A Bε-tree is an example of a write-optimized data structure and can be used to organize on-disk storage in general, and can be suitable in applications such as databases and file systems. The database or file system can comprise a key-value store that allows users to store and retrieve data in the form of key-value pairs. The “key” in a key-value pair can be an index (e.g., number, string, etc.) that uniquely identifies its paired “value.” The value in a key-value pair can be any type of data object or collection of data objects. A Bε-tree can provide a key-value application programming interface (API) to provide insert, range query, and key-value update operations on the key-value store.
With respect to the discussion to follow and in particular to the drawings, it is stressed that the particulars shown represent examples for purposes of illustrative discussion, and are presented in the cause of providing a description of principles and conceptual aspects of the present disclosure. In this regard, no attempt is made to show implementation details beyond what is needed for a fundamental understanding of the present disclosure. The discussion to follow, in conjunction with the drawings, makes apparent to those of skill in the art how embodiments in accordance with the present disclosure may be practiced. Similar or same reference numbers may be used to identify or otherwise refer to similar or same elements in the various drawings and supporting descriptions. In the accompanying drawings:
Disclosed embodiments relate to the use of a variant of the B+-tree data structure (referred to herein as a B+-tree) in the buffer portions of a Bε-tree index in a file system. The use of a B+-tree data structure can provide efficient space utilization. Space (e.g., disk blocks) can be allocated from the storage volume only as needed to grow the tree. Accordingly, space for the buffer portions in the nodes of a Bε-tree in accordance with the present disclosure do not have to be fully pre-allocated, as would conventional Bε-trees. This can simplify free space management and improve performance in the computer system when the buffers are only partially full because fragmentation resulting in a sparse B+-tree can be avoided thus reducing storage volume I/O.
Disclosed embodiments further relate to allowing the node size of the Bε-tree to vary. By periodically updating the node size according to the workload on the file system, the size of nodes in the Bε-tree can be tuned for write operations or for read operations. This can improve performance in the computer system because the node size can be tuned according to the nature of the workload as the workload fluctuates between being write-heavy and read-heavy.
The embodiments disclosed herein use a file system as an illustrative use case for Bε-trees. Persons having ordinary skill in the arts will appreciate that Bε-trees in accordance with the present disclosure can generally be employed for tasks involving on-disk storage, other than in a file system. For example, Bε-trees in accordance with the present disclosure can be employed for database storage.
In the following description, for purposes of explanation, numerous examples and specific details are set forth in order to provide a thorough understanding of embodiments of the present disclosure. Particular embodiments as expressed in the claims may include some or all of the features in these examples, alone or in combination with other features described below, and may further include modifications and equivalents of the features and concepts described herein.
The system 100 can include a storage volume 104 that is in communication with and accessed by the file server 102. The storage volume 104 can be any type or form of storage device or medium capable of storing data and/or computer-readable instructions. In some embodiments, storage volume 104 can comprise any suitable block-based storage media. For example, the storage volume 104 can comprise a system of magnetic disk drives (e.g., hard drives), solid state drives, floppy disk drives, magnetic tape drives, optical disk drives, flash drives, and the like.
A file system 106 can be defined on the storage volume 104. Although not shown, persons of ordinary skill will understand that data comprising the files in file system 106 can be stored in the storage volume 104 in units of storage referred to as inodes, which comprise one or disk blocks of storage. A directory can be considered a special kind of file, and its data likewise can be stored in one or more inodes. The file system 1106 can include a file system directory, which represents a logical representation and arrangement of the directories and files that comprise file system 106.
In accordance with the present disclosure, the file system 106 can be associated with a Bε-tree data structure 108 to organize and manage the file system directory in units called key-value pairs. The key component of a key-value pair can correspond to a directory or file in the file system 106 (e.g., its full pathname). The value component of the key-value pair can represent the content in an inode of the directory or file.
