A hand tool, shown in FIGS. 1 to 5, is a combination box and roller wrench 10 comprising a linear handle 11, a box end 12 and a roller end or head 17. Box end 12 has laterally separated jaws 13 and 14 providing a nut or bolt head opening 16 for accommodating a conventional nut or head of a bolt or screw. Box end 12 and head 17 joined to opposite sections of handle 11 are a one-piece metal structure. Head 17 surrounds a fastener 15, such as a nut or head of a bolt or screw. As shown in FIG. 3, when handle 11 is moved in a clockwise direction, indicated by arrow 20, a right hand fastener 15 is turned onto its threaded member. Moving handle 11 in the opposite or counterclockwise direction, indicated by arrow 21, turns fastener 15 off of its threaded member (not shown).


Proceeding to FIGS. 6 and 7, head 17 is a generally cylindrical member having a cylindrical inside wall 24 surrounding an opening 25 accommodating a driven member or body 18. Wall 24 has a continuous cylindrical surface concentric with the axis 30 of head 17. Head 17 has an annular bottom wall 26 at the bottom of wall 24. Wall 26 is an inwardly extended lip or flange surrounding an opening 27 adjacent the bottom of opening 25. Body 18 has a bottom annular wall 50 located on wall 26. Head 17 also has a top inside wall 28 having an annular groove or recess 29. As shown in FIG. 4, a cylindrical ring 22 fits into the space surrounded by inside wall 28 of head 17. A member 23, such as a C-shaped spring, extended in recess 29 retains ring 22 on head 17. Ring 22 engages body 18 to hold body 18 in a rotational relationship with head 17.


As shown in FIGS. 8 to 10, body 18 has first cylindrical surface 33 and a second cylindrical surface 34. First cylindrical surface 33 terminates at the top annular wall 35 of body 18. Second cylindrical surface 34 is an external surface that terminates at the bottom annular wall 36 of body 18. The circumferential surfaces 33 and 34 having the same diameter. Alternatively, circumferential surfaces 33 and 34 can have different diameters. Returning to FIG. 4, ring 22 engages circumferential surface 34 whereby body 18 is rotatably located in head 17.


Body 18, shown in FIG. 8, has a cylindrical inside wall 31 having a series of inwardly extended ribs 32. Adjacent ribs are circumferentially spaced from each other providing grooves to accommodate corner portions of the hexagonal or square fastener 15 to driveably couple body 18 with fastener 15. The illustrated embodiment, shown in FIG. 8, has twelve ribs. The number, configuration and size of the ribs can vary. The inside wall 31 of body 18 can have a hexagonal shape without ribs to accommodate a hexagonal fastener. Body 18 includes a series of teeth or protrusions 37, 38, 39, 40, 41, 42, 43 and 44 located radially around the outer circumference of body 18 between cylindrical surfaces 33 and 34. The illustrated embodiment, shown in FIGS. 3, 5, 8 and 28, depicts eight protrusions evenly spaced around body 18. The number of protrusions can be more or fewer than shown in FIGS. 3, 5, 8 and 27. The profile of protrusions 37 is illustrated in FIG. 11. Protrusion 37 has a radial flat shoulder 46 extended outwardly to an arcuate ridge 47. An outwardly inclined ramp 48 also extends to ridge 47. Ramp 48 is inclined outwardly at an angle of 30 degrees relative to the outer surface of ridge 47. The angular relationship between ridge 47 and ramp 48 can vary. The surface of ramp 48 is linear and flat. The surface of ramp 48 can include a concave curved portion and a flat portion. The flat portion is located adjacent shoulder 46 and the concave curved portion extending from the flat portion of ridge 47. Ridge 47 terminates in opposite corner portions or edges 49 and 51. Protrusions 38, 39, 40, 41, 42, 43 and 44 have the same profile as protrusions 37 shown in FIG. 11.


