The present invention relates generally to semiconductor integrated circuits and, more particularly, to write once read only memory employing charge trapping in insulators.
Many electronic products need various amounts of memory to store information, e.g. data. One common type of high speed, low cost memory includes dynamic random access memory (DRAM) comprised of individual DRAM cells arranged in arrays. DRAM cells include an access transistor, e.g a metal oxide semiconducting field effect transistor (MOSFET), coupled to a capacitor cell. With successive generations of DRAM chips, an emphasis continues to be placed on increasing array density and maximizing chip real estate while minimizing the cost of manufacture. It is further desirable to increase array density with little or no modification of the DRAM optimized process flow.
A requirement exists for memory devices which need only be programmed once, as for instance to function as an electronic film in a camera. If the memory arrays have a very high density then they can store a large number of very high resolution images in a digital camera. If the memory is inexpensive then it can for instance replace the light sensitive films which are used to store images in conventional cameras.
Thus, there is a need for improved DRAM technology compatible write once read only memory. It is desirable that such write once read only memory be fabricated on a DRAM chip with little or no modification of the DRAM process flow. It is further desirable that such write once read only memory operate with lower programming voltages than that used by conventional DRAM cells, yet still hold sufficient charge to withstand the effects of parasitic capacitances and noise due to circuit operation.
In the following detailed description of the invention, reference is made to the accompanying drawings which form a part hereof, and in which is shown, by way of illustration, specific embodiments in which the invention may be practiced. In the drawings, like numerals describe substantially similar components throughout the several views. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and structural, logical, and electrical changes may be made without departing from the scope of the present invention.
The terms wafer and substrate used in the following description include any structure having an exposed surface with which to form the integrated circuit (IC) structure of the invention. The term substrate is understood to include semiconductor wafers. The term substrate is also used to refer to semiconductor structures during processing, and may include other layers that have been fabricated thereupon. Both wafer and substrate include doped and undoped semiconductors, epitaxial semiconductor layers supported by a base semiconductor or insulator, as well as other semiconductor structures well known to one skilled in the art. The term conductor is understood to include semiconductors, and the term insulator is defined to include any material that is less electrically conductive than the materials referred to as conductors.
The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled.
In conventional operation, a drain to source voltage potential (Vds) is set up between the drain region 104 and the source region 102. A voltage potential is then applied to the gate 108 via a wordline 116. Once the voltage potential applied to the gate 108 surpasses the characteristic voltage threshold (Vt) of the MOSFET a channel 106 forms in the substrate 100 between the drain region 104 and the source region 102. Formation of the channel 106 permits conduction between the drain region 104 and the source region 102, and a current signal (Ids) can be detected at the drain region 104.
In operation of the conventional MOSFET of
In
There are two components to the effects of stress and hot electron injection. One component includes a threshold voltage shift due to the trapped electrons and a second component includes mobility degradation due to additional scattering of carrier electrons caused by this trapped charge and additional surface states. When a conventional MOSFET degrades, or is “stressed,” over operation in the forward direction, electrons do gradually get injected and become trapped in the gate oxide near the drain. In this portion of the conventional MOSFET there is virtually no channel underneath the gate oxide. Thus the trapped charge modulates the threshold voltage and charge mobility only slightly.
The inventor, along with others, has previously described programmable memory devices and functions based on the reverse stressing of MOSFET's in a conventional CMOS process and technology in order to form programmable address decode and correction in U.S. Pat. No. 6,521,950 entitled, “MOSFET Technology for Programmable Address Decode and Correction.” That disclosure, however, did not describe write once read only memory solutions, but rather address decode and correction issues.
According to the teachings of the present invention, normal MOSFETs can be programmed by operation in the reverse direction and utilizing avalanche hot electron injection to trap electrons in the gate oxide of the MOSFET. When the programmed MOSFET is subsequently operated in the forward direction the electrons trapped in the oxide are near the source and cause the channel to have two different threshold voltage regions. The novel programmed MOSFETs of the present invention conduct significantly less current than conventional MOSFETs, particularly at low drain voltages. These electrons will remain trapped in the gate oxide unless negative gate voltages are applied. The electrons will not be removed from the gate oxide when positive or zero gate voltages are applied. Erasure can be accomplished by applying negative gate voltages and/or increasing the temperature with negative gate bias applied to cause the trapped electrons to be re-emitted back into the silicon channel of the MOSFET.
