This application claims the priority benefit of Patent Application No. 10-2003-0048279 filed on Jul. 15, 2003 in Republic of Korea, the entire contents of which are hereby incorporated by reference.
1. Field of the Invention
The present invention relates to a write-once optical disc, and a method and apparatus for recording management information on the write-once optical disc.
2. Description of the Related Art
As an optical recording medium, optical discs on which high-capacity data can be recorded are widely being used. Among them, a new high-density optical disc, for example, a Blu-ray disc, has been recently developed for recording and storing high-definition video data and high-quality audio data for a long term period.
The Blu-ray disc is the next generation HD-DVD technology and the next generation optical recording solution, and has an excellent capability to s02FDIS045US01 tore data more than an existing DVD. Recently, a technical specification of international standard for HD-DVD has been established.
The Blu-ray disc, one of the international standards for HD-DVD, uses a 405 nm blue laser, which is much denser than a 650 nm red laser used in the existing DVDs. In addition, compared to the existing DVDs, a larger quantity of data can be stored in the Blu-ray disc having a thickness of 1.2 mm and a diameter of 12 cm. Generally, the Blu-ray disc has an optical transmission layer with the thickness of 0.1 mm.
Recently, a standard relating to the Blu-ray disc is being developed. Following a rewritable Blu-ray disc (BD-RE), various standards for a write-once Blu-ray disc (BD-WO) are being prepared. Specifically, among the standards for the BD-WO, a method for recording management information has been discussed. This method involves a process of recording information indicating the used status of the write-once optical disc.
The information indicating the used status of the disc is information indicating a recorded status of the disc in order to allow a host or a user to easily find a recordable area on the write-once optical disc. In the existing write-once optical disc, this information is called differently. For example, in the case of CD series, the recorded status indicating information is called track information. In the case of DVD series, the recorded status indicating information is called an RZone, a fragment or a recording range.
If the host or the like requests a recordable location to additionally record data on the DVD-R, the driver checks the recorded status indicating information (RZone information) recorded in the above-described manner and checks last recorded addresses LRAs of first and second open RZones and transmits generally the location “LRA+1” as the recordable location to the host. The recordable location is called a “next writable address” (NWA). Due to the transmitted NWA information, the host or the like is allowed to validly perform the additional recording on the disc.
However, since the existing DVD-R and other disc types are different from a write-once Blu-ray disc (BD-WO) in their physical structure and use environment, the conventional method of providing the management information cannot be applied to the BD-WO. In case of the BD-WO, a driver manages disc defects, but the BD-WO is required to have a special additional area for the driver to manage the defects. The BD-WO, thus, has a complex disc structure and as a result, the method of managing the recorded status indicating information of the DVD-R cannot be used for the BD-WO.
Accordingly, there is a need for a method of efficiently recording management information corresponding to the used status of a high density write-once optical disc such as a BD-WO, so that the disc can be accessed easily and used more effectively. And such management information should be structured to ensure compatibility with the overall structure, use and standards of the BD-WO. In addition, there is a demand for a method of recording management information on a disc, which can be applied to other write-once high-density optical discs performing defect management, as well as to the above Blu-ray discs.
Accordingly, the present invention is directed to a write-once optical disc, and a method and apparatus for recording management information on the disc, which substantially obviate one or more problems due to limitations and disadvantages of the related art.
An object of the present invention is to provide a write-once optical disc and a method and apparatus for recording management information on the write-once optical disc, in which information on the used status of the disc is recorded and managed efficiently.
Another object of the present invention is to provide a write-once optical disc, and a method and apparatus for recording track information on the disc, in which the track information is recorded as the information on the used status of the disc. The method and apparatus of the present invention are applicable to a write-once optical disc in which physical defect management is performed.
Another object of the present invention is to provide a write-once optical disc, and a method and apparatus for recording track information, in which session information is recorded without any allocation of an additional physical area within the disc. In addition, the compatibility with the existing reproduction-only standard can be secured.
A still further object of the present invention is to provide a method and apparatus for efficiently updating track information.
According to an aspect, the present invention provides a recording medium having at least one recording layer, the recording medium comprising: a session including at least one recording-unit; and sequential recording information on the at least one recording layer, the sequential recording information pertaining to the at least one recording-unit and including a recording-unit entry list, the recording-unit entry list including at least one recording-unit entry, wherein the at least one recording-unit entry pertains to the at least one recording-unit respectively and includes at least one status area to store session start information indicating whether the corresponding recording-unit is a start of the session.