Referring to
In some embodiments, each node 112, 114, 116 can include a buffer 122. The root node 112 and non-leaf nodes 114 can further include space for pivot keys 124 and child pointers 126. The pivots 124 can comprise only the “key” portions of the key-value pairs, while the key-value pairs themselves are stored in the buffers 122. Leaf nodes 116 have no children and so do not have a pivot space or child pointers, but rather comprise only a buffer 122. In some embodiments, each leaf node 116 in Bε-tree 108 can include a pointer to the next leaf node to form a linked list of leaf nodes to facilitate rapid in-order traversal.
The Bε-tree 108 is similar to a conventional B+-tree in some respects. For example, the root node 112 and the non-leaf nodes 114 comprise pivot keys 124 to direct traversal through the tree, and child pointers 126 that point to child nodes. Insertion operations on Bε-tree 108 are based on insertion algorithms for B+-trees. The Bε-tree 108 illustrated in
K10, value10; K20, value20; K30, value30; K40, value40
K50, value50; K60, value60; K70, value70
using the keys as tree indices, with the assumption that: K10<K20<K30<K40<K50<K60<K70.
The buffer 122 can be used to store messages 202 comprising key-value pairs and operations (e.g., insert, delete) that will be applied at the leaf nodes 116. The size of the buffer 122 can be expressed in terms of the node size B as (B−Bε), where Bε expresses the amount of space for the pivot keys 124 and child pointers 126 and ε (epsilon) is a tuning parameter, between 0 and 1 (exclusive), that specifies the allocation of the node space between buffer 122 and pivot/child pointers 124, 126. It will be appreciated that Bεand (B−Bε) are approximations since ε is a fractional exponent, and that actual values can be rounded to the nearest integer multiples of the block size of storage volume 104.
Insertion into the Bε-tree 108 generally proceed as follows: The key-value pair in a received insert operation is stored as a message in the buffer 122 of the root node 112. If the amount of data stored in the buffer 122 does not exceed (B−Bε), the operation is deemed complete. When the buffer 122 in the root node 112 becomes full (e.g., the amount of data comprising the stored messages 202 exceeds B−Bε), a batch of messages 202 can be flushed to a child node of the root node 112, and stored in the buffer 122 of the child node. This may trigger a cascade effect if the buffer 122 in the receiving child node becomes full, where the child node can flush a batch of messages 202 from its buffer 122 to one of its child nodes, and so on down the Bε-tree 108. Over the course of flushing, messages 202 ultimately reach the leaf nodes 116. When a leaf node 116 becomes full, it splits, just as in a B+-tree. Similar to a B+-tree, when a node 112, 114 has too many children, it splits and the messages 202 in the buffer 122 are distributed between the two new nodes. Additional details are discussed below.
Moving messages 202 down the tree in batches on an as needed basis improves insert performance. By storing newly inserted messages 202 initially in the root node 112, the Bε-tree 108 can avoid seeking all over the storage volume 104 to put the messages 202 in their target locations. The file server 102 only moves messages 202 down the Bε-tree 108 when enough messages have accumulated in the buffer 122 of the root node 112, thus averaging the I/O cost of making random updates over a batch of messages.
In accordance with the present disclosure, the actual allocated size of the buffer 122 in a given node 112, 114 can be dynamic. In other words, storage (e.g., disk blocks 222) from storage volume 104 can be allocated to increase the size of the buffer 122 of a node, up to the maximum allowed size (B−Bε) of the buffer 122 on an as needed basis to store messages 202 (e.g., to store a batch of messages from a flush operation). Conversely, storage that was previously allocated to the buffer 122 of a node can be deallocated if the storage becomes unused (e.g., due to flushing a batch of messages). The actual size of a buffer 122 in the Bε-tree 108 can vary independently of the other buffers 122 in the tree. By making the size of buffer 122 dynamic, space fragmentation leading to a sparse Bε-tree 108 can be alleviated.
The buffer 122 in the root node 112 is likely to be the most active in terms of being filled and flushed, since the file system 102 processes insert operations start by first inserting messages 202 into the buffer 122 of the root node 112. Accordingly, in some embodiments, the actual size of buffer 122 in the root node 112 can be static; e.g., the buffer 122 can be pre-allocated ahead of time to the maximum buffer size of (B−Bε) to avoid excessive I/O that can result from allocating and de-allocating space for the root buffer.
