Writing instrument and method of producing the same

Information

  • Patent Grant
  • 6474895
  • Patent Number
    6,474,895
  • Date Filed
    Thursday, May 24, 2001
    23 years ago
  • Date Issued
    Tuesday, November 5, 2002
    22 years ago
Abstract
A writing instrument has an accurate operation and simple structure in a mechanism for controlling ink supply by air enclosed in an ink passage, and a method of producing the same. The ink is blocked by the air enclosed in a blocking chamber (11), the blocking chamber communicates with an ink holding passage (18) and has a porous relay body (15) inserted therein, an ink storing portion (17) is formed in a base portion of the relay body, the ink in the ink holding passage (18) descends and contacts the relay body (15) as the ink in the ink storing portion is consumed, and thereby is transferred to the ink storing portion, and the air is prevented from being absorbed into the porous relay body (15).
Description




1. Technical Field




The present invention relates to a writing instrument for controlling ink supply to a writing element, and more particularly to a writing instrument and method of producing the same for controlling the ink supply by a gas enclosed in a blocking chamber with a small volume which has the gas such as air enclosed therein, and which is provided inside an ink supplying passage extending from an ink chamber to the writing element.




2. Background Art




In general, in a writing instrument of the type storing liquid ink in an ink chamber, it is necessary to control a flow amount and pressure of the ink being supplied from the ink chamber to a writing element. As the simplest type of such an ink control, there is a method for providing a porous member referred to as a relay core made of a bundle of fibers between an ink chamber and writing element, while pulling the ink out of the ink chamber by the capillary force of the relay core, and controlling a supply amount of ink by the resistance received by the ink flowing inside the relay core.




In addition, the capillary force exists in a writing element due to fine gaps between fibers when the writing element forms a so-called felt chip made of a bundle of fibers, or due to a fine gap between a ball and a ball holder when the writing element forms a ball chip. Such a capillary force causes the writing element to have an ink pulling force for pulling the ink and an ink holding force for holding the pulled ink.




Therefore, the above-mentioned control only by the relay core has not been able to stabilize the ink supply. That is, if the density of the relay core is reduced to decrease the flow resistance of the ink, when the writing instrument is not used for writing, the ink in the ink chamber is pulled out of the chamber by the ink pulling force of the writing element described above, and the writing element contains a large amount of the ink to be saturated, and becomes so-called ink rich state. As a result, a disadvantage arises that writing becomes undesirably thick at the beginning of the writing. Particularly in a ball chip using water-soluble ink, the ink pulling force and ink holding force have the hydraulic pressure head of only the order of a few ten to a hundred mm. Therefore, in a condition that this writing instrument is allowed to stand, i.e., that the ball chip is directed downward, it sometimes happens that a small amount of ink is pushed out of the gap between the ball and ball holder, due to the hydraulic pressure head of the ink existing in a portion from the ink chamber to the ball chip. When writing is started in such a condition, a disadvantage arises that a starting portion of the writing line becomes a shape of a comma (,).




In order to avoid the disadvantage, it is required to increase the density of the relay core to increase the capillary force and inner flow resistance, however, thus increasing causes the ink flowing inside the relay body to receive an excessive flow resistance. Hence, in the case of writing fast or the like, the supply of ink is insufficient, and a condition, so-called ink poor condition, occurs that an ink amount contained in the writing element is too small. As a result, a disadvantage may occur such that the writing becomes blurred.




In order to avoid the disadvantage, various ink control mechanisms have been considered conventionally. One of the mechanisms is to provide between an ink chamber and writing element a small mechanical valve mechanism that is opened by a predetermined pressure difference. In this mechanism, the valve mechanism is closed at the time the writing instrument is not used for writing, and thereby the ink is prevented from being supplied excessively to the writing element. Then, at the time the instrument is used for writing, the valve mechanism is opened due to a pressure difference caused by the ink pulling force of the writing element, and thereby the ink is supplied from the ink chamber to the writing element.




However, the above-mentioned valve mechanism is required to operate to be opened or closed by a small pressure difference of the hydraulic pressure head of the order of a few ten mm, and is further required to be formed to extremely small, and therefore has a disadvantage that the production, quality control and the like thereof become complicated. Further, in the case where the writing element forms the ball chip using water-soluble ink described previously, since the ink pulling force is low, the pressure for opening or closing such a valve mechanism should be set extremely finely, and thereby a disadvantage occurs that the production, quality control and the like thereof become complicated.