According to another aspect, the present invention provides a recording medium comprising: at least one recording layer; and at least one SRR entry stored on the at least one recording layer, each SRR entry pertaining to an SRR and including at least one status area, the at least one status area storing therein session start information and being allocated at the corresponding SRR entry excluding beginning bits of the corresponding SRR entry.
According to another aspect, the present invention provides a method for recording management information on a recording medium having at least one recording layer, the method comprising: (a) recording a sequential recording information on the at least one recording layer, the sequential recording information pertaining to at least one recording-unit and including a recording-unit entry list, the recording-unit entry list including at least one recording-unit entry, the at least one recording-unit entry pertaining to the at least one recording-unit respectively, wherein the at least one recording-unit forms a session and the at least one recording-unit entry includes at least one status area to store session start information indicating whether the corresponding recording-unit is a start of the session.
According to another aspect, the present invention provides a method for recording management information on a recording medium having at least one recording layer, the method comprising: (a) recording at least one entry on the at least one recording layer, each SRR entry pertaining to an SRR and including at least one status area for storing therein session start information, each SRR entry being allocated at the corresponding SRR entry excluding beginning bits of the corresponding SRR entry.
According to another aspect, the present invention provides an apparatus for recording management information on a recording medium having at least one recording layer, the apparatus comprising: a recording/reproducing part for recording a sequential recording information on the at least one recording layer, the sequential recording information pertaining to at least one recording-unit and including a header, a recording-unit entry list, and a terminator, the recording-unit entry list including a plurality of recording-unit entries, each of the recording-unit entries pertaining to a recording-unit and including at least one status area for storing therein session start information.
Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principle of the invention. In the drawings:
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts.
Although the most widely used and general terms are chosen, terms arbitrarily chosen by the present inventor(s) are also used. In such cases, the present invention should be understood in view of the meanings of the terms as defined by the inventor(s). In this regard, the present inventor(s) define the term “track” to mean a sequential recording range (SRR) of a write-once optical disc such as a BD-WO, i.e., an area for recording data/information on the disc. As such, “track” and “SRR” are used interchangeable herein and each represents a unit of recording (a recording-unit). Consequently, the term “track information” (“Track-Info”) or “SRR information” (SRRI) is defined by the present inventor(s) as a general term that indicates a used status of the write-once optical disc. A session has at least one track/SRR, i.e., at least one recording-unit. The term “session information” is used as a general term for indicating a recorded status of a specific block in order for the compatibility with a reproduction-only standard.
The present invention provides a method and apparatus for recording track information applicable to a new high-density optical disc. The invention records session information within the track information without any allocation of an additional physical area. In addition, the invention does not limit the number of used open tracks and supports the maximum sixteen tracks. Therefore, compared to the related art in which the maximum two open tracks (in case of the DVD-R, “RZone”) exist, this invention utilizes the disc more efficiently and provides an optimum structure of the track information suitable for such disc management.
The closed tracks, Tracks #3 and #4, in which additional recording is impossible, begin as open tracks. As any remaining available area of Tracks #3 and #4 is zero-padded due to a specific command (e.g., a close command from the host), the status of the tracks is changed into the closed tracks after the zero padding (hatched portion). In this example, the remaining available area of Track #3 is zero-padded before the track is closed. In some cases, when an open track is changed into a closed track according to a close command, it is possible to change only the information on the type of the track without the zero padding.
Each track includes a “start PSN of track” and also includes always a “Last Recorded Address” (LRA) without regard to the type of the track. The PSN is a physical sector number and is a general term indicating information on a specific location of the disc. In addition, the LRA is the last address in which data is actually recorded. Therefore, in case of Track #3, the location just before the zero padding becomes the LRA (LRA3). In more detail, in case a recording-unit is a cluster, e.g., in a BD-WO, a total of 32 sectors exist in one cluster. In this case, if data is recorded on some sectors within one cluster and the remaining sectors are zero padded, the location prior to the zero padding becomes the LRA.