Referring to
Computing system 402 can include any single or multi-processor computing device or system capable of executing computer-readable instructions. In a basic configuration, computing system 402 can include at least one processing unit 412 and a system (main) memory 414.
Processing unit 412 can comprise any type or form of processing logic capable of processing data or interpreting and executing instructions. The processing unit 412 can be a single processor configuration in some embodiments, and in other embodiments can be a multi-processor architecture comprising one or more computer processors. In some embodiments, processing unit 412 may receive instructions from program and data modules 430. These instructions can cause processing unit 412 to perform operations and processing in accordance with the present disclosure.
System memory 414 (sometimes referred to as main memory) can be any type or form of volatile or non-volatile storage device or medium capable of storing data and/or other computer-readable instructions. Examples of system memory 414 include, for example, random access memory (RAM), read only memory (ROM), flash memory, or any other suitable memory device. Although not required, in some embodiments computing system 402 may include both a volatile memory unit (such as, for example, system memory 414) and a non-volatile storage device (e.g., data storage 416, 446).
In some embodiments, computing system 402 may also include one or more components or elements in addition to processing unit 412 and system memory 414. For example, as illustrated in
Internal data storage 416 may comprise non-transitory computer-readable storage media to provide nonvolatile storage of data, data structures, computer-executable instructions, and so forth to operate computing system 402 in accordance with the present disclosure. For instance, the internal data storage 416 may store various program and data modules 418, including for example, operating system 432, one or more application programs 434, program data 436, and other program/system modules 438.
Communication interface 420 can include any type or form of communication device or adapter capable of facilitating communication between computing system 402 and one or more additional devices. For example, in some embodiments communication interface 420 may facilitate communication between computing system 402 and client systems 12 to provide file services for users 10. Examples of communication interface 420 include, for example, a wired network interface (such as a network interface card), a wireless network interface (such as a wireless network interface card), a modem, and any other suitable interface.
In some embodiments, communication interface 420 may also represent a host adapter configured to facilitate communication between computing system 402 and one or more additional network or storage devices, such as storage volume 104, via an external bus or communications channel. Examples of host adapters include, for example, SCSI host adapters, USB host adapters, IEEE 1394 host adapters, SATA and eSATA host adapters, ATA and PATA host adapters, Fibre Channel interface adapters, Ethernet adapters, or the like.
Computing system 402 may also include at least one output device 442 (e.g., a display) coupled to system bus 424 via I/O interface 422, for example, to facilitate I/O with a system administrator. The output device 442 can include any type or form of device capable of visual and/or audio presentation of information received from I/O interface 422.
Computing system 402 may also include at least one input device 444 coupled to system bus 424 via I/O interface 422, for example, to facilitate I/O with a system administrator. Input device 444 can include any type or form of input device capable of providing input, either computer or human generated, to computing system 402. Examples of input device 444 include, for example, a keyboard, a pointing device, a speech recognition device, or any other input device.
Referring to
At block 502, the file server 102 can receive an insert operation, for example, via a suitable API call, to insert a message into the Bε-tree 108. The message can comprise a key-value pair contained in the insert operation and an INSERT token that represents the operation. The key component in the key-value pair part of the message, for example, can be an identifier of a file or directory in the file system 106. The value component in the key-value pair can be an inode number of an inode that comprises the file or directory.
At block 504, the file server 102 can add the key-value pair to the B+-tree (e.g., 302) in buffer 122 of the root node 112 of Bε-tree 108. In some embodiments, for example, the insert operation can be encoded as an insert message comprising the key-value pair that is added to the B+-tree using the key component as an index into the tree. Insertion of the message into the B+-tree can proceed in accordance with known B+-tree insertion algorithms. In accordance with the present disclosure, the buffer 122 can be updated with the received key-value pair before checking if the maximum size of the buffer 122 is reached, since its B+-tree can grow dynamically. This has the benefit of reducing update latencies.