Further, as another ink control type, there is a so-called air chamber type in which a small chamber with air enclosed therein is provided between an ink chamber and a writing element. In general, when air exists in a liquid passage with a small cross-sectional area, a phenomenon, so-called vapor lock, occurs that the air becomes bubbles, thereby blockades the passage and blocks the flow of the liquid. The air chamber type uses the principle of this phenomenon to configure a kind of valve mechanism.




The air chamber type of instrument does not essentially require a mechanically movable portion such as a valve, and has advantages that the structure is simple and that the production is easy. However, the air chamber type of instrument naturally requires a mechanism for flowing the ink blocked by the internal bubbles at the time of writing, and therefore provides a problem that it is difficult to reserve the stability of the operation in the mechanism.




An example of the air chamber type of writing instrument is disclosed in U.S. Pat. No.3,397,939. In the writing instrument, a small chamber with air enclosed therein is formed in an ink passage provided between an ink chamber and a writing element, is opened in its upper portion into a passage which communicates with the ink chamber, and is filled in its lower portion with a porous filler which communicates with the side of the writing element.




In the instrument of the USP, when the instrument is not used for writing, the porous filler contains the ink to be almost saturated, and the air enclosed in the small chamber blocks the flow of ink. Then, when the ink contained in the filler is consumed by the writing and the porous filler becomes the ink poor condition, the air inside the small chamber is absorbed into the porous filler. Since the air inside the small chamber is thus absorbed into the filler, the ink flows into the small chamber from the above-mentioned passage, and is absorbed into the filler. Then, when the filler with the ink absorbed therein becomes the ink rich condition, the air absorbed into the filler is released to the small chamber to block the flow-in of the ink.




The instrument disclosed in the USP does not have a mechanically movable portion, has a simple structure, and is capable of controlling the flow of ink assuredly even when the ink pulling force of the writing element is low. However, a case sometimes occurs that the whole amount of air absorbed into the porous filler is not released when the ink is newly absorbed into the filler. Then, the air remaining in the filler flows as the ink in the filler flows by writing, and when the remaining air reaches the writing element, the ink pulling force of the writing element is decreased, and the writing becomes impossible or has an inconvenience.




In order to avoid the above-mentioned disadvantage, the instrument of the USP is configured so that the upper portion of the small chamber is formed in the shape of a cone, and that when the ink flows into the chamber from the passage communicating with the ink chamber, the ink drops along the inner periphery of the small chamber to be absorbed in the periphery of the filler filled in the lower portion of the small chamber. By such a configuration, the ink penetrates from the periphery to the center portion of the filler, and thereby the air absorbed in the filler collects towards the center portion to be released.




However, according to the experiment by the inventor of the present invention and others, in the instrument configured as described above, it was still difficult to release the whole amount of the air once absorbed into the porous filler by ink newly being absorbed, and further it was difficult to assuredly prevent the air from remaining in the filler.




Disclosure of Invention




The present invention has been carried out in view of the foregoing, and it is an object of the present invention to provide a writing instrument and method of producing the writing instrument which uses an air chamber type of ink control mechanism requiring no mechanically movable portion, having a simple structure, and operating to be opened and closed by small pressure difference, and which enables the mechanism for blocking and flowing ink by enclosed gas to provide high reliability.




A writing instrument of the present invention is provided with an ink chamber that stores ink, a writing element provided on a front end portion of the writing instrument, and an ink control mechanism provided between the ink chamber and the writing element, where the ink control mechanism comprises a blocking chamber with a gas housed therein, an ink-chamber-side passage for causing the blocking chamber to communicate with the ink chamber, a writing-element-side passage for causing the blocking chamber to communicate with the writing element, an ink storing portion formed in the blocking chamber to store and hold a small amount of ink while communicating with the writing-element-side passage, ink holding means for holding the ink entering the blocking chamber from the ink-chamber-side passage at a predetermined position in the blocking chamber, and ink relay means for transferring, when an amount of the ink held by the ink holding means is equal to or more than a predetermined amount, at least part of the held ink to the ink storing portion.




Thus, when the instrument is not used for writing, the gas, for example, air enclosed in the blocking chamber blocks the communication of the ink between the ink chamber and the writing element, and the ink is thereby prevented from being supplied undesirably to the writing element.




