This application is related to U.S. Pat. Nos. 10,522,174, 10,490,216, and 10,424,326 all of which are assigned to a common assignee and fully incorporated by reference.
This disclosure relates generally to a thin-film magnetic writer and particularly to the structure of the gaps surrounding the main pole (MP).
As Hard Disk Drive (HDD) requires higher and higher areal density capability. Both tracks per inch (TPI) and bits per inch (BPI) need to be larger. Because higher TPI requires smaller Main Pole (MP) size, the writability under high frequency writing will be a major challenge for next generation HDD writer head.
In the current writer design, the MP is surrounded by a trailing shield (TS), a side shield (SS) and a leading shield (LS) and separated from them by gaps, typically filled with a wide range of non-magnetic materials. It is critical to optimize the gap width between the MP and these surrounding shields. Smaller gap width will enhance a shielding effect and sharpen the written bit pattern, while larger gap width can help release MP flux and promote writability. Because low frequency writing benefits more from written pattern sharpness whereas high frequency writing is hungry for writability (i.e., strength of MP field), a gap width that can adapt writing frequency is strongly desired.
In this disclosure we propose a new design for the gap structure that separates the main pole (MP) from its surrounding shields. Specifically, we deposit thin layers of non-magnetic material and magnetic material sequentially on top of a normal side shield (SS) and/or leading shield (LS). Because the thin magnetic layers are decoupled from the bulky shielding material, the thin magnetic layers can help absorb the gap field and reduce bulky shield magnetic potential, while protecting against write bubble fringing and reducing erase width of an AC field (EWAC).
The thin magnetic layers can have a different frequency response than the bulky shields. In low frequency writing, the thin layers will have higher permeability and provide normal shielding. Under high frequency conditions, however, the thin layers will have lower permeability and the effective gap size will become larger. As a result, the gap structure is adaptable to varying recording conditions, MP flux release is improved and writability is enhanced.
Finally, the improved performance of the PMR writer makes it particularly well designed to operate in conjunction with thermally assisted magnetic recording (TAMR) and microwave assisted magnetic recording (MAMR). As is now well known in the art and so will not be further described herein, TAMR reduces the coercivity of a region of a recording medium on which recording is to occur by raising its temperature, typically using the optical field energy of a laser to create plasmons whose near-fields are not diffraction limited and, therefore, can be finely focused on the recording spot of the magnetic medium.
One form of MAMR achieves an analogous result as TAMR, but with a different mechanism. This form, called a spin-torque oscillator (STO), typically operates by applying a microwave frequency field to the recording media, creating a resonant precessional motion in the magnetic bits. This excess energy allows the bits to make magnetic transitions more readily, effectively reducing the coercivity of the magnetic medium.
The second form of MAMR, which we will call spin-assisted writing (SAW), effectively enhances the write-field impinging directly on the media surface from the pole tip by enhancing the flux between the magnetic pole tip and the trailing shield. This enhancement of the field leaving the pole tip is produced by generating a counter-field to the field within the write-gap by using a spin-torque layer in combination with a flux guiding layer to produce a field that is counter to the field generated by the pole. Thus, instead of giving more energy to the magnetic bits by the RF precessional field, it enhances the write field that impinges upon them by eliminating the field within the write gap. Both of these recording assist technologies will be well suited to operating along with the improved writability of the presently disclosed PMR with an adaptable gap design.
Referring to
Referring to
A write gap (WG) 20 covers the trailing edge of the MP 10 and extends laterally and symmetrically over the trailing edge and terminates beyond the width of the trailing edge. Magnetic shield material 30 of the trailing shield (TS) covers the WG 20. The downward sloping sides of the MP are each covered by side gaps (SG) 40 that are connected by a leading gap (LG) 50. The side gaps contact the material of the side shields 100 (SS) and the leading gap (LG) 50 contacts the leading shield (LS) material 70. During operation, the flux lines of the magnetic recording field emanate from the trapezoidal tip of the MP 10, strike the recording medium (not shown) and return to the surrounding shields to complete the flux path.
Referring to schematic
To demonstrate the performance of this presently disclosed structure, several simulations using magnetic modeling were carried out. Referring to
Referring to
The magnetic layer 62 is separated from the MP 10 by dielectric layer 46 having a width shown as SG1 and from side shield 100 by dielectric layer 42. Separating the magnetic layer 62 from the shield 100 and pole 10 is required in order to decouple the magnetic layer from the bulkier magnetic shields and pole.
Referring to
The profiles shown in
Referring to
The new design (
Referring now to
A member to which the HGA 1200 is mounted to arm 1260 is referred to as head arm assembly 1220. The arm 1260 moves the read/write head 1100 in the cross-track direction (arrow) across the medium 1140 (here, a hard disk). One end of the arm 1260 is mounted to the base plate 1240. A coil 1231 to be a part of a voice coil motor (not shown) is mounted to the other end of the arm 1260. A bearing part 1233 is provided to the intermediate portion of the arm 1260. The arm 1260 is rotatably supported by a shaft 1234 mounted to the bearing part 1233. The arm 1260 and the voice coil motor that drives the arm 1260 configure an actuator.