At block 506, the file server 102 can make a determination whether the amount of data in the buffer 122 of the root node 112 of Bε-tree 108 has exceeded a threshold value. In some embodiments, for example, the threshold value can be computed as (B−Bε). In response to a determination that the buffer 122 is full (e.g., exceeds the threshold value), processing can proceed to block 508. In response to a determination that the buffer 122 is not full, processing can proceed to block 510.
At block 508, the file server 102 can flush previously stored messages from the buffer 122 of the root node 112 to a child node to open up space in the buffer 122. This aspect of the present disclosure is discussed in more detail in
At block 510, the file server 102 can update the Bloom filter 304, or other set membership data structure, to indicate that the received key-value pair is now a member of the set of key-value pairs in the B+-tree. In some embodiments, for the example, the key component of the key-value pair can be used in the hash functions of the Bloom filter 304 to set bits in the bit array of the Bloom filter. Processing of the insert operation can be deemed to be complete.
Referring to
Processing in
At block 602, the file server 102 can select messages 202 in the source buffer of the ource node to flush. Consider node 114a in the Bε-tree 108 shown in
In some embodiments, the messages in the source node that are selected to be flushed can be based on the number of messages that belong to a child node. For example, the largest set of messages that belong to a child node can be selected for the flush operation, and that child node becomes the target node of the flush operation. In other embodiments, each child node can be selected as the target node in round robin fashion. In some embodiments, a child node can be randomly selected as the target node. In still other embodiments, all the children nodes can be selected target nodes, and so on. It is noted that not all the messages that belong to the target node need to be flushed in a single flush operation.
At block 604, the file server 102 can make a determination whether there is enough space in the disk blocks currently allocated to the buffer (target buffer) of the target node to store the selected messages without having to allocate additional disk blocks. In other words, can the current actual size of the target buffer store the selected messages? In response to a determination that there are enough disk blocks allocated to the target buffer to store the selected messages, processing can proceed to block 616. In response to a determination that there are not enough disk blocks allocated to the target buffer to store the selected messages, processing can proceed to block 606 to allocate additional disk blocks to the target buffer.
At block 606, the file server 102 can make a determination whether allocating additional disk blocks to store the selected messages would exceed the predetermined maximum allowed buffer size (B−Bε) for the target buffer. In response to a determination that allocating disk blocks to the target buffer would not exceed the predetermined maximum allowed buffer size, processing can proceed to block 614. In response to a determination that allocating disk blocks to the target buffer would exceed the predetermined maximum allowed buffer size, processing can proceed to block 608 to reduce the actual size of the target buffer.
At block 608, the file server 102 has determined that no more disk blocks can be allocated to the target buffer without the target buffer exceeding the predetermined maximum allowed buffer size (B−Bε). If the target buffer is in a non-leaf node, then processing can proceed to block 610 to reduce the size of the target buffer by flushing some of the messages in the target buffer. If the target buffer is in a leaf node, the processing can proceed to block 612 to split the leaf node, and in the process reduce the size of the target buffer to store the selected messages.
At block 610, the file server 102 can make room in the target buffer of a non-leaf node by repeating the process of
At block 612, the file server 102 can make room in the target buffer of a leaf node by splitting the leaf node. In some embodiments, for example, the file server can allocate a new leaf node and distribute the messages in the buffer of the original leaf node between the original leaf node and the newly allocated node. Then, depending on which leaf node the selected messages belong to, either the original leaf node remains the target node or the new leaf becomes the target node. When processing in block 612 completes, processing can continue with blocks 604 and 606 to determine whether splitting the leaf node has created enough space in the buffer of the target node.
At block 614, the file server 102 has determined in block 606 that one or more disk blocks can be allocated to the target buffer to store the selected messages. In response, the file server 102 can allocate a disk block(s) to the target buffer, thus increasing its actual size.