Further, a next writable address (NWA) calculated from the LRA is determined only at the open tracks (Tracks #1 and #2) and the intermediate track (Track #5) by a request of the host or the like and then the calculated NWA information is transmitted appropriately, e.g., to the host. Since additional recording is impossible at the closed tracks (Tracks #3 and #4), there is no NWA for Tracks #3 and #4 in this example.
The present invention provides schemes of indicating various types of tracks as shown in
As shown in
The TDMA1 is allocated with a fixed size in the lead-in area and the TDMA2 is allocated with a size varying according to the size of the outer spare area OSAO. For example, if the size of the OSAO is (N×256) clusters where N is a positive integer, then the size (P) of the OSAO can be:
P=(N×256)/4 clusters).
A temporary defect list information (TDFL) and a temporary disc definition structure information (TDDS) together can be recorded on each TDMA as one recording-unit (in case of the DB-WO, one cluster). Track information (Track-Info) of the disc and the TDDS can be also recorded together as one recording-unit. The TDMA can have one or more of such recording-units.
Here, if a defect occurs within the data area, a process of replacing the defective area with the spare area is carried out, and the management information associated with this process is stored as the TDFL. In case of a single layer disc, the TDFL is recorded with the size of 1 cluster to 3 clusters according to the size of the defect list.
Track-Info (or SRRI) is disc status information that indicates whether or not a specific area of the disc has been recorded. Specifically, Track-Info can be used to cases where the disc has a sequential or incremental recording. As shown in
The structure of the track information (Track-Info) 30 in
The header (“Track Info Header”) 31 is located at the head of the Track-Info 30 and includes a “Track Info structure Identifier” field 31a for making the track information identifiable, a “Location info of open track” field 31b for indicating a location of the open track(s) existing within the corresponding track information, a “Total number of sessions” field 31c for indicating the total number of sessions, and a “Location info of session start (or end) track” field 31d for indicating a location of the start or end track of the session(s). Therefore, it is possible to check the contents of the overall track information before the track information list is directly read out. As a result, it is possible to newly define and standardize necessary information in the header, except for the above fields.
The list of track information (“List of Track Info”) 32 is recorded next to the header 31. If the list of track information is terminated, the track information list terminator (“Track Info List Terminator”) 33 indicates the termination of the track information. Specifically, the track information list terminator is a meaningful information indicating the termination location of the corresponding track information in case the track information is variable in size. For example, the track information of the present invention can be recorded within the maximum thirty-one sectors of a cluster (the TDDS is recorded at the remaining one sector of the cluster). However, in case the track information need not be recorded in the entire thirty-one sectors at a specific time (specifically, at an initial recording), necessary track information is recorded and the type of the track information is then represented through the track information list terminator 33. Therefore, any system confusion can be prevented and, if necessary, other useful management information can be recorded to the spare area(s).
Accordingly, as the management information of the disc, the track information (SRR information) 30 includes the header 31, the list of track information (SRR entry list) 32 and the track information list terminator 33, and all these pieces of information are recorded collectively at every updating. Other information, as needed, can be recorded as part of the track information 30.
The list of track information 32 will be described below in more detail.
The list of track information (SRR entry list) 32 includes a plurality of entries 34, each entry corresponding to one track (one SRR) within the disc and assigned to 8 bytes. This entry 34 is also referred to herein as a track information entry or an SRR entry. Each track information entry 34 includes a first status area/field (Status1) 35, a first location area/field 36 for carrying first address information of the corresponding track, a second status area/field (Status2) 37, and a second location area/field 38 for carrying last address information in which data is recorded on the corresponding track. The first location field 36 carries the start PSN of the corresponding track, and the second location field 38 carries the LRA of the corresponding track.
As an example, bits b63˜b60 are allocated to the first status field 35, bits b59˜b32 are allocated to the first location field 36, bits b31˜b28 are allocated to be the second status field 37, and bits b27˜b0 are allocated to the second location field 38. Depending upon the need and standardization, the present invention covers different sizes and other ways of allocation for these fields of entries 34.
The first and/or second status fields 35 and 37 carry status information including, but not limited to, the type of the corresponding track (track or SRR status) and session information relating to a session of the disc. As a result, the type of the corresponding track can be determined from the status information. The session information is information representing the location of a session where the corresponding track is located. In addition, the location of the corresponding track can be determined from the location fields 36 and 38.