Referring next to
Referring finally to
As is finally understood by a person skilled in the art, the detailed description given above is illustrative of the present disclosure rather than limiting of the present disclosure. Revisions and modifications may be made to methods, materials, structures and dimensions employed in forming and providing a PMR writer configured for TAMR or MAMR operation having an adaptive gap structure produced by magnetic thin film laminations within dielectric, non-magnetic gap material, while still forming and providing such a structure and its method of formation in accord with the spirit and scope of the present invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
6785092 | Covington et al. | Aug 2004 | B2 |
6809899 | Chen et al. | Oct 2004 | B1 |
6954340 | Shukh et al. | Oct 2005 | B2 |
7009812 | Hsu et al. | Mar 2006 | B2 |
7589600 | Dimitrov et al. | Sep 2009 | B2 |
7724469 | Gao et al. | May 2010 | B2 |
7835111 | Flint et al. | Nov 2010 | B2 |
7957098 | Yamada et al. | Jun 2011 | B2 |
7963024 | Neuhaus | Jun 2011 | B2 |
7978442 | Zhang et al. | Jul 2011 | B2 |
7982996 | Smith et al. | Jul 2011 | B2 |
8027110 | Yamanaka et al. | Sep 2011 | B1 |
8064244 | Zhang et al. | Nov 2011 | B2 |
8068312 | Jiang et al. | Nov 2011 | B2 |
8154825 | Takashita et al. | Apr 2012 | B2 |
8203389 | Zhou et al. | Jun 2012 | B1 |
8264792 | Bai et al. | Sep 2012 | B2 |
8270112 | Funayama et al. | Sep 2012 | B2 |
8295008 | Sasaki et al. | Oct 2012 | B1 |
8310787 | Sasaki et al. | Nov 2012 | B1 |
8320079 | Iwasaki et al. | Nov 2012 | B2 |
8427781 | Sasaki et al. | Apr 2013 | B1 |
8446690 | Alex et al. | May 2013 | B2 |
8462461 | Braganca et al. | Jun 2013 | B2 |
8477452 | Sasaki et al. | Jul 2013 | B2 |
8493687 | Sasaki et al. | Jul 2013 | B2 |
8582240 | Chen et al. | Nov 2013 | B1 |
8582241 | Yu et al. | Nov 2013 | B1 |
8604886 | Nikonov et al. | Dec 2013 | B2 |
8605386 | Ohtake et al. | Dec 2013 | B1 |
8634163 | Tanabe et al. | Jan 2014 | B2 |
8670213 | Zeng | Mar 2014 | B1 |
8749919 | Sasaki et al. | Jun 2014 | B2 |
8755150 | Chen et al. | Jun 2014 | B2 |
8767347 | Sasaki et al. | Jul 2014 | B1 |
8792210 | de la Fuente et al. | Jul 2014 | B2 |
9142228 | Fujita et al. | Sep 2015 | B2 |
9230571 | Chen et al. | Jan 2016 | B1 |
9299367 | Tang et al. | Mar 2016 | B1 |
9355654 | Mallary | May 2016 | B1 |
9355655 | Udo | May 2016 | B1 |
9361912 | Liu et al. | Jun 2016 | B1 |
9406317 | Tang et al. | Aug 2016 | B1 |
9466319 | Tnag et al. | Oct 2016 | B1 |
9805745 | Takagishi | Oct 2017 | B1 |
9824701 | Tang et al. | Nov 2017 | B2 |
9934797 | Takahashi et al. | Apr 2018 | B2 |
9966091 | Chen et al. | May 2018 | B2 |
10032469 | Lim et al. | Jul 2018 | B2 |
10032470 | Degawa | Jul 2018 | B1 |
10037772 | Okamura et al. | Jul 2018 | B2 |
10109302 | Shinohara | Oct 2018 | B1 |
10121497 | Takahashi | Nov 2018 | B1 |
10157632 | Song | Dec 2018 | B1 |
10181334 | Song | Jan 2019 | B1 |
10210888 | Li | Feb 2019 | B1 |
10325618 | Wu | Jun 2019 | B1 |
10366714 | Olson | Jul 2019 | B1 |
10424326 | Chen et al. | Sep 2019 | B1 |
10438616 | Yamada et al. | Oct 2019 | B2 |
10490216 | Chen et al. | Nov 2019 | B1 |
10522174 | Chen et al. | Dec 2019 | B1 |
10789976 | Narita | Sep 2020 | B2 |
10832710 | Song | Nov 2020 | B1 |
10839831 | Nguyen | Nov 2020 | B1 |
20020034043 | Okada et al. | Mar 2002 | A1 |
20040150910 | Okada et al. | Aug 2004 | A1 |
20050128637 | Johnston et al. | Jun 2005 | A1 |