Then, when the ink is consumed by the writing, the ink stored in the ink storing portion is consumed, the volume of a spatial portion of the blocking chamber increases corresponding to the consumed amount of ink, and the air pressure inside the blocking chamber decreases. The ink thereby enters the blocking chamber from the ink-chamber-side passage, and the entering ink is temporarily held at the predetermined position by the ink holding means. When an amount of the ink held by the ink holding means exceeds the predetermined amount, the ink is transferred to the ink storing portion by the ink relay means. Ink is thereby stored again in the ink storing portion, whereby the gas pressure inside the blocking chamber returns to an initial state, and thereafter, the similar operation is repeated to supply the ink to the writing element.




This ink control mechanism is the air chamber type of ink control mechanism described previously, does not require a mechanically movable portion, and enables itself to assuredly operate to be opened and closed by small pressure difference. The block and communication of the ink by the enclosed air is performed by increase and decrease in the ink amount stored and held in the ink storing portion. Accordingly, it is not necessary to perform operations in the porous member for absorbing the air, causing the ink to penetrate, eliminating the air, etc., and therefore the mechanism has a reliable operation and a simple structure.




Further, according to a preferred embodiment, the blocking chamber has an inner diameter enabling the ink to be held in a liquid-cylindrical form in one end portion thereof, has a predetermined amount of a gas enclosed therein, and further has an ink relay body which projects into the blocking chamber from a side of the other end portion thereof, which communicates in its proximal end portion with the ink-chamber-side passage, which has a front end portion formed in a pointed shape being disposed adjacent a free surface of the ink held in a liquid-cylindrical form in the blocking chamber, and which transfers part of the ink to the writing-element-side passage by contacting the free surface.




Thus, when the instrument is not used for writing, the gas enclosed in the blocking chamber blocks the communication of the ink between the ink-chamber-side passage and the writing-element-side passage, and thereby the undesirable supply of the ink to the writing element is halted. Then, when the ink of the writing-element-side passage is consumed by the writing, the volume of a spatial portion of the blocking chamber increases corresponding to the consumed amount of ink, the enclosed gas pressure decreases to move the ink held in a liquid-cylindrical form, the free surface of the ink contacts the front end portion of the ink relay body, and thereby part of the ink is transferred to the writing-element-side passage. Thus, the volume of the spatial portion of the blocking chamber decreases to increase the gas pressure, the free surface of the ink held in a liquid-cylindrical form moves backward to be spaced apart from the front end of the ink relay body, and thereby the supply of the ink is halted. Accordingly, it is possible to supply the ink with the predetermined amount only when the instrument is used for writing.




Since the ink entering blocking chamber from the ink-chamber-side passage is held in a liquid-cylindrical form as described above, a clear free surface is formed in the front end portion of the ink. Further, since the front end portion of the ink relay body is formed pointedly, it is possible to dispose the front end portion adjacent the free surface of the ink held in a liquid-cylindrical form. Accordingly, when the ink of the writing-element-side passage is consumed even a little, the free surface contacts the front end portion of the ink relay body, and the ink is transferred to the side of the writing element. Therefore, the ink passage extending from the ink relay body to the writing element maintains the condition that the passage is always filled with the ink, and it does not happen that the gas of the blocking chamber enters the passage and is mixed with the ink. As a result, it is possible to assuredly prevent the gas from being transferred to the writing element with the ink.




Further, the producing method of the present invention comprises the steps of holding the writing instrument, provided with the ink control mechanism of dry condition with no ink contained therein, in a generally vertical posture with the writing element thereof directed downward, of injecting the ink into the ink chamber, of evacuating the gas in the blocking chamber through the ink relay means of dry condition by flowing the ink injected into the ink chamber to the ink holding means in the ink control mechanism, and of halting the evacuation of the gas through the ink relay means by flowing the injected ink to the ink relay means in the ink control mechanism, and thereby enclosing the gas with a predetermined amount remaining in the blocking chamber.




Accordingly, by a simple operation for holding the writing instrument of dry condition in a generally vertical posture and injecting the ink into the ink chamber, it is possible to accurately enclose a gas with a required predetermined amount in the blocking chamber, and to produce the writing instrument with accurate characteristics efficiently and assuredly.