Body 18, shown in FIGS. 12 to 14, is surrounded with an annular cage or sleeve retainer 52 accommodating a plurality of wedging elements or members 53 to 61. Eight wedging members 53, 54, 55, 56, 57, 58, 59 and 60 are illustrated in FIG. 27. Each wedging member is illustrated as a metal cylinder roller, as shown in FIGS. 15 and 16. Wedging member 53 has a cylindrical outer surface 61 and flat opposite ends 62 and 63. Wedging member 54 to 61 have the same cylindrical shape as wedging member 53. The wedging members can have other configurations, such as oval, elliptical and polyhedral. The number of wedging members corresponds to the number of protrusions on body 18.


Cage 52 is an annular retainer for holding wedging members 53 to 60 in selected locations on ramps 48 of protrusions 37 to 44. Cage 52, shown in FIGS. 17 to 21, has a first annular member 64 with a circumferential side wall 66. A plurality of axial slots or rectangular openings 67, 68, 69, 70, 71, 72, 73 and 74 are evenly spaced around side wall 66. Eight openings are illustrated in FIG. 19. The number of openings 67 to 74 corresponds to the number of protrusions 37 to 44 on body 18. Side wall 66 has eight segments 76, 77, 78, 79, 80, 81, 82 and 83 separated by openings 67 to 74. Each segment has a pair of circumferentially spaced ribs 84 and 86 having blind holes 87 and 88. Ribs 84 and 86 project inwardly from the inside wall 89 of side wall 66.


Cage 52, shown in FIGS. 22 to 25, has a second member 91 comprising a flat circular ring 92. A plurality of fingers or rods 93, 94, 95, 96, 97, 98, 99 and 100 project away form the bottom of ring 92. As shown in FIG. 26, first member 66 is joined to second member 91 by inserting rods 93 to 100 into the holes 86 and 87 of each segment 76 to 83 of side wall 66. An adhesive can be used to secure rods 93 to 100 of segments 76 to 83. Returning to FIGS. 13 and 14, wedging members 58, 59 and 60 are located in openings 70, 71 and 72.


As shown in FIG. 27, segments 76 to 83 of cage 52 are located in sliding contiguous surface engagement with the cylindrical inside wall 24 of head 17 to locate cage 52 concentric with the axis 30 of head 17. A lubricant can be interposed as a film between the sliding surfaces of segments 76 to 83 and cylindrical inside wall 24 of head 17. For example, a molybdenum and polytetraflouroethylene lubricant can be used to prevent rust, binding, sticking and squeaking of body 18 during use of wrench 10. Cage 52 is anchored on body 18 to prevent rotation of cage 52 relative to body 18 and locate wedging elements 53 to 60 in engagement with the ramps of protrusions 37 to 44 and cylindrical wall 24 of head 17. As shown in FIG. 28, protrusion 38 has a radial shoulder 101, a ridge 102 and a ramp 103. Ridge 102 has corners 106 and 107 at its opposite ends. Ribs 108 and 109 engage corners 106 and 107 to anchor cage 52 to protrusion 38. Corners 49 and 51 of protrusion 37 are in engagement with ribs 111 and 112 on segment 83 of cage 52. Each of segments 76 to 83 has a pair of ribs that are anchored on protrusions 37 to 44 as illustrated in FIGS. 27 and 28. Different structures can be used to anchor cage 52 to protrusions 37 to 44 or body 18.


Wedging member 54, shown in FIG. 28, located in slot 73 between segments 76 and 83 is adjacent cylindrical surface 24 of head 17 and ramp 103. Segments 76 and 83 have outwardly converging tapered side walls 113 and 114 that allow wedging member 54 to rotate and radially move into wedging engagement with the cylindrical surface 24 of the head 17 and ramp 103 when handle 11 and head 17 are moved in a clockwise direction, shown by arrow 20, whereby torque is applied to body 18 to rotate body 18 with head 17. The contact of wedging member 54 with moving cylindrical wall 24 of head 17 rotates wedging member 54 in a clockwise direction and rolls wedging member 54 up ramp 103 to a wedging position that transmits torque or force from head 17 to body 18. When head 17 is turned in the reverse direction or counterclockwise, shown by broken line arrow 21, wedging member 54 in contact with cylindrical surface 24 of head 17 rotates in a counterclockwise direction and down ramp 103, shown in broken lines, to a non-wedging or torque release position. Handle 11 and head 17 are rotated in a reverse direction, shown by arrow 21, without rotating body 18. Wedging members 53 to 60 are concurrently moved into driving engagement with the inside side wall 24 of head 17 and ramps on protrusions 37 to 44 when the head 17 and handle 11 are moved in a clockwise direction to rotate body 18. When the head 17 and handle 11 are moved in a reverse or counterclockwise direction wedging members 53 to 60 concurrently move to non-wedging or torque release positions without rotating body 18.