Accordingly, the system can check whether the specific area of the disc is a recordable area or a session closed area by accessing the track information entries. If a track information entry 34 is read out, the type of the corresponding track, the start location and the LRA of the track can be determined and/or verified accurately. Further, the session information within the track can be acquired.
In this manner, the session information as well as the information on the types of the tracks are recorded together. Therefore, unlike the related art, the session information that the host or the user can utilize is represented without allocating an additional physical area on the disc, thereby improving greatly the efficiency of the disc use. The recording of the session information without any allocation of the physical area can be named as a “virtual session” or “session logical information”.
As an example, the track status information in the Status1 can be represented with “0000b” to indicate an open track, “0001b” to indicate an intermediate track, and “0010b” to indicate a closed track. Each session status information in the Status2 is distinguished from each other by allocating “1000b” to the respective session start tracks, and “0000b” to non-session start tracks, respectively. In
If a close session command to close a specific session is issued, the open tracks existing within the open sessions are all changed into the closed tracks and the information on the type of the tracks is also changed to indicate the closed status of the tracks. For example, although Track #2 of Session #1 is an open track at first, the zero padding (dummy padding) is applied to the recordable area of this track by the close command (e.g., a close track command or a close session command), thereby changing Track #2 into a closed track. As a result, Session #1 is changed from an open session to a closed session that ends with the closed track, Track #2. In a specific system, only the track status information on the type of the tracks can be changed into “0010b” to indicate a closed track without the zero padding applied to the track.
In the example of
In the embodiment of
The structure and use of the track information entry 34 in
Referring to
In the embodiment of
In the embodiment of
In another variation, the Status2 in
Here, since the write-once optical disc has a special characteristic of one-time recording, the status information indicating the recorded status of a specific area in the disc is always necessary. Therefore, the “updating of the track information” means the system or the user is allowed to use the track information by updating the track information each time the disc status is changed according to the recording on the disc.
Accordingly, when a new track is created or an existing track is closed, new track information is created so that the updating of the track information is necessary and performed. In addition, when the disc is ejected or the power is turned off, the use of the disc is paused. Therefore, in this case, the updating of the track information is also necessary and performed since the track information of a final status must be updated in order to accurately check the recorded status of the disc in the next use of the disc.
According to the method of
As an example only, the sorting can be according to the track status information indicating the type of the track, and then further based on the first address information (Start PSN) of the track. Other sorting schemes are possible.
Herein, in case the sorting of the list of the track information according to the above example is applied to the present invention, the sorted status at the (n+2)-th updating is now discussed. First, the open track whose information on the type of the track is “0000b” is sorted. Next, only one intermediate track whose information on the type of the track is “0001b” is sorted and the general closed track whose information on the type of the track is “0010b” is sorted. In case the type of one track is equal to the type of the comparing track, the track whose first address information of the track is most leading is sorted preferentially. However, with regard to the sorting, a bit arrangement allocated as the information on the type of the track and a reference of the sorting are a matter of selection and a variety of methods can be applied according to the system or designer.
The method of updating the track information according to the present invention, in which the sorting is performed including the previous track information, has an advantage in that all tracks existing within the disc are sorted according to the type of the tracks. Therefore, the desired information on the type of the tracks can be easily acquired. In addition, all track information of the previous stages can be checked at a time by referring to the latest track information updated last, thereby reducing the access time.
As shown in
Herein, the recording/reproducing process of the optical disc according to the present invention will be described in detail. First, if an optical disc such as a BD-WO is loaded into the recording/reproducing apparatus of
In case it is necessary to record or reproduce information on or from the specific area of the optical disc, the control part 20 transmits this information as the recording/reproducing command to the recording/reproducing part 10 together with the location information of the specific area where the recording is desired. After the microprocessor 16 of the recording/reproducing part 10 receives the recording command, the control part 20 can accurately check the recorded status of the specific area within the disc, where the recording is desired, from the track information stored in the memory 15. Accordingly, it is possible to perform the recording/reproducing command desired by the control part 20 or any other device.