BRIEF DESCRIPTION OF DRAWINGS





FIG. 1

is a longitudinal cross-sectional view of a first embodiment of a writing instrument according to the present invention;





FIG. 2

is a longitudinal cross-sectional view of an ink control mechanism of the first embodiment of the writing instrument according to the present invention;





FIG. 3

is an explanatory view of an operation of the first embodiment of the writing instrument according to the present invention;





FIG. 4

is another explanatory view of the operation of the first embodiment of the writing instrument according to the present invention;





FIG. 5

is another explanatory view of the operation of the first embodiment of the writing instrument according to the present invention;





FIG. 6

is an explanatory view of a method for producing the writing instrument according to the present invention;





FIG. 7

is another explanatory view of the method for producing the writing instrument according to the present invention;





FIG. 8

is another explanatory view of the method for producing the writing instrument according to the present invention;





FIG. 9

is a longitudinal cross-sectional view of an ink control mechanism of a second embodiment of a writing instrument according to the present invention;





FIG. 10

is a longitudinal cross-sectional view of an ink control mechanism of a third embodiment of a writing instrument according to the present invention;





FIG. 11

is a longitudinal cross-sectional view of an ink control mechanism of a fourth embodiment of a writing instrument according to the present invention;





FIG. 12

is a longitudinal cross-sectional view of an ink control mechanism of a fifth embodiment of a writing instrument according to the present invention;





FIG. 13

is a cross-sectional view along line A—A of

FIG. 12

showing an example of a restriction passage of the fifth embodiment;





FIG. 14

is a cross-sectional view along line A—A of

FIG. 12

showing another example of the restriction passage of the fifth embodiment;





FIG. 15

is a longitudinal cross-sectional view of an ink control mechanism of a sixth embodiment of a writing instrument according to the present invention; and





FIG. 16

is a longitudinal cross-sectional view of an ink control mechanism of a seventh embodiment of a writing instrument according to the present invention.











BEST MODE FOR CARRYING OUT THE INVENTION




Embodiments of the present invention will be described below with reference to accompanying drawings.

FIGS. 1

to


8


show a first embodiment of the present invention. A writing instrument of this embodiment is of a disposable type provided with a ball chip using water-soluble ink.







1


” in

FIG. 1

denotes an axial barrel of the writing instrument, and in the axial barrel


1


is formed an ink chamber


2


for storing water-soluble ink. The ink chamber


2


has the liquid ink stored therein, and further has a slide plug


3


inserted therein for dividing the ink and air.




A gap is formed between the outer periphery of the slide plug


3


and the inner periphery of the ink chamber


2


. The slide plug


3


maintains a non-contact condition with respect to the inner periphery of the ink chamber


2


, and is set so that the slide resistance is substantially zero. In addition, a liquid membrane of the ink exists between the slide plug


3


and the inner periphery of the ink chamber


2


, thereby prevents the direct contact therebetween and maintains the sealing characteristic therebetween.




The slide plug


3


is formed to have a specific gravity lower than the ink by being formed, for example, in a hollow shape, and thereby is floatable with respect to the ink. Accordingly, the slide plug


3


does not subside when the writing instrument is allowed to stand upward, and the ink and slide plug


3


do not descend due to the sealing characteristic when the instrument is turned upside down, thereby always dividing the ink and air in the ink chamber


2


assuredly.




The slide plug


3


moves corresponding to expansion, contraction, etc. of the ink to compensate for the expansion and contraction, while going forward as the ink is consumed. In addition, the rear end portion of the ink chamber


2


is closed by an end plug


6


, and in the end plug


6


is formed an atmosphere communicating tube


7


through which the air side of the ink chamber


2


communicates with the atmosphere. Accordingly, the pressure of the ink inside the ink chamber


2


is always maintained at the pressure equal to the atmospheric pressure. In addition, a small amount of silicone oil or the like is enclosed inside on the air side of the ink chamber to reserve the sealing accurately, and the atmosphere communicating tube


7


prevents the silicone oil from leaking outside.




On the front end portion side of the axial barrel


1


is provided a writing element holder


4


, and on the frond end portion of the writing element holder


4


is provided a writing element, specifically a ball chip


5


with the water-soluble ink in this embodiment. Further, the axial barrel


1


is on its front end portion engaged with a cap


8


detachably. The writing element, for example, ball chip


5


communicates with the ink chamber


2


through an ink control mechanism


10


described below.





FIG. 2

shows an enlarged view of the ink control mechanism


10


. The ink control mechanism


10


has a blocking chamber


11


with a small volume. In this embodiment, in the center of the writing element holder


4


is provided a straight-shaped through hole in the axial direction. The center portion of the through hole is formed as the blocking chamber


11


. The through hole on the upper side of the blocking chamber


11


communicates with the ink chamber


2


, and thereby forms an ink-chamber-side passage


12


. The through hole on the lower side of the blocking chamber


11


communicates with the ball chip


5


, and thereby forms a writing-element-side passage


13


. In the blocking chamber


11


is enclosed a gas, air in this embodiment, with a predetermined amount.