The hand tool, shown in FIGS. 29 to 38, is a second embodiment of a combination box and roller wrench 200. The wrench 200 is illustrated as one size of seven wrenches. The seven piece combination wrenches have metric sizes 8, 10, 12, 13, 14, 15 and 17 mm and SAE sizes 15/16, ⅜, 7/16, ½, 9/16, ⅝ and ¾ inch. The wrenches can have additional sizes. Wrench 200 comprises a linear handle 201, a box end 202 and a roller end or cylindrical head 203. Box end 202 has laterally spaced jaws 204 and 206 surrounding an opening 207 for accommodating a conventional nut or bolt or screw head. Handle 201, box end 202 and head 203 are a one-piece metal structure. Head 203 can be pivotally connected to an end of handle 201 to provide a flex-head combination wrench. In use, head 203 engages a fastener 208, such as a nut or head of a bolt or screw. As shown in FIG. 29, when handle 201 is angularly turned clockwise, shown by arrow 209, a right hand fastener 208 is threaded on to a threaded member. Turning handle 201 in a counterclockwise direction, shown by arrow 211, turns fastener off of the threaded member.


As shown in FIGS. 29 and 37, head 203 is a generally cylindrical member having flat top and bottom surfaces and a cylindrical inside wall 212 surrounding an opening 226 accommodating a driven member or body 213. Wall 212 has a continuous cylindrical surface concentric with the axis 214 of head 203. Head 203 includes an annular lip or flange 216 surrounding an opening 217. The upper cylindrical wall 212 has an annular groove or recess 218. A flat annular member or ring 219 is attached to head 203 with a C-shaped spring 221. Spring 221 extends into groove 218 in head 203 and an annular groove 222 in ring 219. As shown in FIG. 29, ring 219 has an aperture 223 that allows the ring 219 to be contracted to allow the C-spring to be inserted into groove 218. Ring 219 engages body 213 to retain body 213 in a rotational relationship with head 203.


Proceeding to FIGS. 31 and 32, body 213 has an inside cylindrical wall 224 surrounding an opening 226 to accommodate fastener 208. A plurality of circumferentially spaced elongated teeth or ribs 227 joined to wall 224 extend radially into opening 226. Adjacent ribs 227 are circumferentially spaced from each other providing grooves and recesses to accommodate corner portions of the hexagonal fastener 208 or corner portions of a square fastener to driveably couple body 213 with the fastener. The illustrated embodiments, shown in FIGS. 29, 31, 33 and 38, have twelve ribs. The number, size and configuration of the ribs can vary. The inside wall 224 of body 213 can have a hexagonal shape without ribs to accommodate a hexagonal fastener.


As shown in FIGS. 32 and 37, body 213 has an upper cylindrical sleeve 234 and a lower cylindrical sleeve 236. Ring 219 surrounds sleeve 234. Sleeve 236 is located in opening 217 of lip 216. Sleeves 234 and 236 limit lateral movements of body 213 relative to head 203 and allow rotational movement of head 203 relative to body 213. As shown in FIG. 31, body 213 has six protrusions or sections 228, 229, 230, 231, 232 and 233 having a perimeter hexagonal configuration. Protrusions 228 to 233 have flat rectangular outer faces or ramps 237, 238, 239, 240, 241 and 242. Each ramp 237 to 242 is tangent to a circle having a center at the axis 214 of body 213 and head 203. The ramps 237 to 242 have the same lengths and widths. The length of each ramp is two times its width. The ramps can have other dimensions. Flat ridges 243, 244, 245, 246, 247 and 248 are located at the outer ends of ramps 237 to 242. The ridges 243 to 248 are corners or apex members between adjacent ramps.