At block 616, the file server 102 can extract the selected messages from the source buffer. In some embodiments, for example, the file server 102 can delete the selected messages from the B+-tree of the source buffer. In addition, the set membership data structure 304 (e.g., Bloom filter) in the source buffer can be updated to indicate that the selected messages are no longer indexed in the B+-tree of the source buffer. Furthermore, in accordance with some embodiments of the present disclosure, any disk blocks that become unused as a result of deleting the selected messages from the B+-tree can be deallocated from the source buffer to avoid creating holes in the tree structure.
At block 618, the file server 102 can store the selected messages in the target buffer. In some embodiments, the file server 102 can rebuild the B+-tree in the target buffer rather than inserting messages using the B+-tree's insert API, and thus avoid creating holes in the B+-tree. This process is discussed in more detail in connection with
In some embodiments, the file server 102 may perform preemptive splitting of a node to improve the performance of subsequent insert operations. Thus, at block 622 when the target node is a non-leaf node (block 620) and contains the maximum number of child pointers, the file server 102 can split the non-leaf node (block 624). In some embodiments, the threshold may be other than the maximum number of children pointers. For example, the threshold for preemptively splitting a non-leaf node can be a percentage (e.g., 90%) of the maximum.
Likewise, at block 626 when the target node is a leaf node and its buffer is at the maximum allowed size of (B−Bε) , the file server 102 can split the leaf node (block 628). In some embodiments, the threshold may be other than the buffer's maximum capacity. For example, the threshold for preemptively splitting a leaf node can be a percentage (e.g., 90%) of the maximum capacity.
The file server 102 can continue with block 510 (
Referring to
Processing in
At block 702, the file server 102 can merge the selected messages identified in the source buffer with the messages in the target buffer.
At block 704, the file server 102 can rebuild the B+-tree 812 of the target node. In some embodiments, for example, the B+-tree 812 can be bulk-loaded from the sorted list 822.
In accordance with the present disclosure, the file server 102 can build the B+-tree 812′ from the bottom up in left-to-right order by allocating messages in the sorted list 822 into leaf nodes and creating non-leaf nodes as needed. The file server 102 can fill each leaf node so that there are no holes in the leaf nodes of the rebuilt B+-tree 812′. In this way, every leaf node, except possibly the last leaf node, is compacted. This compaction avoids a sparse B+-tree in which disk blocks comprising the leaf nodes are only partially filled. The compaction can reduce the number of disk blocks used by the B+-tree thus improving performance in the computer system when doing a search. In some embodiments, the file server 102 can leave some amount of unused space in each leaf node to allow for future inserts, which may reduce the number (and associated I/O cost) of potential split operations of leaf nodes.
At block 706, the file server 102 can update the set membership data structure (e.g., Bloom filter) to indicate the presence of the newly added messages. Rebuilding of the B+-tree can be deemed to be complete, and the file server 102 can return to processing at block 620 in
Referring to
At block 902, the file server 102 can receive a query operation, for example, via a suitable API call, to access a corresponding key-value pair (if there is one) indexed in the Bε-tree 108. The file server 102 can use a query key specified in the query to perform a lookup of the keys indexed in the Bε-tree 108, beginning with the root node 112 and progressing down the Bε-tree 108.
At block 904, the file server 102 set a candidate node to point initially to the root node 112 of Bε-tree 108. The file server 102 can query each candidate node beginning with the root node to identify a target node to service the query operation.
At block 906, the file server 102 can use the set membership data structure (e.g., 304) in the candidate node to determine if the key-value pair identified by the query key is in the B+-tree of the candidate node. In some embodiments, for example, the set membership data structure is a Bloom filter (
At block 908, the file server 102 has determined that the query key does not identify a key-value pair in the B+-tree of the candidate node. If the candidate node is a leaf node, then processing of the query operation can be deemed complete with no results since there are no more children nodes to visit. On the other hand, if the candidate node is a non-leaf node, then a child node is identified and set as the next candidate node (block 910). In some embodiments, for example, the pivot keys can be used to identify the next child (candidate) node to visit. Processing can repeat with block 906 with the next candidate node.
