A write pole of a data writer, in some embodiments, has a sidewall extending from an air bearing surface and oriented with at least first, second, and third wall angles that are each measured with respect to a trailing edge of the write pole, parallel to the air bearing surface. The second wall angle can be half or less of the first wall angle and the third wall angle may be less than the second wall angle.
Various embodiments of the present disclosure are generally directed to a data writer write pole with a sidewall shaped to have multiple different low wall angles with respect to a plane parallel to an air bearing surface.
In data storage systems employing rotating media, the writeability and data bit areal density capability of a data writers is emphasized. To that end, side shields can be progressively brought closer to the write pole of the data writer to increase the track per inch capability of the data writer. However, writeability of the data writer can be compromised by moving side shields closer to the write pole due to leakage of magnetic flux from the write pole to the shield. Hence, there is a continued goal of configuring a data writer with increased writeability and data bit areal density.
Although the data storage device 102 can operate autonomously and independently, various embodiments supplement the capabilities of the data storage device 102 via a wired and/or wireless network 118 to at least one host 120. For example, a first host 120 may provide additional caching capabilities while a second host 122 provides additional processing capabilities to the local controller 104. The ability to selectively utilize remote hosts 120 and 122 allows the data storage system 100 to be optimized for a diverse variety of data storage operations and environments.
Each side shield 134 and a tip region 136 of the write pole 132 contact the ABS and are configured to direct magnetic flux to a particular region of an adjacent data storage medium. The non-magnetic gap distance 138 between each side shield 134 and the write pole 132 can be reduced to increase the ability of the data writer 130 to write data to small data tracks.
However, reducing the amount of non-magnetic material between the write pole 132 and shields 134 and 140 can result in a loss in magnetic writing field strength, and potentially losses in write field gradient, due to magnetic flux leaking from the write pole 132 to the shields, as shown by arrow 142. Such leakage degrades the on-track recording density and data bit areal density capabilities of the data write 130. It is contemplated that flux leakage can be attributed, at least in part, to the shape of the write pole 132 distal to the ABS. That is, the shape of the write pole 132 towards the ABS can be tuned to increase, or decrease, the risk of magnetic flux inadvertently leaking to the shields 134 and 140.
As shown in
While the write pole sidewall 154 may extend from the ABS at an orthogonal orientation to the ABS, such configuration can inhibit optimal write field strength and gradient of a data writer. Accordingly, a first sidewall section 156 can be angled at a predetermined orientation, such as 10-15° in the X-Z plane, parallel to the ABS, as shown by write pole region 158. The tuned wall angle of the first sidewall section 156 can allow ample magnetic flux to pass from the tip surface 152 to write data. The length 160 of the first sidewall section 156, as measured perpendicular to the ABS, can be tuned to increase data writing performance.
At some length 160 from the ABS, the sidewall 154 transitions to a second sidewall section 162 oriented at a second angle Θ2 that is less than 10° in the X-Z plane, parallel to the ABS, as shown by write pole region 164. In some embodiments, the angle Θ2 of the second sidewall section 162 is half or less of the angle of the first sidewall section 156. The relatively low angle Θ2 of the second sidewall section 160 increases the amount of write pole material behind the ABS while keeping the first sidewall section at an optimize angle above 10°.
A third sidewall section 166 continues from the second sidewall section 162 at an angle Θ3 that is less than the angle Θ2 of the second sidewall section 162 relative to the ABS. Hence, the wall angle Θ3 of the third sidewall section 166 is nearly perpendicular to the trailing edge 168 of the write pole in the X-Z plane, parallel to the ABS. The low wall angle of the third sidewall section 166 compared to sections 156, 162, and 166, as shown by write pole region 170, provides sufficient write pole material to ensure high write field amplitude and gradient without increasing write curvature compared to a write pole having sidewall angles that are within a 5° range.
While the third sidewall section 166 may continue for any length 172 and have a varying width 174, as measured parallel to the ABS, some embodiments transition the sidewall 154 to a fourth sidewall section 176 that forms a fourth wall angle Θ4 in the X-Z plane, parallel with the ABS, as shown by write pole region 178. The fourth angle Θ4 can be tuned in combination with the other sidewall angles Θ1, Θ2, Θ3, and Θ5 to provide a customized amount of write field, write field gradient, and write field curvature to the tip surface 152. As a non-limiting example, the third angle θ4 matches the second angle Θ2 to be less than the first angle Θ1 and more than the third angle θ3, but such configuration can be adjusted so that the fourth angle Θ4 is different than the angle (θ1, Θ2, Θ3, and Θ5) of any other sidewall portion.