Body 213, shown in FIGS. 33, 34, 37 and 38, is surrounded with an annular cage assembly or sleeve retainer 249 accommodating a plurality of wedging elements or members 251, 252, 253, 254, 255 and 256. The wedging members comprise metal cylindrical rollers. A cylindrical roller 251, shown in FIGS. 35 and 36, has a continuous cylindrical outside wall 257 and flat and circular end walls 258 and 259. End walls 258 and 259 have flat parallel surfaces. The axial length of roller 251 is greater than its diameter. The length to diameter ratio of the rollers can vary with the size of the wrench 200. Rollers or wedging members 252, 253, 254, 255 and 256 have the same dimensions as roller 251. The wedging members can have other configurations, such as oval, elliptical and polyhedral. The number of wedging members corresponds to the number of ramps on body 213.


Cage assembly 249 has a first annular member 261 joined to a second annular member 262. Annular member 261 has a plurality of axial slots or rectangular openings 263, 264, 265, 266, 267 and 268 circumferentially spaced around annular member 261. Six openings are illustrated in FIG. 38. The number of openings in annular member 261 can vary. The number of openings 263 to 268 corresponds with the number of ramps 237 to 242. Annular member 261 has six segments 269, 270, 271, 272, 273 and 274 circumferentially spaced around annular member 261. One of the openings 263 to 268 is located between each adjacent segment. Wedging members 251 to 256, shown as cylindrical rollers, located in openings 263 to 268 selectively engage and disengage inside cylindrical wall 224 and ramps 237 to 242. As shown in FIG. 39, segment 269 has an arcuate outside wall 276. Segment 270 also has an arcuate outside wall 277. Each segment 271 to 274 has an arcuate outside wall the same as arcuate outside walls 276 and 277. The arcuate outside walls 276 and 277 and the arcuate outside walls of segments 271 to 274 are located in contiguous relation 278 relative to the cylindrical wall 212 of head 203. The arcuate outside walls of segments 269 to 274 are in close proximity with the inside wall 212 of head 203 to locate cage assembly 249 concentric with the axis of head 203. A lubricant 279 is located as a film on the inside cylindrical wall 212 of head 203 or in the outside arcuate walls of segments 269 to 274. For example, a molybdenum and polytetrafluoroethylene lubricant can be used to prevent rust, binding, sticking and squeaking during use of the wrench 200.


Proceeding to FIG. 39, segment 269 of cage assembly 249 has an inside obtuse angle recess or groove 281 accommodating the ridge 243 of body 213. Each segment 270 to 274 has an obtuse angle groove corresponding to groove 281 in segment 269. The ramp portions adjacent ridge 243 located in surface engagement with the inside walls 282 and 283 of segment 269 prevent rotation of cage assembly 249 relative to body 213 and position the locations of openings 263 to 268 relative to ramps 237 to 242. Cage assembly 249 is anchored on body 213. Segment 269 has a side wall 284. Segment 270 has a side wall 286. Side walls 284 and 286 converge or taper outwardly and are circumferentially spaced from each other to provide opening 263. Adjacent segments have converging side walls corresponding to side walls 284 and 286 providing openings 264 to 268 in the cage assembly 249 for wedging members 252 to 256.


The wedging member 251, shown as a cylindrical roller in FIG. 40, has a side wall 257 located in linear engagement with the inside wall 212 of head 203 and ramp 237 of body 213. The linear engagement of wedging member 251 is continuous along the entire axial length of wedging member 251. The flat ends 258 and 259 of wedging element 251 located in sliding contact with flat surfaces 287 and 288 of cage assembly 249 maintain side wall 257 of wedging member 251 parallel to the side wall 212 of head 203 and ramp 237 of body 213. Wedging members 252 to 256 have the same structure as wedging member 251 and linear relation relative to the side wall 212 of head 203 and ramps 238 to 242.


