WRITE SET BOUNDARY MANAGEMENT IN SUPPORT OF ASYNCHRONOUS UPDATE OF SECONDARY STORAGE

Information

  • Patent Application
  • 20090138666
  • Publication Number
    20090138666
  • Date Filed
    January 28, 2009
    15 years ago
  • Date Published
    May 28, 2009
    15 years ago
Abstract
A color control node includes an interface for communicating with multiple storage controllers, wherein the storage controllers maintain a primary storage system at a primary site and a secondary storage system at a secondary site; and wherein the storage controllers maintain a current color and associate all writes with the current color without polling the color control node. The color control node also includes operational capability for issuing a polling command to instruct the storage controllers to poll the color control node for the current color prior to associating each write with a new color; receiving an acknowledgment of receipt of the polling command; changing the current color to a new color responsive to receiving the acknowledgment; issuing a storage command to the storage controllers indicating the new color; and instructing each storage controller to cease polling the color control node for the current color.
Description
STATEMENT REGARDING FEDERALLY SPONSORED-RESEARCH OR DEVELOPMENT

None.


INCORPORATION BY REFERENCE OF MATERIAL SUBMITTED ON A COMPACT DISC

None.


FIELD OF THE INVENTION

The invention disclosed broadly relates to the field of disaster recovery for computer systems and more particularly relates to the field of write set boundary management in support of asynchronous update of secondary storage.


BACKGROUND OF THE INVENTION

Disaster recovery strategies for computer systems generally involve copying data stored at a primary site to a secondary site which is typically located some distance from the primary site. Copying from the primary copy to the secondary copy may be performed either synchronously or asynchronously. Where copying is performed synchronously, each time an update is written to the primary copy, the update is also sent to the secondary site to be written to the secondary copy. Only after the secondary site informs the primary site that the secondary copy has been updated does the primary site acknowledge the update to the primary copy and stand ready to write the next update. Thus, updates are written to the primary and secondary copies in the same order. Where copying is performed asynchronously, multiple updates may be written to the primary copy and acknowledged before any updates are sent to the secondary site, as the primary copy is maintained independently from the secondary copy. The updates are sent periodically to the secondary site, typically as a set of writes referred to herein as a “color,” and are written to the secondary copy, not necessarily in the same order as they were written to the primary copy.


Where a single color is maintained across multiple storage controllers at the primary site, it is necessary when switching to the next color that all storage controllers switch to the next color in a coordinated fashion to maintain the integrity of “dependent writes” across color boundaries. For example, given the following typical sequence of dependent writes for a data base update transaction:


1. execute a write to update the data base log indicating that a data base update is about to take place, then


2. execute a second write to update the data base, and finally


3. execute a third write to update the data base log indicating that the data base update has completed successfully.


It is imperative that these dependent writes either all belong to the same color, or, if they cross a color boundary, that the earlier write(s) belong to the old color and the later write(s) belong to the new color. In this example, assuming writes 1, 2, and 3 are each written by a different storage controller, if writes 1 and 3 are written as part of color group “red,” and write 2 is written as part of the next color group “blue,” should the primary copy be lost after the “red” group is written to the secondary copy but before the “blue” group is written to the secondary copy, the data base log in the secondary copy would incorrectly show that the second write to update the data base occurred, when in fact the data base was never updated.


In one technique for maintaining colors and color boundaries across multiple storage controllers at the primary site, before associating a write with a color, each storage controller polls a color control node which maintains the current color and requests the current color. The color control node apprises the storage controller of the current color, and the storage controller associates the write with that color. While this ensures the absolute color switchover of all storage controllers at effectively the same point in time and thereby ensures that the integrity of dependent writes is maintained across the color boundary, each write operation is delayed by the round trip to the color control node, and the color control node might become a bottleneck.


A method for maintaining colors and color boundaries across multiple storage controllers at the primary site that reduces write delay and the risk of bottleneck would therefore be advantageous.


SUMMARY OF THE INVENTION

Briefly, according to an embodiment of the invention a color control node includes an interface for communicating with multiple storage controllers, wherein the storage controllers maintain a primary storage system at a primary site and a secondary storage system at a secondary site; and wherein the storage controllers maintain a current color and associate all writes with the current color without polling the color control node. The color control node also includes operational capability for issuing a polling command to instruct the storage controllers to poll the color control node for the current color prior to associating each write with a new color; receiving an acknowledgment of receipt of the polling command; changing the current color to a new color responsive to receiving the acknowledgment; issuing a storage command to the storage controllers indicating the new color; and instructing each storage controller to cease polling the color control node for the current color.