The size of the fourth sidewall portion 176 can correspond with a relatively large write pole width 174 away from the ABS, as measured between opposite write pole sidewalls, compared to steep write pole sidewalls that never form less than an approximately 10° with respect to the ABS. As such, the write pole width 174 can be tailored to be vary along a direction parallel to a longitudinal axis 180 of the write pole 150 to control data writer output and performance. For instance, at some distance from the ABS, the write pole width 174 can correspond to the orientation Θ5 of a fifth sidewall portion 182, as shown by write pole region 184, which may be less than the first angle Θ2 and greater than the second Θ2, third Θ3, and fourth Θ4 sidewall angles.
It is noted that the number, size, and transition shape of the various sidewall portions can be tuned to optimize write field performance of the write pole 150 without increasing the risk of unwanted flux leakage to adjacent shields. That is, the assorted sidewall portions can be different, or matching, lengths and widths as well as have different linear or curvilinear shapes and transitions between portions to control magnetic flux delivery to the tip surface 152. The tuning of the respective sidewall portions does not increase the risk of flux leakage because the first sidewall angle Θ1, which is the closest sidewall to the side shields, has a relatively steep orientation that has a low risk and incidence of flux leakage.
It is noted that the write pole tip 186 has a varying width 190 that reduces from the varying widths 174 of the pole body 192. It is noted that the varying write pole width 174 is measured between write pole sidewalls 154 and 194, parallel to the ABS along the Z axis. The pole tip 186, as shown, has multiple tip surfaces that taper to the ABS surface 152. Although any number, size, and shape surface can be used to reduce the body thickness 196 and body width 174 to a tip thickness 198 and the tip width 190, the pole tip 186 comprises at least the tip surface 152, second surface 200, third surface 202, and fourth surface 204. The respective surfaces of the tip 186 are oriented at different angles with respect to the ABS to balance write field amplitude and gradient without increasing the risk of flux leakage to shields on the ABS, such as shields 134 and 140.
The pole body 192 is defined by the plurality of linear and/or curvilinear sections 156, 162, 166, 176, and 182, which are individually denoted by segmented lines that each maintain a trapezoidal cross-sectional shape, as shown in regions 158, 164, 170, 178, and 184. The number, shape, and size of the respective sections may result in one or more sections being oriented with matching angles with respect to the ABS, matching lengths, matching widths, different angles with respect to the ABS, different lengths, and/or different widths. In some embodiments, one or more proximal sections can be configured with an average angle orientation with respect to the ABS. In other words, the mean of several contiguous sections can represent a sidewall section angle without each constituent section being exactly equal to the mean angle.
Various non-limiting embodiments employ the assorted sidewall sections to provide at least 5 different wall angles each measured with respect to the X-Y plane, perpendicular to the ABS. For example, section 156 of the pole tip 186 can contact the ABS with a 14.5° wall angle while section 162 reduces the wall angle to 5° and then to 2° in section 166 before increasing the wall angle back to 5° in section 176. A 10° wall angle may be employed in section 182 and may continue for any distance, such as to a back pole or yoke portion of a data writer. The 10° orientation of section 182 can allow for optimized data flux transition from a writer coil to provide for high write field amplitude at the ABS surface 152.
It is noted that the assorted angles of the write pole body 192 are not limiting or required. For clarity, a tuned write pole 150 may employ five or more different wall angles each measured from an X-Y plane extending perpendicular to the ABS and five or more different sidewall angles each measured in the X-Z plane. The combination of different wall angles and sidewall angles customizes the delivery of magnetic flux to optimize write pole performance while mitigating the risk of flux leakage away from the write pole 150.
Segmented lines 224 and 226 represent different configurations that each begin with a 14.5° sidewall angle that abruptly changes to a less than 5° wall angle with 100 nm from the ABS. The configuration of line 224 gradually increases the wall angle to approximately 10° by 200 nm from the ABS while the configuration of line 226 maintains an approximately 2° wall angle until roughly 250 nm, as shown, before increasing to 10° at approximately 300 nm from the ABS. The different pole sidewall configurations illustrate how the wall angle can be tuned to provide more, or less, magnetic pole material that customizes the supply and delivery of magnetic flux to the ABS.