Returning to FIG. 39, cage assembly segments 269 and 270 have outwardly converging side walls 284 and 286 on opposite sides of opening 263 that allow wedging member 251 to rotate, shown by arrow 289, and radially move into wedging or driving engagement with the cylindrical wall 212 of head 203 and ramp 237 when handle 201 and head 203 are moved in a clockwise direction, shown by arrow 209, whereby torque is applied to body 213 to rotate body 213 with head 203. Wedging member 251 rolls along ramp 237 clockwise away from the center 291 of ramp 237 to drivably couple head 203 to body 213. When head 203 and handle 201 are turned in the reverse or counterclockwise direction, shown by broken line arrow 211, wedging member 251 rotates in a counterclockwise direction, shown by broken line arrow 292, to a non-wedging or torque release position whereby body 213 is not rotated. Wedging members 252 to 256 along with wedging member 251 are concurrently moved to driving wedge engagement with side wall 212 of head 203 and ramps 237 to 242 when the head 203 and handle 201 are moved in a clockwise direction to rotate body 213. When the head 203 and handle 201 are moved in a counterclockwise direction wedging members 251 to 256 concurrently move to non-wedging or torque release positions without rotating body 213.


Preferred embodiments of the wrench have been illustrated and described. Modifications of the structure, materials and configurations may be made by persons skilled in the art without departing from the scope of the invention as defined in the claims.