According to another embodiment of the present invention, a system for maintaining colors and color boundaries across multiple storage controllers includes: a primary data storage system at a primary site, said primary date storage system operating in one of two modes: a normal operation mode for maintaining a current color and associating all writes with said current color; and a color polling mode for polling a color control node for the current color prior to associating each write with a new color; a secondary data storage system at a secondary site; a color control node at the primary site, the color control node including: an interface for communicating with the multiple storage controllers; and operational capability for issuing a polling command to instruct the storage controllers to poll the color control node for the current color prior to associating each write with the new color; receiving an acknowledgment of receipt of the polling command; changing the current color to the new color responsive to receiving the acknowledgment issuing a storage command to the storage controllers indicating the new color; and instructing each storage controller to cease polling the color control node for the current color.





BRIEF DESCRIPTION OF THE DRAWINGS

To describe the foregoing and other exemplary purposes, aspects, and advantages, we use the following detailed description of an exemplary embodiment of the invention with reference to the drawings, in which:



FIG. 1 is a simplified block diagram illustration of a system of primary and secondary data storage, constructed and operative in accordance with a preferred embodiment of the present invention; and



FIGS. 2 and 3 are simplified flowchart illustrations of a method for maintaining colors and color boundaries across multiple storage controllers, operative in accordance with a preferred embodiment of the present invention.





While the invention as claimed can be modified into alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the scope of the present invention.


DETAILED DESCRIPTION

Reference is now made to FIG. 1, which is a simplified block diagram illustration of a system of primary and secondary data storage, constructed and operative in accordance with a preferred embodiment of the present invention. In the system of FIG. 1, a primary site 100 includes storage controllers 104a, 104b, and 104c, coupled to storage systems 106a, 106b, and 106c, respectively. Storage controllers 104a, 104b, and 104c manage Input/Output (I/O) access to volumes in storage systems 106a, 106b, 106c from host systems (not shown). Storage controllers 104a, 104b, and 104c are preferably configured to copy data to corresponding remote storage controllers 108a, 108b, and 108c at a secondary site 102 via connections 112a, 112b, and 112c.


Storage controllers 104a, 104b, and 104c preferably periodically transmit sets of data writes, referred to herein as “colors,” to the remote storage controllers 108a, 108b, and 108c, in accordance with conventional techniques, where the remote storage controllers 108a, 108b, and 108c write the data to their respective attached storage systems 114a, 114b, and 114c. Although FIG. 1 illustrates a certain number of components at sites 100 and 102, such as three storage controllers and storages each, it is appreciated that any number of storage controllers and storage systems may be used.


Secondary site 102 may be hundreds or thousands of miles from the primary site 100. The connections 112a, 112b, 112c between pairs of storage controllers may comprise a dedicated line, such as a dedicated fiber optical network or connection maintained by a long distance telecommunication carrier, long distance fiber optic connection having channel extenders, or extend through a network, such as a Storage Area Network (SAN), Primary Area Network (LAN), or the Internet.


Host systems (not shown) at primary site 100 may perform Input/Output (I/O) operations with respect to volumes in the storage systems 106a, 106b, and 106c. The host systems may communicate with storage controllers 104a, 104b, and 106c via any network or connection known in the art.


Storage controllers 104a, 104b, 104c, 108a, 108b, and 108c preferably include a processor complex and may comprise any storage controller or server known in the art, such as the IBM Enterprise Storage Server (ESS®), 3990 Storage Controller. Storage systems 106a, 106b, 106c, 104a, 114b, and 114c may comprise an array of storage devices, such as a Just a Bunch of Disks (JBOD) or a Redundant Array of Independent Disks (RAID) array.


Each storage controller 104a, 104b, and 104c at primary site 100 preferably communicates, via a network 118, with a color control node 110 which maintains the current color. Prior to associating a write with a color, each storage controller 104a, 104b, and 104c polls color control node 110 and requests the current color. Color control node 110 apprises the requesting storage controller of the current color, and the storage controller associates the write with that color in accordance with conventional techniques.


Reference is now made to FIGS. 2 and 3, which are simplified flowchart illustrations of a method for maintaining colors and color boundaries across multiple storage controllers, operative in accordance with a preferred embodiment of the present invention. The method of FIGS. 2 and 3 may be understood with reference to the primary and secondary data storage system of FIG. 1, where the method of FIG. 2 is preferably implemented by storage controllers 104a, 104b, and 104c, and the method of FIG. 3 is preferably implemented by color control node 110.


In the method of FIGS. 2 and 3, which may be understood with reference to the primary and secondary data storage system of FIG. 1, primary site 100 operates in either of two modes: a normal operation mode and a color polling mode. During normal operation, each storage controller 104a, 104b, and 104c at primary site 100 maintains the current color and associates all writes with that color without polling color control node 110.


Just prior to switching to a new color, such as in accordance with a predefined schedule, primary site 100 reverts to color polling mode with color control node 110 issuing a command to storage controllers 104a, 104b, and 104c to poll color control node 110 for the current color prior to associating each write with a color. Each of storage controllers 104a, 104b, and 104c send an acknowledgment of receipt of the command to color control node 110. Once color control node 110 receives an acknowledgment from each of storage controllers 104a, 104b, and 104c, color control node 110 changes to the new color.