As stated above, write once read only memory cell 201 is comprised of a programmed MOSFET. This programmed MOSFET has a charge 217 trapped in the gate oxide 210 adjacent to the first source/drain region 202 such that the channel region 206 has a first voltage threshold region (Vt1) and a second voltage threshold region (Vt2) in the channel 206. In one embodiment, the charge 217 trapped in the gate oxide 210 adjacent to the first source/drain region 202 includes a trapped electron charge 217.
In one embodiment of the present invention, the method is continued by subsequently operating the MOSFET in the forward direction in its programmed state during a read operation. Accordingly, the read operation includes grounding the source region 202 and precharging the drain region a fractional voltage of VDD. If the device is addressed by a wordline coupled to the gate, then its conductivity will be determined by the presence or absence of stored charge in the gate insulator. That is, a gate potential can be applied to the gate 208 by a wordline 216 in an effort to form a conduction channel between the source and the drain regions as done with addressing and reading conventional DRAM cells.
However, now in its programmed state, the conduction channel 206 of the MOSFET will have a first voltage threshold region (Vt1) adjacent to the drain region 204 and a second voltage threshold region (Vt2) adjacent to the source region 202, as explained and described in detail in connection with
Some of these effects have recently been described for use in a different device structure, called an NROM, for flash memories. This latter work in Israel and Germany is based on employing charge trapping in a silicon nitride layer in a non-conventional flash memory device structure. Charge trapping in silicon nitride gate insulators was the basic mechanism used in MNOS memory devices, charge trapping in aluminum oxide gates was the mechanism used in MIOS memory devices, and the present inventor, along with another, disclosed charge trapping at isolated point defects in gate insulators in U.S. Pat. No. 6,140,181 entitled, “Memory Using Insulator Traps.”
In contrast to the above work, the present invention discloses programming a MOSFET in a reverse direction to trap charge near the source region and reading the device in a forward direction to form a write once memory based on a modification of DRAM technology.
Prior art DRAM technology generally employs silicon oxide as the gate insulator. Further the emphasis in conventional DRAM devices is placed on trying to minimize charge trapping in the silicon oxide gate insulator. According to the teachings of the present invention, a variety of insulators are used to trap electrons more efficiently than in silicon oxide. That is, in the present invention, the write-once-read-only-memory (WOROM) employs charge trapping in gate insulators such as, wet silicon oxide, silicon nitride, silicon oxynitride SON, silicon rich oxide SRO, aluminum oxide Al2O3, composite layers of these insulators such as oxide and then silicon nitride, or oxide and then aluminum oxide, or multiple layers as oxide-nitride-oxide. While the charge trapping efficiency of silicon oxide may be low such is not the case for silicon nitride or composite layers of silicon oxide and nitride.
As shown in
In operation the devices would be subjected to hot electron stress in the reverse direction by biasing the array plate 304, and read while grounding the array plate 304 to compare a stressed write once read only memory cell, e.g. cell 301-1, to an unstressed dummy device/cell, e.g. 301-2, as shown in
As one of ordinary skill in the art will understand upon reading this disclosure such arrays of write once read only memory cells are conveniently realized by a modification of DRAM technology. According to the teachings of the present invention a gate insulator of the write once read only memory cell includes gate insulators selected from the group of thicker layers of SiO2 formed by wet oxidation, SON silicon oxynitride, SRO silicon rich oxide, Al2O3 aluminum oxide, composite layers and implanted oxides with traps (L. Forbes and J. Geusic, “Memory using insulator traps,” U.S. Pat. No. 6,140,181). Conventional transistors for address decode and sense amplifiers can be fabricated after this step with normal thin gate insulators of silicon oxide.
Conversely, if the nominal threshold voltage without the gate insulator charged is ½ V, then I=μCox×(W/L)×((Vgs−Vt2/2), or 12.5 μA, with μCox=μCi=100 μA/V2 and W/L=1. That is, the write once read only memory cell of the present invention, having the dimensions describe above will produce a current I=100 μA/V2×(¼)×(½)=12.5 μA. Thus, in the present invention an un-written, or un-programmed write once read only memory cell can conduct a current of the order 12.5 uA, whereas if the gate insulator is charged then the write once read only memory cell will not conduct. As one of ordinary skill in the art will understand upon reading this disclosure, the sense amplifiers used in DRAM arrays, and as describe above, can easily detect such differences in current on the bit lines.