According to the method of recording the management information on the write-once optical disc of the present invention, the track information can be recorded on the write-once optical disc in which the physical defect management is performed. In addition, because the session information is recorded within the track information of the disc, allocation of an additional physical area is not needed and the compatibility with the existing reproduction-only standard can be maintained. Further, using the disc structure and the sorting method of the present invention, it is possible to efficiently update the track information. As a result, it is possible to efficiently manage the management information even in the write-once optical disc having a new and different physical structure.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2003-0048279 | Jul 2003 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
4733386 | Shimoi et al. | Mar 1988 | A |
4807205 | Picard et al. | Feb 1989 | A |
5068842 | Naito et al. | Nov 1991 | A |
5111444 | Fukushima et al. | May 1992 | A |
5210734 | Sakurai et al. | May 1993 | A |
5235585 | Bish et al. | Aug 1993 | A |
5237553 | Fukushima et al. | Aug 1993 | A |
5247494 | Ohno et al. | Sep 1993 | A |
5319626 | Ozaki et al. | Jun 1994 | A |
5404357 | Ito et al. | Apr 1995 | A |
5442611 | Hosaka et al. | Aug 1995 | A |
5448728 | Takano et al. | Sep 1995 | A |
5475820 | Natrasevschi et al. | Dec 1995 | A |
5481519 | Hosoya | Jan 1996 | A |
5495466 | Dohmeier et al. | Feb 1996 | A |
5528571 | Funahashi et al. | Jun 1996 | A |
5553045 | Obata et al. | Sep 1996 | A |
5555537 | Imaino et al. | Sep 1996 | A |
5577194 | Wells et al. | Nov 1996 | A |
5608715 | Yokogawa et al. | Mar 1997 | A |
5715221 | Ito et al. | Feb 1998 | A |
5720030 | Kamihara et al. | Feb 1998 | A |
5740435 | Yamamoto et al. | Apr 1998 | A |
5745444 | Ichikawa et al. | Apr 1998 | A |
5799212 | Ohmori et al. | Aug 1998 | A |
5802028 | Igarashi et al. | Sep 1998 | A |
5805536 | Gage et al. | Sep 1998 | A |
5825726 | Hwang et al. | Oct 1998 | A |
5848038 | Igarashi et al. | Dec 1998 | A |
5867455 | Miyamoto et al. | Feb 1999 | A |
5914928 | Takahashi et al. | Jun 1999 | A |
5940702 | Sakao et al. | Aug 1999 | A |
6058085 | Obata et al. | May 2000 | A |
6118608 | Kakihara et al. | Sep 2000 | A |
6138203 | Inokuchi et al. | Oct 2000 | A |
6160778 | Ito et al. | Dec 2000 | A |
6189118 | Sasaki et al. | Feb 2001 | B1 |
6233654 | Aoki et al. | May 2001 | B1 |
6292445 | Ito et al. | Sep 2001 | B1 |
6341109 | Kayanuma et al. | Jan 2002 | B1 |
6341278 | Yamamoto et al. | Jan 2002 | B1 |
6373800 | Takahashi et al. | Apr 2002 | B1 |
6405332 | Bando et al. | Jun 2002 | B1 |
6414923 | Park et al. | Jul 2002 | B1 |
6447126 | Hornbeck | Sep 2002 | B1 |
6466532 | Ko et al. | Oct 2002 | B1 |
6469978 | Ohata et al. | Oct 2002 | B1 |
6477126 | Park et al. | Nov 2002 | B1 |
6480446 | Ko et al. | Nov 2002 | B1 |
6493301 | Park et al. | Dec 2002 | B1 |