At block 912, the file server 102 has determined that the Bloom filter has produced a positive determination for the query key. Accordingly, the file server 102 can search the B+-tree in the candidate node using the query key to determine if the corresponding key-value pair is in fact indexed in the B+-tree of the candidate node. If not, then processing can proceed to block 908 to identify the next candidate node, if any. If the key-value pair is found, then the file server 102 can process the query operation (block 914) using the key-value pair. Processing of the query operation can be deemed complete.
Referring to
At block 1002, the file server 102 can receive a delete operation, for example, via a suitable API call, to delete a message from the Bε-tree 108. The delete operation can include a key that identifies the key-value pair in the Bε-tree 108 to be deleted.
At block 1004, the file server can insert a tombstone message in the B+-tree of the root node, instead of immediately deleting the target message. The tombstone message can comprise the key contained in the received delete operation and a DELETE token. The flow for processing the insertion of the tombstone message can proceed generally according
Tombstone messages can be flushed down the nodes of the Bε-tree 108 along with other messages. When a tombstone message winds up in the same B+-tree as a key-value pair identified by the tombstone message, that key-value pair can be deleted from the B+-tree. If the B+-tree is in a non-leaf node, the tombstone message is retained. On the other hand, if the B+-tree is in a leaf node, the tombstone message can be deleted from the leaf node. When key-value pairs are deleted from a B+-tree, disk blocks that become unused can be deallocated from the B+-tree. This can be performed, for example, prior to the bulk loading step (block 704) in
In some embodiments in accordance with the present disclosure, performance may be improved by maintaining approximately half-full B+-trees in the leaf nodes and approximately half-full pivot keys in the non-leaf nodes. Thus, for example, if the pivot keys in a non-leaf node are less than half-full or if the B+-tree in a leaf node is less than half-full, the file server 102 can check the neighbor nodes to see if any of them are more than half-full. If so, then the pivots or B+-trees can be “horizontally” cascaded across the neighbor nodes to spread out the storage utilization among those nodes. Any disk blocks that become unused can be deallocated.
In the foregoing descriptions, the size B of each node in the Bε-tree 108 is fixed, but the size of the buffer 122 can vary in size up to a predetermined maximum allowed size, namely (B−Bε) as the B+-tree in the buffer 122 shrinks and grows. The discussion will now turn to some embodiments in which the size B of the nodes themselves can vary; as such, the maximum allowed size that the buffer 122 can grow or shrink over time.
In the embodiments disclosed above, the node size B was assumed to be a predetermined fixed value for the life of the file system; every node in the Bε-tree 108 would have a fixed size of B and each buffer would have a maximum allowed size of (B−Bε). In accordance with other embodiments of the present disclosure, the size of the node itself can vary at run time. In some embodiments, for example, an expected node size Bexp can be compared to the current (actual) size of a given node; since the number of disk blocks allocated to the buffer 122 component of a node can vary from node to node, the actual size of a node can vary from node to node. If the current actual size of the given node is smaller than Bexp, then that node can be allowed to grow; i.e., more disk blocks can be allocated to that node's buffer. Conversely, if the current actual size of the given node is larger than Bexp, then its buffer cannot accept messages. Instead messages in its buffer will be flushed (in the case of a non-leaf node), or the node may have to be split (in the case of a leaf node), to reduce the size of the buffer and hence the size of the node to Bexp. Moreover, since Bexp can vary at run time, the maximum allowed size of any given node in the Bε-tree 108 can vary over time.
In terms of processing an insert operation shown in
In block 604 of
Referring to
At block 1102, the file server 102 can maintain tallies of modify operations and query operations (read operations) that it receives. The modify operations include operations that can modify or otherwise change the Bε-tree (and in particular its size) such as insert operations, update operations, delete operations, and the like. In some embodiments, the file server 102 can increment a counter Ni for each modify operation that it receives, and another counter Nq for each query operation it receives.
At block 1104, the file server 102 can determine whether it is time to recompute or otherwise update the expected node size Bexp; for example, by setting a timer or by other suitable timing means. In some embodiments, for example, a timer can be set to alarm at every S seconds. The file server 102 can continue to tally the insert and query operations (block 1102) until the timer expires, at which time the file server 102 can recompute Bexp (block 1106).