By way of comparison, in a conventional DRAM cell 550 with 30 femtoFarad (fF) storage capacitor 551 charged to 50 femto Coulombs (fC), if these are read over 5 nS then the average current on a bit line 552 is only 10 μA (I=50 fc/5 ns=10 μA). Thus, storing a 50 fC charge on the storage capacitor shown in
According to the teachings of the present invention, the transistors in the array are utilized not just as passive on or off switches as transfer devices in DRAM arrays but rather as active devices providing gain. In the present invention, to program the transistor “off,” requires only a stored charge in the gate insulator is only about 100 electrons if the area is 0.1 μm by 0.1 μm. And, if the write once read only memory cell is un-programmed, e.g. no stored charge trapped in the gate insulator, and if the transistor is addressed over 10 nS a of current of 12.5 μA is provided. The integrated drain current then has a charge of 125 fC or 800,000 electrons. This is in comparison to the charge on a DRAM capacitor of 50 fC which is only about 300,000 electrons. Hence, the use of the transistors in the array as active devices with gain, rather than just switches, provides an amplification of the stored charge, in the gate insulator, from 100 to 800,000 electrons over a read address period of 10 nS.
The retention of the memory devices depends on mobility degradation, which is for all intensive purposes probably permanent and trapped charge which won't decay with zero or positive gate bias. There are some design considerations involved in that the easier programming with SON and/or SRO insulators will result in shorter retention times.
In
The column decoder 648 is connected to the sense amplifier circuit 646 via control and column select signals on column select lines 662. The sense amplifier circuit 646 receives input data destined for the memory array 642 and outputs data read from the memory array 642 over input/output (I/O) data lines 663. Data is read from the cells of the memory array 642 by activating a word line 680 (via the row decoder 644), which couples all of the memory cells corresponding to that word line to respective bit lines 660, which define the columns of the array. One or more bit lines 660 are also activated. When a particular word line 680 and bit lines 660 are activated, the sense amplifier circuit 646 connected to a bit line column detects and amplifies the conduction sensed through a given write once read only memory cell, where in the read operation the source region of a given cell is couple to a grounded array plate (not shown), and transferred its bit line 660 by measuring the potential difference between the activated bit line 660 and a reference line which may be an inactive bit line. The operation of Memory device sense amplifiers is described, for example, in U.S. Pat. Nos. 5,627,785; 5,280,205; and 5,042,011, all assigned to Micron Technology Inc., and incorporated by reference herein.
It will be appreciated by those skilled in the art that additional circuitry and control signals can be provided, and that the memory device 700 has been simplified to help focus on the invention. At least one of the write once read only memory cell in WOROM 712 includes a programmed MOSFET having a charge trapped in the gate insulator adjacent to a first source/drain region, or source region, such that the channel region has a first voltage threshold region (Vt1) and a second voltage threshold region (Vt2), where Vt2 is greater than Vt1, and Vt2 is adjacent the source region such that the programmed MOSFET operates at reduced drain source current.
It will be understood that the embodiment shown in
Applications containing the novel memory cell of the present invention as described in this disclosure include electronic systems for use in memory modules, device drivers, power modules, communication modems, processor modules, and application-specific modules, and may include multilayer, multichip modules. Such circuitry can further be a subcomponent of a variety of electronic systems, such as a clock, a television, a cell phone, a personal computer, an automobile, an industrial control system, an aircraft, and others.
Utilization of a modification of well established DRAM technology and arrays will serve to afford an inexpensive memory device which can be regarded as disposable if the information is later transferred to another medium, for instance CDROM's. The high density of DRAM array structures will afford the storage of a large volume of digital data or images at a very low cost per bit. There are many applications where the data need only be written once, the low cost of these memories will make it more efficient to just utilize a new memory array, and dispose of the old memory array, rather than trying to erase and reuse these arrays as is done with current flash memories.