6496807 | Inokuchi et al. | Dec 2002 | B1 |
6529458 | Shin et al. | Mar 2003 | B1 |
6542450 | Park et al. | Apr 2003 | B1 |
6564345 | Kim et al. | May 2003 | B1 |
6581167 | Gotoh et al. | Jun 2003 | B1 |
6606285 | Ijtsma et al. | Aug 2003 | B1 |
6615363 | Fukasawa et al. | Sep 2003 | B1 |
6631106 | Numata et al. | Oct 2003 | B1 |
6633724 | Hasegawa et al. | Oct 2003 | B1 |
6667939 | Miyamoto et al. | Dec 2003 | B1 |
6671249 | Horie et al. | Dec 2003 | B2 |
6697306 | Sako et al. | Feb 2004 | B2 |
6714502 | Ko et al. | Mar 2004 | B2 |
6724701 | Ijtsma et al. | Apr 2004 | B2 |
6738341 | Ohata et al. | May 2004 | B2 |
6754860 | Kim et al. | Jun 2004 | B2 |
6760288 | Ijtsma et al. | Jul 2004 | B2 |
6763429 | Hirayama et al. | Jul 2004 | B1 |
6766418 | Alexander et al. | Jul 2004 | B1 |
6785206 | Lee et al. | Aug 2004 | B1 |
6788631 | Park et al. | Sep 2004 | B1 |
6795389 | Nishiuchi et al. | Sep 2004 | B1 |
6804797 | Ko et al. | Oct 2004 | B2 |
6826140 | Brommer et al. | Nov 2004 | B2 |
6842580 | Ueda et al. | Jan 2005 | B1 |
6845069 | Nakahara et al. | Jan 2005 | B2 |
6883111 | Yoshida et al. | Apr 2005 | B2 |
6918003 | Sasaki et al. | Jul 2005 | B2 |
6934236 | Lee et al. | Aug 2005 | B2 |
6999398 | Yamamoto et al. | Feb 2006 | B2 |
7002882 | Takahashi et al. | Feb 2006 | B2 |
7027059 | Hux et al. | Apr 2006 | B2 |
7027373 | Ueda et al. | Apr 2006 | B2 |
7042825 | Yamamoto et al. | May 2006 | B2 |
7050701 | Sasaki et al. | May 2006 | B1 |
7092334 | Choi et al. | Aug 2006 | B2 |
7123556 | Ueda et al. | Oct 2006 | B2 |
7149930 | Ogawa et al. | Dec 2006 | B2 |
7184377 | Ito et al. | Feb 2007 | B2 |
7188271 | Park et al. | Mar 2007 | B2 |
7233550 | Park et al. | Jun 2007 | B2 |
7272086 | Hwang et al. | Sep 2007 | B2 |
7289404 | Park et al. | Oct 2007 | B2 |
7296178 | Yoshida et al. | Nov 2007 | B2 |
7313066 | Hwang et al. | Dec 2007 | B2 |
7327654 | Hwang et al. | Feb 2008 | B2 |
7349301 | Terada et al. | Mar 2008 | B2 |
7379402 | Ko et al. | May 2008 | B2 |
20010009537 | Park | Jul 2001 | A1 |
20010011267 | Kihara et al. | Aug 2001 | A1 |
20010021144 | Oshima et al. | Sep 2001 | A1 |
20010026511 | Ueda et al. | Oct 2001 | A1 |
20010043525 | Ito et al. | Nov 2001 | A1 |
20020025138 | Isobe et al. | Feb 2002 | A1 |
20020097665 | Ko et al. | Jul 2002 | A1 |
20020097666 | Ko et al. | Jul 2002 | A1 |
20020099950 | Smith | Jul 2002 | A1 |
20020136118 | Takahashi | Sep 2002 | A1 |
20020136134 | Ito et al. | Sep 2002 | A1 |
20020136537 | Takahashi | Sep 2002 | A1 |
20020159382 | Ohata et al. | Oct 2002 | A1 |
20020161774 | Tol et al. | Oct 2002 | A1 |
20020176341 | Ko et al. | Nov 2002 | A1 |
20030072236 | Hirotsune et al. | Apr 2003 | A1 |
20030095482 | Hung et al. | May 2003 | A1 |
20030126527 | Kim et al. | Jul 2003 | A1 |
20030135800 | Kim et al. | Jul 2003 | A1 |
20030137909 | Ito et al. | Jul 2003 | A1 |
20030137910 | Ueda et al. | Jul 2003 | A1 |
20030137913 | Oshima et al. | Jul 2003 | A1 |