Claims
  • 1. A wrench for rotating a fastener comprising: a handle having an end,a head joined to the end of the handle,said head having an inside cylindrical wall surrounding an opening extended through the head,a body located in the opening and rotatably retained on the head,said body having an inside wall and members engageable with a fastener for rotating the fastener,said body including a plurality of protrusions located adjacent to the cylindrical wall of the head,each protrusion including an outwardly extended shoulder, a ramp and a ridge located between the shoulder and the ramp,said ramp including a linear surface inclined outwardly from the shoulder to the ridge,said ridge having a first corner at a first end of the ridge and the shoulder and a second corner at a second end of the ridge and ramp,cylindrical rollers engaging the linear surfaces of the ramps and the inside cylindrical wall of the head,a cage located around the body confining the cylindrical rollers to positions on the linear surfaces of the ramp whereby all of the cylindrical rollers concurrently engage the linear surfaces of the ramps and the inside cylindrical wall of the head, andsaid cage having first ribs engaging the first corners of the ridges and second ribs engaging the second corners of the ridges to prevent movement of the cage relative to the body and holding all the cylindrical rollers in engagement with the linear surfaces of the ramps and cylindrical wall of the head whereby movement of the handle in one direction rotates the head and wedges the cylindrical rollers between the linear surfaces of the ramps and cylindrical wall of the head and rotates the body, and movement of the handle in a direction opposite the one direction releases the wedging of the cylindrical rollers with the linear surfaces of the ramps and cylindrical wall of the head and inhibits rotation of the body relative to the head.
  • 2. The wrench of claim 1 wherein: the cage has a cylindrical sleeve surrounding the plurality of protrusions,said cylindrical sleeve of the cage having slots accommodating the cylindrical rollers to retain the cylindrical rollers in engagement with the inclined surfaces of the ramps and cylindrical wall of the head.
  • 3. The wrench of claim 2 wherein: the sleeve of the cage has a surface located in contiguous relation to the cylindrical wall of the head.
  • 4. The wrench of claim 2 wherein: the sleeve of the cage has arcuate segments having end walls, the end walls of adjacent segments being spaced from each other providing the slots accommodating the cylindrical rollers.
  • 5. The wrench of claim 4 wherein: the end walls of the adjacent segments converge outwardly toward the cylindrical wall of the head.
  • 6. The wrench of claim 4 wherein: the segments of the sleeve have surfaces located in engagement with the cylindrical wall of the head.
  • 7. The wrench of claim 1 wherein: the linear surfaces of the ramps have middle sections between the shoulders and ridges, andsaid cylindrical rollers being located in engagement with the ramps clockwise from the middle sections of the linear surfaces of the ramps.
  • 8. A wrench for rotating a fastener comprising: a handle,a head joined to the handle,said head having an inside cylindrical wall surrounding an opening,a body located in the opening and rotatably retained on the head,said body including a wall with members engageable with a fastener for rotating the fastener,said body also including a plurality of protrusions extended toward the inside cylindrical wall of the head,each protrusion including a ramp inclined outwardly toward the inside cylindrical wall of the head,a cylindrical roller engaging each ramp and the inside cylindrical wall of the head,a cage located around the body confining each cylindrical roller to a location on the ramp whereby all of the cylindrical rollers are in positions to concurrently engage the ramps and the inside cylindrical wall of the head,the cage including a cylindrical side wall having a plurality of slots,the cylindrical side wall having wall segments between adjacent slots,said wall segments having surfaces in contiguous relation relative to the inside cylindrical wall of the head,one of said cylindrical rollers being located in each slot whereby the cage holds the cylindrical rollers in positions that locate all of the cylindrical rollers contiguous with the ramps and the inside cylindrical wall of the head,said cage and protrusions including cooperating members that anchor the cage on the protrusions to prevent movement of the cage relative to the body and hold the cylindrical rollers contiguous with the ramps and the inside cylindrical wall of the head whereby movement of the handle in one direction rotates the head and wedges the cylindrical rollers between the ramps and the inside cylindrical wall of the head and rotates the body, and movement of the handle in a direction opposite the one direction releases the wedging of the cylindrical rollers with the ramps and the inside cylindrical wall of the head and inhibits rotation of the body relative to the head.
  • 9. The wrench of claim 8 wherein: the cooperating members of the cage and protrusions comprise at least one member on the cage engageable with a protrusion to prevent movement of the cage relative to the body.
  • 10. The wrench of claim 8 wherein: the cooperating members of the cage and protrusions comprise a plurality of members on the cage engageable with the protrusions to prevent movement of the cage relative to the body.
  • 11. The wrench of claim 8 wherein: each ramp has an outer end adjacent the inside cylindrical wall of the head,each protrusion including a ridge at the outer end of the ramp, andthe cooperating members of the cage and protrusions comprise at least one member engageable with the ridge to prevent movement of the cage relative to the body.
  • 12. The wrench of claim 11 wherein: the ridge includes corners, andthe cooperating members of the cage and protrusions comprise ribs on the cage engageable with the corners of the ridges to prevent movement of the cage relative to the body.
  • 13. A wrench for rotating a fastener comprising: a handle,a head joined to the handle,said head having an inside cylindrical wall surrounding an opening,a body located in the opening and rotatably retained on the head,said body including a wall with members engageable with a fastener for rotating the fastener,said body also including a plurality of ramps facing the inside cylindrical wall of the head,each ramp being inclined outwardly toward the inside cylindrical wall of the head,a wedging member engaging each ramp and the inside cylindrical wall of the head,a cage located around the body confining each wedging member to a location on the ramp whereby all of the wedging members are in positions to concurrently engage the ramps and the inside cylindrical wall of the head,the cage including a cylindrical side wall having a plurality of slots,the cylindrical side wall having wall segments between adjacent slots,said wall segments having surfaces located in contiguous relation relative to the inside cylindrical wall of the head,a wedging member being located in each slot whereby the cage holds the wedging members in positions that locate all of the wedging members contiguous with the ramps and the inside cylindrical wall of the head,said cage and body including cooperating members that anchor the cage on the protrusions to prevent movement of the cage relative to the body and hold the wedging members contiguous with the ramps and the inside cylindrical wall of the head whereby movement of the handle in one direction rotates the head and wedges the wedging members between the ramps and the inside cylindrical wall of the head and rotates the body, and movement of the handle in a direction opposite the one direction releases the wedging of the wedging members with the ramps and cylindrical wall of the head and inhibits rotation of the body relative to the head.
  • 14. The wrench of claim 13 wherein: the cooperating members of the cage and body comprise at least one member on the cage engageable with the body to prevent movement of the cage relative to the body.
  • 15. The wrench of claim 13 wherein: the cooperating members of the cage and body comprise a plurality of members on the cage engageable with the body to prevent movement of the cage relative to the body.
  • 16. The wrench of claim 13 wherein: each ramp has an outer end adjacent the inside cylindrical wall of the head,a ridge at the outer end of each ramp, andthe cooperating members of the cage and body comprise at least one member engageable with the ridge to prevent movement of the cage relative to the body.