It is to be understood that the above description is intended to be illustrative, and not restrictive. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
This application is a Divisional of U.S. application Ser. No. 11/427,038, filed Jun. 28, 2006 now U.S. Pat. No. 7,622,355, which is a Continuation of U.S. application Ser. No. 10/930,514, filed Aug. 31, 2004, now issued as U.S. Pat. No. 7,112,494, which is a Divisional of U.S. application Ser. No. 10/739,767 filed Dec. 18, 2003, now issued as U.S. Pat. No. 7,133,315, which is a Divisional of U.S. application Ser. No. 10/177,077 filed Jun. 21, 2002, now issued as U.S. Pat. No. 6,804,136. These applications are incorporated herein by reference. This application is related to the following, commonly assigned U.S. patent applications: “Ferroelectric Write Once Read Only Memory for Archival Storage,” Ser. No. 10/177,082, now issued as U.S. Pat. No. 6,970,370, “Write Once Read Only Memory Employing Floating Gates,” Ser. No. 10/177,083, “Nanocrystal Write Once Read Only Memory for Archival Storage,” Ser. No. 10/177,214, now issued as U.S. Pat. No. 6,888,739, “Write Once Read Only Memory with Large Work Function Floating Gates,” Ser. No. 10/177,213, “Vertical NROM Having a Storage Density of 1 Bit per 1 F2,” Ser. No. 10/177,208, now issued as U.S. Pat. No. 6,853,587, and “Multistate NROM Having a Storage Density Much Greater than 1 Bit per 1 F2,” Ser. No. 10/177,211, each of which disclosure is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3381114 | Nakanuma | Apr 1968 | A |
3641516 | Casrucci et al. | Feb 1972 | A |
4152627 | Priel et al. | May 1979 | A |
4173791 | Bell | Nov 1979 | A |
4215156 | Dalal et al. | Jul 1980 | A |
4333808 | Bhattacharyya et al. | Jun 1982 | A |
4399424 | Rigby | Aug 1983 | A |
4413022 | Suntola et al. | Nov 1983 | A |
4507673 | Aoyama et al. | Mar 1985 | A |
4590042 | Drage | May 1986 | A |
4647947 | Takeoka et al. | Mar 1987 | A |
4661833 | Mizutani | Apr 1987 | A |
4767641 | Kieser et al. | Aug 1988 | A |
4920071 | Thomas | Apr 1990 | A |
4939559 | DiMaria et al. | Jul 1990 | A |
4993358 | Mahawili | Feb 1991 | A |
5006192 | Deguchi | Apr 1991 | A |
5016215 | Tigelaar | May 1991 | A |
5017977 | Richardson | May 1991 | A |
5021999 | Kohda et al. | Jun 1991 | A |
5027171 | Reedy et al. | Jun 1991 | A |
5042011 | Casper et al. | Aug 1991 | A |
5080928 | Klinedinst et al. | Jan 1992 | A |
5111430 | Morie | May 1992 | A |
5198029 | Dutta et al. | Mar 1993 | A |
5253196 | Shimabukuro et al. | Oct 1993 | A |
5274249 | Xi et al. | Dec 1993 | A |
5280205 | Green et al. | Jan 1994 | A |
5293560 | Harari | Mar 1994 | A |
5298447 | Hong | Mar 1994 | A |
5303182 | Nakao et al. | Apr 1994 | A |
5317535 | Talreja et al. | May 1994 | A |
5388069 | Kokubo | Feb 1995 | A |
5409859 | Glass et al. | Apr 1995 | A |
5424993 | Lee et al. | Jun 1995 | A |
5430670 | Rosenthal | Jul 1995 | A |
5434815 | Smarandoiu et al. | Jul 1995 | A |
5438544 | Makino | Aug 1995 | A |
5449941 | Yamazaki et al. | Sep 1995 | A |
5457649 | Eichman et al. | Oct 1995 | A |
5467306 | Kaya et al. | Nov 1995 | A |
5477485 | Bergemont et al. | Dec 1995 | A |
5485422 | Bauer et al. | Jan 1996 | A |
5493140 | Iguchi | Feb 1996 | A |
5595606 | Fujikawa et al. | Jan 1997 | A |
5627781 | Hayashi et al. | May 1997 | A |
5627785 | Gilliam et al. | May 1997 | A |
5670790 | Katoh et al. | Sep 1997 | A |
5677867 | Hazani | Oct 1997 | A |
5698022 | Glassman et al. | Dec 1997 | A |
5714766 | Chen et al. | Feb 1998 | A |
5735960 | Sandhu et al. | Apr 1998 | A |
5754477 | Forbes | May 1998 | A |
5768192 | Eitan | Jun 1998 | A |
5795808 | Park | Aug 1998 | A |