20030142608 | Yamamoto et al. | Jul 2003 | A1 |
20030149918 | Takaichi | Aug 2003 | A1 |
20030173669 | Shau | Sep 2003 | A1 |
20030198155 | Go et al. | Oct 2003 | A1 |
20040001408 | Propps et al. | Jan 2004 | A1 |
20040004917 | Lee | Jan 2004 | A1 |
20040062159 | Park et al. | Apr 2004 | A1 |
20040062160 | Park et al. | Apr 2004 | A1 |
20040076096 | Hwang et al. | Apr 2004 | A1 |
20040090888 | Park et al. | May 2004 | A1 |
20040105363 | Ko et al. | Jun 2004 | A1 |
20040114474 | Park et al. | Jun 2004 | A1 |
20040120233 | Park et al. | Jun 2004 | A1 |
20040125716 | Ko et al. | Jul 2004 | A1 |
20040125717 | Ko et al. | Jul 2004 | A1 |
20040136292 | Park et al. | Jul 2004 | A1 |
20040145980 | Park et al. | Jul 2004 | A1 |
20040158768 | Park et al. | Aug 2004 | A1 |
20040160799 | Park et al. | Aug 2004 | A1 |
20040165495 | Park et al. | Aug 2004 | A1 |
20040174782 | Lee et al. | Sep 2004 | A1 |
20040174785 | Ueda et al. | Sep 2004 | A1 |
20040179445 | Park et al. | Sep 2004 | A1 |
20040179458 | Hwang et al. | Sep 2004 | A1 |
20040193946 | Park et al. | Sep 2004 | A1 |
20040223427 | Kim et al. | Nov 2004 | A1 |
20040246851 | Hwang et al. | Dec 2004 | A1 |
20050007910 | Ito et al. | Jan 2005 | A1 |
20050025007 | Park | Feb 2005 | A1 |
20050047294 | Park | Mar 2005 | A1 |
20050050402 | Koda et al. | Mar 2005 | A1 |
20050052972 | Park | Mar 2005 | A1 |
20050052973 | Park | Mar 2005 | A1 |
20050055500 | Park | Mar 2005 | A1 |
20050060489 | Park | Mar 2005 | A1 |
20050068877 | Yeo | Mar 2005 | A1 |
20050083740 | Kobayashi | Apr 2005 | A1 |
20050083767 | Terada et al. | Apr 2005 | A1 |
20050083830 | Martens et al. | Apr 2005 | A1 |
20050195716 | Ko et al. | Sep 2005 | A1 |
20050289389 | Yamagami et al. | Dec 2005 | A1 |
20060077827 | Takahashi | Apr 2006 | A1 |
20060195719 | Ueda et al. | Aug 2006 | A1 |
20060203635 | Ko et al. | Sep 2006 | A1 |
20060203638 | Ko et al. | Sep 2006 | A1 |
20060203684 | Ko et al. | Sep 2006 | A1 |
20060227694 | Woerlee et al. | Oct 2006 | A1 |
20070294571 | Park et al. | Dec 2007 | A1 |
20080046780 | Shibuya et al. | Feb 2008 | A1 |
Number | Date | Country |
---|---|---|
1134017 | Oct 1996 | CN |
1140897 | Jan 1997 | CN |
1227950 | Sep 1999 | CN |
1273419 | Nov 2000 | CN |
1675708 | Sep 2005 | CN |
1685426 | Oct 2005 | CN |
199 54 054 | Jun 2000 | DE |
0314186 | May 1989 | EP |
0325823 | Aug 1989 | EP |
0350920 | Jan 1990 | EP |
0464811 | Jan 1992 | EP |
0472484 | Feb 1992 | EP |
0477503 | Apr 1992 | EP |
0556046 | Aug 1993 | EP |
0 871 172 | Oct 1998 | EP |
0908882 | Apr 1999 | EP |
0 971 345 | Jan 2000 | EP |
0974967 | Jan 2000 | EP |
0 989 554 | Mar 2000 | EP |
0 997 904 | May 2000 | EP |
1026681 | Aug 2000 | EP |
1 040 937 | Oct 2000 | EP |
1043723 | Oct 2000 | EP |
1132914 | Sep 2001 | EP |
1148493 | Oct 2001 | EP |
1152414 | Nov 2001 | EP |
1239478 | Sep 2002 | EP |
1274081 | Jan 2003 | EP |
1298659 | Apr 2003 | EP |
1 321 940 | Jun 2003 | EP |
1329888 | Jul 2003 | EP |
1347452 | Sep 2003 | EP |