  • 17. The wrench of claim 16 wherein: the ridge includes corners, andthe cooperating members of the cage and body comprise ribs on the cage engageable with the ridge to prevent movement of the cage relative to the body.
  • 18. A wrench for rotating a fastener comprising: a first member having a cylindrical wall surrounding an opening,a second member having a plurality of protrusions extended toward the cylindrical wall of the first member,each protrusion including a ramp inclined relative to the cylindrical wall of the first member,a wedging member engaging each ramp and the cylindrical wall of the first member,a cage between the cylindrical wall of the first member and the plurality of protrusions confining each wedging member to a location on the ramp whereby all of the wedging members are in positions to concurrently engage the ramps and cylindrical wall of the first member,the cage including a cylindrical side wall having a plurality of slots,the cylindrical side wall having wall segments between adjacent slots,said wall segments having surfaces located in contiguous relation relative to the cylindrical wall of first member,a wedging member being located in each slot whereby the cage holds the wedging members in positions that locate all of the wedging members contiguous with the ramps and the cylindrical wall of the first member,said cage and protrusions including cooperating members that anchor the cage on the protrusions to prevent movement of the cage relative to the first member and retain the wedging members contiguous with the ramps and the cylindrical wall of the first member whereby rotational movement of the second member in one direction moves the wedging members into driving relationship with the ramps and cylindrical wall of the first member to rotate the first member, and rotational movement of the second member in a direction opposite the one direction moves the wedging members into a non-driving relationship with the ramps and cylindrical wall of the first member and prevents rotation of the first member relative to the second member.
  • 19. The wrench of claim 18 wherein: the wedging members comprise cylindrical rollers.
  • 20. The wrench of claim 18 wherein: the cooperating members of the cage and protrusions comprise at least one member on the cage engageable with a protrusion to prevent movement of the cage relative to the second member.
  • 21. The wrench of claim 18 wherein: the cooperating members of the cage and protrusions comprise a plurality of members on the cage engageable with the protrusions to prevent movement of the cage relative to the second member.
  • 22. The wrench of claim 18 wherein: each ramp has an outer end adjacent the cylindrical wall of the first member,each protrusion including a ridge at the outer end of the ramp, andthe cooperating members of the cage and protrusions comprising at least one member engageable with the ridge to prevent movement of the cage relative to the second member.
  • 23. The wrench of claim 22 wherein: the ridge includes corners, andthe cooperating members of the cage and protrusions comprising ribs on the cage engageable with the corners of the ridge to prevent movement of the cage relative to the second member.
  • 24. A motion transmission mechanism for converting reciprocating motion to unidirectional rotational motion comprising: a first member having a cylindrical wall,a second member having a plurality of protrusions located adjacent to the cylindrical wall of the first member,each protrusion having a shoulder, a ramp and a ridge located between the shoulder and the ramp,said ramp extending to the ridge toward the cylindrical wall of the first member,a cylindrical roller engageable with each ramp and the cylindrical wall of the first member,a cage confining each roller in a location whereby all of the rollers are in positions to concurrently engage ramps and the cylindrical wall of the first member,the cage including a cylindrical side wall having a plurality of slots,the cylindrical side wall having wall segments between adjacent slots,said wall segments having surfaces located in contiguous relation to the inside cylindrical wall of the head,one of said cylindrical rollers being located in each slot whereby the cage holds the cylindrical rollers in positions that locate all of the cylindrical roller contiguous with the ramps and the inside cylindrical wall of the head,said cage and protrusions including cooperating members that anchor the cage on the protrusions to prevent movement of the cage relative to the second member and hold the cylindrical rollers contiguous with the ramps and the cylindrical wall of the first member and wedges the cylindrical rollers between the ramps and the cylindrical wall of the first member whereby reciprocating movement of the first member in one direction results in unidirectional rotational movement of the second member and movement of the first member is a direction opposite the one direction does not rotate the second member.
  • 25. The motion transmission mechanism of claim 24 wherein: the cylindrical wall of the first member surrounds an opening in the first member,said second member being located in the opening in the first member, andsaid first member including at least one member for rotatably supporting the second member on the first member.
  • 26. The motion transmission mechanism of claim 24 wherein: the cooperating members of the cage and protrusions comprise corner portions on opposite ends of the ridge and ribs on the cage engageable with the corner portions to anchor the cage on the protrusions.
  • 27. The motion transmission mechanism of claim 24 wherein: the cooperating members of the cage and protrusions comprise at least one member on the cage engageable with a protrusion to prevent movement of the cage relative to the second member.
  • 28. A motion transmission mechanism for converting reciprocating motion to unidirectional rotational motion comprising: a first member having a cylindrical wall,a second member having a plurality of protrusions extended toward the cylindrical wall of the first member,each protrusion including a ramp inclined outwardly toward the cylindrical wall of the first member,a wedging member engaging each ramp and the cylindrical wall of the first member,a cage confining each wedging member in a location on the ramp whereby all of the wedging members are in positions to concurrently engage ramps and the cylindrical wall of the first member,the cage including a cylindrical side wall having a plurality of slots,the cylindrical side wall having wall segments between adjacent slots,said wall segments having surfaces located in contiguous relation relative to the inside cylindrical wall of the head,a wedging member being located in each slot whereby the cage holds the wedging members in positions that located all of the wedging members contiguous with the ramps and the cylindrical wall of the first member,said cage and protrusions including cooperating members that anchor the cage on the protrusions to prevent movement of the cage relative to the second member and hold the wedging members contiguous with the ramps and cylindrical wall of the first member and wedges the wedging members between the ramps and the cylindrical wall of the first member whereby movement of the first member in one direction results in unidirectional rotational movement of the second member and movement of the first member in a direction opposite the one direction does not rotate the second member.
  • 29. The motion transmission mechanism of claim 28 wherein: the cooperating members of the cage and protrusions comprise at least one member on the cage engageable with a protrusion to prevent movement of the cage relative to the second member.
  • 30. The motion transmission mechanism of claim 28 wherein: the cooperating members of the cage and protrusions comprise a plurality of members on the cage engageable with the protrusions to prevent movement of the cage relative to the second member.
  • 31. The motion transmission mechanism of claim 28 wherein: each ramp has an outer end adjacent the cylindrical wall of the first member,each protrusion including a ridge at the outer end of the ramp, andthe cooperating members of the cage and protrusions comprise at least one member engageable with the ridge to prevent movement of the cage relative to the second member.
  • 32. The motion transmission mechanism of claim 31 wherein: the ridge includes corners, andthe cooperating members of the cage and protrusions comprise ribs on the cage engageable with the corners of the ridge to prevent movement of the cage relative to the second member.
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Patent Application Ser. No. 62/802,120 filed Feb. 6, 2019.