At block 1106, the file server 102 can recompute Bexp based on the count Ni of insert (write) operations and the count Nq of query (read) operations. In some embodiments, the re-computation of Bexp can be based on cost functions associated with insert and query operations. Merely as an example, the cost function Cmodify for modify operations can be expressed as:
where BC is a candidate node size that will become the updated value of Bexp,
A total I/O cost Ctotal metric can be computed by the sum: (Cmodify+Cquery). The total I/O cost Ctotal metric can be computed for three different values of the candidate node size BC, namely:
B
C
=B
exp
−Δ, B
C
=B
exp, and BC=Bexp+Δ
where Δ is small number used to adjust the node size of Bε-tree 108. The value of BC that computes out the lowest total cost Ctotal becomes the recomputed (updated) node size Bexp. Thus, the updated value of BC can decrease, remain the same, or increase depending the with candidate node size produced the smallest value for Ctotal.
In some embodiments, the file server 102 can use the count Ni of modify operations and the count Nq of query operations tallied since the last re-computation; in other words, Ni and Nq can be reset to zero after each re-computation. In other embodiments, the file server 102 can continuously accumulate Ni and Nq from some initial point in time (e.g., from the time of the last system reboot) with no resetting of Ni and Nq.
In still other embodiments, the file server 102 can apply an aging factor on previously accumulated counts of Ni and Nq (block 1108) so that recent tallies are given a higher weight. Consider, for example, the count Ni of modify operations; it will be appreciated that the following applies to Nq as well. Suppose a re-computation is performed at time t1 and the total “aged” count of modify operations as of time t1 is Ni1. Suppose another re-computation is made at time t2. The aged insert count Ni2 at time t2 can be computed as
N
i2
=αN
i1+Δ2
where α is an aging factor (<1), and
Δ2 is the number of modify operations received between time t1 and time t2.
At time t2, the count Ni1 is weighted so that its influence is reduced as compared to the number of modify operations Δ2 tallied between time t1 and time t2. At another time t3, the aged count of modify operations can be computed as
N
i3
=αN
i2+Δ3
N
i3+α(αNi1+Δ2)+Δ3.
At time t2, the count Ni2 is weighted so that its influence is reduced as compared to the number of modify operations Δ3 tallied between time t2 and time t3. Note that the count Ni1 is weighted even less (by a factor α2) at time t3 than at time t2. It will be appreciated that the foregoing is merely illustrative, and the other aging algorithms can be used.
Conventionally, when formatting a Bε-tree, the node size B is a fixed design parameter that is determined once at the time the Bε-tree is created. A larger node size increases write performance but decreases read performance and vice versa, so there is a tradeoff to consider when selecting the node size. An optimal node size and fan-out (number of child pointers) can be chosen if the workload is stable and known. However, the workload in a system is typically unpredictable and thus cannot be known ahead of time. By periodically re-computing the node size based on actual performance of the file system, a node size that best matches the current workload can always be chosen. When the workload becomes steady, the node size (vis-à-vis Bexp) will reach a suitable value. As the workload fluctuates, Bexp will gradually change with the workload.
These and other variations, modifications, additions, and improvements may fall within the scope of the appended claims(s). As used in the description herein and throughout the claims that follow, “a”, “an”, and “the” includes plural references unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise.
The above description illustrates various embodiments of the present disclosure along with examples of how aspects of the present disclosure may be implemented. The above examples and embodiments should not be deemed to be the only embodiments, and are presented to illustrate the flexibility and advantages of the present disclosure as defined by the following claims. Based on the above disclosure and the following claims, other arrangements, embodiments, implementations and equivalents may be employed without departing from the scope of the disclosure as defined by the claims.
This application is related to commonly owned and concurrently filed U.S. App. No. [TBD, Applicant Docket No. D813], entitled “Auto-Tuned Write-Optimized Key-Value Store,” the content of which is incorporated herein by reference in its entirety for all purposes.