1547065 | Jun 2005 | EP |
1564740 | Aug 2005 | EP |
1573723 | Sep 2005 | EP |
1612790 | Jan 2006 | EP |
1623422 | Feb 2006 | EP |
2356735 | May 2001 | GB |
63-091842 | Apr 1988 | JP |
64-79940 | Mar 1989 | JP |
01-263955 | Oct 1989 | JP |
02-023417 | Jan 1990 | JP |
2-54327 | Feb 1990 | JP |
05-274814 | Oct 1993 | JP |
06-349201 | Dec 1994 | JP |
08-096522 | Apr 1996 | JP |
09-145634 | Jun 1997 | JP |
09-231053 | Sep 1997 | JP |
9-282849 | Oct 1997 | JP |
10-050005 | Feb 1998 | JP |
10-050032 | Feb 1998 | JP |
10-187356 | Jul 1998 | JP |
10-187357 | Jul 1998 | JP |
10-187358 | Jul 1998 | JP |
10-187359 | Jul 1998 | JP |
10-187360 | Jul 1998 | JP |
10-187361 | Jul 1998 | JP |
11-110888 | Apr 1999 | JP |
11-203792 | Jul 1999 | JP |
2000-090588 | Mar 2000 | JP |
2000-149449 | May 2000 | JP |
2000-195178 | Jul 2000 | JP |
2000-215612 | Aug 2000 | JP |
2000-285607 | Oct 2000 | JP |
2001-023317 | Jan 2001 | JP |
2001-069440 | Mar 2001 | JP |
2001-110168 | Apr 2001 | JP |
2001-148166 | May 2001 | JP |
2001-319339 | Nov 2001 | JP |
2001-351334 | Dec 2001 | JP |
2001-357623 | Dec 2001 | JP |
2002-015507 | Jan 2002 | JP |
2002-015525 | Jan 2002 | JP |
2002-056619 | Feb 2002 | JP |
2002-170342 | Jun 2002 | JP |
2002-215612 | Aug 2002 | JP |
2002-245723 | Aug 2002 | JP |
2002-288938 | Oct 2002 | JP |
2002-329321 | Nov 2002 | JP |
2002-352522 | Dec 2002 | JP |
2003-228962 | Aug 2003 | JP |
2003-335062 | Nov 2003 | JP |
2003-536194 | Dec 2003 | JP |
2004-95057 | Mar 2004 | JP |
2004-213774 | Jul 2004 | JP |
2004-280864 | Oct 2004 | JP |
2004-280865 | Oct 2004 | JP |
2004-280866 | Oct 2004 | JP |
2005-535993 | Nov 2005 | JP |
2005-538490 | Dec 2005 | JP |
2005-538491 | Dec 2005 | JP |
2006-519445 | Aug 2006 | JP |
1020040094301 | Nov 2004 | KR |
2005 103 626 | Sep 2005 | RU |
2005 127 337 | Feb 2006 | RU |
283232 | Aug 1996 | TW |
302475 | Apr 1997 | TW |
371752 | Oct 1999 | TW |
413805 | Dec 2000 | TW |
495750 | Jul 2002 | TW |
WO-8400628 | Feb 1984 | WO |
WO 9630902 | Oct 1996 | WO |
WO-9722182 | Jun 1997 | WO |
WO-0054274 | Sep 2000 | WO |
WO-0122416 | Mar 2001 | WO |
WO-0193035 | Dec 2001 | WO |
WO-03007296 | Jan 2003 | WO |
WO-03025924 | Mar 2003 | WO |
WO-03079353 | Sep 2003 | WO |
WO-2004015707 | Feb 2004 | WO |
WO-2004015708 | Feb 2004 | WO |
WO-2004025648 | Mar 2004 | WO |
WO-2004025649 | Mar 2004 | WO |
WO 2004029668 | Apr 2004 | WO |
WO-2004029941 | Apr 2004 | WO |
WO-2004034396 | Apr 2004 | WO |
WO-2004036561 | Apr 2004 | WO |
WO-2004053872 | Jun 2004 | WO |
WO-2004053874 | Jun 2004 | WO |
WO-2004068476 | Aug 2004 | WO |
WO 2004-075180 | Sep 2004 | WO |
WO-2004079631 | Sep 2004 | WO |
WO-2004079731 | Sep 2004 | WO |
WO-2004079740 | Sep 2004 | WO |
WO-2004081926 | Sep 2004 | WO |
WO-2004093035 | Oct 2004 | WO |
WO-2004100155 | Nov 2004 | WO |
WO-2004100156 | Nov 2004 | WO |
WO-2005004123 | Jan 2005 | WO |
WO-2005004154 | Jan 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20050025007 A1 | Feb 2005 | US |