5801105 | Yano et al. | Sep 1998 | A |
5810923 | Yano et al. | Sep 1998 | A |
5828080 | Yano et al. | Oct 1998 | A |
5828605 | Peng et al. | Oct 1998 | A |
5840897 | Kirlin et al. | Nov 1998 | A |
5891773 | Saitoh | Apr 1999 | A |
5916365 | Sherman | Jun 1999 | A |
5950925 | Fukunaga et al. | Sep 1999 | A |
5959896 | Forbes | Sep 1999 | A |
6011725 | Eitan | Jan 2000 | A |
6013553 | Wallace et al. | Jan 2000 | A |
6027961 | Maiti et al. | Feb 2000 | A |
6034882 | Johnson et al. | Mar 2000 | A |
6049479 | Thurgate et al. | Apr 2000 | A |
6057271 | Kenjiro et al. | May 2000 | A |
6059885 | Ohashi et al. | May 2000 | A |
6110529 | Gardiner et al. | Aug 2000 | A |
6122201 | Lee et al. | Sep 2000 | A |
6124729 | Noble et al. | Sep 2000 | A |
6125062 | Ahn et al. | Sep 2000 | A |
6140181 | Forbes et al. | Oct 2000 | A |
6161500 | Kopacz et al. | Dec 2000 | A |
6185122 | Johnson et al. | Feb 2001 | B1 |
6194228 | Fujiki et al. | Feb 2001 | B1 |
6203613 | Gates et al. | Mar 2001 | B1 |
6206972 | Dunham | Mar 2001 | B1 |
6211035 | Moise et al. | Apr 2001 | B1 |
6215148 | Eitan | Apr 2001 | B1 |
6222768 | Hollmer et al. | Apr 2001 | B1 |
6225168 | Gardner et al. | May 2001 | B1 |
6243300 | Sunkavalli | Jun 2001 | B1 |
6246606 | Forbes et al. | Jun 2001 | B1 |
6269023 | Derhacobian et al. | Jul 2001 | B1 |
6281144 | Cleary et al. | Aug 2001 | B1 |
6302964 | Umotoy et al. | Oct 2001 | B1 |
6320786 | Chang et al. | Nov 2001 | B1 |
6349062 | Thurgate | Feb 2002 | B1 |
6351411 | Forbes et al. | Feb 2002 | B2 |
6365470 | Maeda | Apr 2002 | B1 |
6368941 | Chen et al. | Apr 2002 | B1 |
6380579 | Nam et al. | Apr 2002 | B1 |
6387712 | Yano et al. | May 2002 | B1 |
6391769 | Lee et al. | May 2002 | B1 |
6429063 | Eitan | Aug 2002 | B1 |
6432779 | Hobbs et al. | Aug 2002 | B1 |
6438031 | Fastow | Aug 2002 | B1 |
6444039 | Nguyen | Sep 2002 | B1 |
6444895 | Nikawa | Sep 2002 | B1 |
6445023 | Vaartstra et al. | Sep 2002 | B1 |
6456531 | Wang et al. | Sep 2002 | B1 |
6456536 | Sobek et al. | Sep 2002 | B1 |
6458701 | Chae et al. | Oct 2002 | B1 |
6459618 | Wang | Oct 2002 | B1 |
6465306 | Ramsbey et al. | Oct 2002 | B1 |
6465334 | Buynoski et al. | Oct 2002 | B1 |
6487121 | Thurgate et al. | Nov 2002 | B1 |
6490204 | Bloom et al. | Dec 2002 | B2 |
6490205 | Wang et al. | Dec 2002 | B1 |
6521911 | Parsons et al. | Feb 2003 | B2 |
6521950 | Shimabukuro et al. | Feb 2003 | B1 |
6541816 | Ramsbey et al. | Apr 2003 | B2 |
6545314 | Forbes et al. | Apr 2003 | B2 |
6618290 | Wang et al. | Sep 2003 | B1 |
6630381 | Hazani | Oct 2003 | B1 |
6642573 | Halliyal et al. | Nov 2003 | B1 |
6804136 | Forbes | Oct 2004 | B2 |
6867097 | Ramsbey et al. | Mar 2005 | B1 |
7112494 | Forbes | Sep 2006 | B2 |
7133315 | Forbes | Nov 2006 | B2 |
7221017 | Forbes et al. | May 2007 | B2 |
7221586 | Forbes et al. | May 2007 | B2 |
7622355 | Forbes | Nov 2009 | B2 |
20020027264 | Forbes et al. | Mar 2002 | A1 |
20030032270 | Snyder et al. | Feb 2003 | A1 |
20050026375 | Forbes | Feb 2005 | A1 |
20050036370 | Forbes | Feb 2005 | A1 |
20050082599 | Forbes | Apr 2005 | A1 |
20050085040 | Forbes | Apr 2005 | A1 |
20060240626 | Forbes | Oct 2006 | A1 |
Number | Date | Country |
---|---|---|
62-199019 | Sep 1987 | JP |
5090169 | Apr 1993 | JP |
2001-332546 | Nov 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20100067304 A1 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11427038 | Jun 2006 | US |
Child | 12622679 | US | |
Parent | 10739767 | Dec 2003 | US |
Child | 10930514 | US | |
Parent | 10177077 | Jun 2002 | US |
Child | 10739767 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10930514 | Aug 2004 | US |
Child | 11427038 | US |