US Referenced Citations (23)
Number Name Date Kind
835448 Lowry et al. Nov 1906 A
1511226 Lawrence Oct 1924 A
1609086 Hurschman Oct 1926 A
2529947 Johnson Oct 1950 A
4457416 Kutzler Jul 1984 A
4884478 Lieser Dec 1989 A
6036130 Tiejen Mar 2000 A
6253646 Chang Jul 2001 B1
7066054 Liu Jun 2006 B2
D528383 Albertson Sep 2006 S
8215207 Huang Jul 2012 B2
8516926 Hsich Aug 2013 B1
9140319 Buchanan Sep 2015 B2
9327389 Chen May 2016 B2
9770813 Wang Sep 2017 B2
9902049 Douglas Feb 2018 B2
20040007097 Matsumoto Jan 2004 A1
20040103760 Phillips Jun 2004 A1
20050076746 Hsien Apr 2005 A1
20110209584 Suter Sep 2011 A1
20160129562 Douglass May 2016 A1
20160271761 Chang Sep 2016 A1
20180079055 Wang Feb 2018 A1
Foreign Referenced Citations (1)
Number Date Country
1328493 Aug 2010 TW
Non-Patent Literature Citations (2)
Entry
PCT/US19/48485—International Search Report—dated Nov. 18, 2019.
PCT/US19/48485—Written Opinion International Searching Authority—dated Nov. 18, 2019.
Provisional Applications (1)
Number Date Country
62802120 Feb 2019 US