It can be appreciated that the low wall angles of the configurations of lines 224 and 226 can provide around a 17% increase in pole body surface area compared to the baseline configuration 222. It is contemplated that the increased amount of material in the write pole body can result in approximately a 50% increase in performance metrics, such as maximum write field, write field gradient, write field angle, and curvature. Such performance increases are logically connected to the tuned pole body sidewall that allows more magnetic flux to be positioned close to the ABS surface without being so close that inadvertent shunting occurs with adjacent shields.
In some embodiments, a write pole is configured with obtuse wall angles while other embodiments can arrange the write pole as an inverse trapezoid with the trailing edge 168 being shorter than the leading tip edge, as measured along the Z axis, parallel to the ABS. With the ability to customize the size of the wall angle depending on the distance from the ABS complements the ability to invert the trapezoidal shape of the write to optimize a write pole's write field and gradient for particular data writer environments, which can entail shield configurations, data writing density capabilities, and assisted data writing capabilities, such as heat assisted magnetic recording (HAMR).
Construction of the write pole leads to step 254 where the write pole is positioned between side shields and uptrack of a trailing shield on the ABS. The assembly of step 254 may further consist of attaching and/or connecting various portions of a data writer to form a functional data storage device. An assembled data writer has a writer coil that generates magnetic flux in step 256 that is transmitted to a body portion of the write pole. The magnetic flux is funneled to a write pole tip portion of the write pole in step 258 in preparation of forming a data writing magnetic loop in step 260.
The magnetic loop established in step 260 continuously extends from the write pole tip to one or more return poles through an adjacent data storage medium that is positioned opposite an air bearing from the write and return poles. The magnetic loop is maintained, or selectively activated at different times, to write a magnetic polarity to one or more data tracks of the data storage medium in step 262. The tuned construction of the write pole sidewalls in step 252 allows the writing of greater on-track recording density (BPIC) due to higher write field amplitude and gradient at the write pole tip.
By customizing the number, angle, size, and shape of a write pole sidewall, data writing performance can be optimized as a balance of write field data writing capability versus risk of shunting. The use of relatively low write pole wall angles, more write pole material is available to transfer magnetic flux to a write pole tip. Meanwhile, the relatively high write pole tip wall angle provides a reduced risk of inadvertent flux loss via shunting to adjacent magnetic shields and/or poles. Through the optimization of write pole sidewalls with relatively low wall angles, the write pole has an increased width closer to the ABS, which corresponds with greater data writing performance without degrading write characteristics like skew, curvature, amplitude, and gradient.
It is to be understood that even though numerous characteristics and configurations of various embodiments of the present disclosure have been set forth in the foregoing description, together with details of the structure and function of various embodiments, this detailed description is illustrative only, and changes may be made in detail, especially in matters of structure and arrangements of parts within the principles of the present disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed. For example, the particular elements may vary depending on the particular application without departing from the spirit and scope of the present technology.
The present application makes a claim of domestic priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/343,337 filed May 31, 2016, the contents of which are incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
7417824 | Kameda | Aug 2008 | B2 |
8018679 | Hsiao et al. | Sep 2011 | B2 |
8031433 | Yan et al. | Oct 2011 | B2 |
8085498 | Bai et al. | Dec 2011 | B2 |
8576514 | Sasaki et al. | Nov 2013 | B2 |
8619509 | Rivkin et al. | Dec 2013 | B1 |
8767347 | Sasaki | Jul 2014 | B1 |
8797686 | Bai | Aug 2014 | B1 |
8804282 | Sugiyama | Aug 2014 | B1 |
8829649 | Kawahara | Sep 2014 | B2 |
8937852 | Rivkin et al. | Jan 2015 | B2 |
9082423 | Liu et al. | Jul 2015 | B1 |
9336798 | Sasaki | May 2016 | B1 |
9343086 | Liu | May 2016 | B1 |
9361912 | Liu | Jun 2016 | B1 |
9406317 | Tang | Aug 2016 | B1 |
9478236 | Liu | Oct 2016 | B1 |
9741370 | Sasaki | Aug 2017 | B2 |
9792929 | Sasaki | Oct 2017 | B1 |
20090268344 | Guan | Oct 2009 | A1 |
20110051293 | Bai | Mar 2011 | A1 |
20130038966 | Sasaki | Feb 2013 | A1 |
20150103439 | Yin | Apr 2015 | A1 |
20160055869 | Sasaki | Feb 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
62343337 | May 2016 | US |