20050141137 | Okada et al. | Jun 2005 | A1 |
20060044682 | Le et al. | Mar 2006 | A1 |
20060087765 | Iwakura et al. | Apr 2006 | A1 |
20060103978 | Takano et al. | May 2006 | A1 |
20070177301 | Han et al. | Aug 2007 | A1 |
20070211379 | Kato | Sep 2007 | A1 |
20080013209 | Sasaki et al. | Jan 2008 | A1 |
20080088972 | Sasaki et al. | Apr 2008 | A1 |
20090059426 | Sasaki et al. | Mar 2009 | A1 |
20090080106 | Shimizu et al. | Mar 2009 | A1 |
20090128953 | Jiang et al. | May 2009 | A1 |
20090296275 | Sasaki et al. | Dec 2009 | A1 |
20100165517 | Araki et al. | Jul 2010 | A1 |
20110211271 | Ng et al. | Sep 2011 | A1 |
20110279921 | Zhang | Nov 2011 | A1 |
20120075748 | Kief | Mar 2012 | A1 |
20120126905 | Zhang | May 2012 | A1 |
20120292723 | Luo et al. | Nov 2012 | A1 |
20130082787 | Zhang | Apr 2013 | A1 |
20140071562 | Chen et al. | Mar 2014 | A1 |
20140133048 | Shiimoto | May 2014 | A1 |
20140177092 | Katada et al. | Jun 2014 | A1 |
20140177100 | Sugiyama | Jun 2014 | A1 |
20150043106 | Yamada et al. | Feb 2015 | A1 |
20150124347 | Shimoto | May 2015 | A1 |
20150310881 | Koui | Oct 2015 | A1 |
20160086623 | Nagasaka | Mar 2016 | A1 |
20160218728 | Zhu | Jul 2016 | A1 |
20170076741 | Tang | Mar 2017 | A1 |
20170076742 | Tang | Mar 2017 | A1 |
20170133044 | Lim et al. | May 2017 | A1 |
20170309301 | Takahashi | Oct 2017 | A1 |
20180075868 | Koui et al. | Mar 2018 | A1 |
20190244634 | Goncharov | Aug 2019 | A1 |
20190259413 | Le | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
2002-133610 | May 2002 | JP |
2002-298309 | Oct 2002 | JP |
2008-021398 | Jan 2008 | JP |
2010-157303 | Jul 2010 | JP |
Entry |
---|
“Hysteretic Behavior of the Dynamic Permeability on a Ni—Fe Thin Film,” by O. Archer et al., Physical Review B, vol. 68, Issue 18, 184414 (2003), Nov. 1, 2003, pp. 1-4. |
PTO Office Action, U.S. Appl. No. 12/964,202, Applicant: Sasaki et al., dated Nov. 28, 2012, 11 pages. |
“The Feasibility of Magnetic Recording at 10 Terabits Per Square Inch on Conventional Media,” by Roger Wood et al., IEEE Transactions on Magnetics, vol. 45, No. 2, Feb. 2009, pp. 917-923. |
Microwave Assisted Magnetic Recording, by Jian-Gang Zhu et al., IEEE Transactions on Magnetics, vol. 44, No. 1, Jan. 1, 2008, pp. 125-131. |
Nov. 13, 2012, Office Action issued in Japanese Patent Application No. 2011-149242, with English language translation. |
Nov. 13, 2012, Office Action issued in Japanese Patent Application No. 2011-149243, with English language translation. |
Nov. 13, 2012, Office Action issued in Japanese Patent Application No. 2011-149244, with English language translation. |
“Spin-Torque Oscillator Based on Magnetic Tunnel Junction with a Perpendicularly Magnetized Free Layer and In-Plane Magnetized Polarizer,” by Hitoshi Kubota, et al., 2013 The Japan Society of Applied Physics, Applied Physics Express 6 (2013) 103003, Sep. 27, 2013, pp. 1-3. |
“High-Power Coherent Microwave Emission from Magnetic Tunnel Junction Nano-oscillators with Perpendicular Anisotropy,” by Zhongming Zeng, et al., 2012 American Chemical Society, Jun. 4, 2012, vol. 6, No. 7, pp. 5115-6121. |
U.S. Notice of Allowance, U.S. Appl. No. 16/209,151, First named Inventor: Wenyu Chen, dated Aug. 15, 2019, 17 pages. |
U.S. Notice of Allowance, U.S. Appl. No. 16/549,139, First named Inventor: Wenyu Chen, dated Sep. 19, 2019, 8 pages. |
U.S. Notice of Allowance, U.S. Appl. No. 16/197,586, First named Inventor: Wenyu Chen, dated May 15, 2019, 16 pages. |