Color control node 110 then issues a command to storage controllers 104a, 104b, and 104c indicating the new color and instructing storage controllers 104a, 104b, and 104c to stop polling color control node 110 for the current color. Primary site 100 then reverts to normal operation mode, with storage controllers 104a, 104b, and 104c establishing and maintaining the new color as the current color and associating all writes with the new-and-now-current color without polling color control node 110.


It is appreciated that one or more of the steps of any of the methods described herein may be omitted or carried out in a different order than that shown, without departing from the true spirit and scope of the invention.


While the methods and apparatus disclosed herein may or may not have been described with reference to specific computer hardware or software, it is appreciated that the methods and apparatus described herein may be readily implemented in computer hardware or software using conventional techniques.


While the present invention has been described with reference to one or more specific embodiments, the description is intended to be illustrative of the invention as a whole and is not to be construed as limiting the invention to the embodiments shown. It is appreciated that various modifications may occur to those skilled in the art that, while not specifically shown herein, are nevertheless within the true spirit and scope of the invention.

Claims
  • 1. A color control node comprising: an interface for communicating with multiple storage controllers, wherein the storage controllers maintain a primary storage system at a primary site and a secondary storage system at a secondary site; and wherein the storage controllers maintain a current color and associate all writes with the current color without polling the color control node; andoperational capability for: issuing a polling command to instruct the storage controllers to poll the color control node for the current color prior to associating each write with a new color;receiving an acknowledgment of receipt of the polling command;changing the current color to a new color responsive to receiving the acknowledgment;issuing a storage command to the storage controllers indicating the new color; andinstructing each storage controller to cease polling the color control node for the current color.
  • 2. The color control node of claim 1 further operative to switch to a new color in accordance with a predefined schedule.
  • 3. A system for maintaining colors and color boundaries across multiple storage controllers, the system comprising: a primary data storage system at a primary site, said primary data storage system operating in one of two modes: a normal operation mode for maintaining a current color and associating all writes with said current color; anda color polling mode for polling a color control node for the current color prior to associating each write with a new color;a secondary data storage system at a secondary site;a color control node at the primary site, said color control node comprising: an interface for communicating with the multiple storage controllers, wherein the storage controllers maintain a primary storage system at a primary site and a secondary storage system at a secondary site; and wherein the storage controllers maintain a current color and associate all writes with the current color without polling the color control node; andoperational capability for: issuing a polling command to instruct the storage controllers to poll the color control node for the current color prior to associating each write with the new color;receiving an acknowledgment of receipt of the polling command;changing the current color to the new color responsive to receiving the acknowledgment;issuing a storage command to the storage controllers indicating the new color; andinstructing each storage controller to cease polling the color control node for the current color;multiple storage controllers operative to:maintain the current color and associate all writes with said current color without polling the color control node for said current color prior to receiving the instruction to poll;poll the color control node for the current color subsequent to receiving said instruction to poll; andestablish the new color as the current color and associate all writes with said new-and-now-current color without polling the color control node for the current color subsequent to receiving an instruction to cease polling.
  • 4. A system comprising: a plurality of host systems;a primary data storage at a primary site, said primary site comprising a plurality of primary storage controllers;a secondary data storage at a secondary site;a plurality of storage systems, each storage system coupled to a corresponding primary storage controller, each primary storage controller to manage Input/Output access to volumes in said each storage system from said host systems; anda plurality of remote storage controllers at said secondary site, wherein said each primary storage controller being configured to copy data to a corresponding remote storage controllers at said secondary site via dedicated connections;wherein said primary storage controllers periodically transmit sets of data writes, to said remote storage controllers, and said remote storage controllers write the data to corresponding respective attached remote storage systems.
  • 5. The system of claim 4, wherein said host systems at said primary site perform Input/Output operations with respect to volumes in said storage systems, and communicate with said primary storage controllers via a network or connection.
  • 6. The system of claim 4, wherein said primary storage controllers include a processor complex comprising at least one of: IBM Enterprise Storage Server (ESS®), 3990 Storage Controller, and said storage systems comprise an array of storage devices, comprising at least one of: Just a Bunch of Disks (JBOD), or a Redundant Array of Independent Disks (RAID) array.
  • 7. The system of claim 4, further comprising a color control node, and said each storage controller at primary site communicates, via a network, with the color control node which maintains a current color, prior to associating a write with a color, said each storage controller polls said color control node and requests the current color, said color control node apprises a particular requesting storage controller of the current color, and the storage controller associates a particular write with the current color.
Priority Claims (1)
Number Date Country Kind
0407257.5 Mar 2004 GB national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of, and claims priority from, commonly-owned, co-pending U.S. application Ser. No. 11/093,584, filed on Mar. 30, 2005, which is incorporated by reference as if fully set forth herein.

Continuations (1)
Number Date Country
Parent 11093584 Mar 2005 US
Child 12361504 US