In the ink-chamber-side passage


12


is inserted an ink-chamber-side relay core


14


. The ink-chamber-side relay core


14


is made of a porous material such as a bundle of fibers in the form of a rod, and thereby pulls out the ink from the ink chamber


2


due to the capillary force caused by fine gaps between the fibers, while providing a predetermined flow resistance to the ink flowing therein.




A portion between an upper portion of the blocking chamber


11


and the ink-chamber-side passage


12


forms an ink holding passage


18


as the ink holding means for holding the ink. In this embodiment, the ink holding passage


18


is continuous with the blocking chamber


11


and has the same diameter as the chamber


11


. Ink


19


having flowed inside the passage


18


has a free surface formed on its lower surface by surface tension, and is held in a liquid-cylindrical form.




The ink holding passage


18


has a small diameter, whereby the lower end of the ink


19


held in a liquid-cylindrical form is held due to a surface tension of the free surface


20


, and the passage


18


is configured so as to prevent part of the ink


19


in a liquid-cylindrical form from being exchanged with the air of the blocking chamber


11


and flowing in the chamber


11


. In order to achieve such a holding effect, it is preferable to set an inner diameter of the ink holding passage


18


to, for example, a value equal to or less than 3 mm. In addition, this value is preferable in the case of using water-soluble ink, and the inner diameter varies depending on kinds of the ink to be used. In general, the inner diameter of the ink holding passage


18


equal to or less than 6 mm prevents the ink being exchanged with the air, and enables the ink to be held in a liquid-cylindrical form.




In the writing-element-side passage


13


is inserted a writing-element-side relay core


21


for supplying the ink to the ball chip


5


, and the writing-element-side relay core


21


is also formed from the same material as the ink-chamber-side relay core


14


. In this embodiment, an upper portion of the writing-element-side relay core


21


projects into a lower portion of the blocking chamber


11


, and is formed as a relay body


15


which forms the ink relay means.




The front end portion of the relay body


15


is provided with a cone portion


16


in a pointed form. A slight gap is formed between the outer periphery of the relay body


15


and the inner periphery of the blocking chamber


11


. Between the outer periphery of the proximal end portion of the cone portion


16


of the relay body


15


and the inner periphery of the blocking chamber


11


is formed an annular gap with a wedge-shaped cross section, and the gap is formed as an ink storing portion


17


.




In this embodiment, the ink-chamber-side relay core


14


is formed to have its density greater than that of the writing-element-side relay core


21


, and therefore the flow resistance of the ink flowing through the ink-chamber-side relay core


14


is set to a value greater than the flow resistance of the ink flowing through the writing-element-side relay core


21


.




The operation of the first embodiment will be described with reference to

FIGS. 3

to


5


.

FIG. 3

shows part of the writing instrument being not used for writing. A predetermined small amount of air is enclosed in the blocking chamber


11


, and blocks the ink of the ink-chamber-side passage


12


and the ink of the writing-element-side passage


13


. In this case, the ink flows from the ink-chamber-side passage


13


into the ink holding passage


18


, however, as described previously, the ink


19


has the lower surface formed as the free surface


20


due to the surface tension, and is held in a liquid-cylindrical form. The writing-element-side relay core


21


and the relay body


15


provided in the upper portion of the core


21


are almost saturated with the ink, and therefore have a so-called ink rich condition. In the ink storing portion


17


provided in the proximal portion of the cone portion


16


of the relay body


15


is stored and held the liquid ink with a predetermined amount due to the capillary force.




In such a condition that the writing instrument is not used for writing, the ink in the ink holding passage


18


is blocked by the air in the blocking chamber


11


, and is held at a predetermined position as described previously. Then, in this case, the communication between the ink of the ink-chamber-side passage


12


and the ink of the writing-element-side passage


13


is blocked, and thereby the ink is not supplied undesirably from the ink chamber


2


to the writing element, i.e., ball chip


5


. The ball chip


5


is thereby prevented from containing excessive ink.




When the writing instrument is used for writing, the ink in the writing-element-side relay core


21


is consumed. In this case, since the liquid ink is stored and held in the ink storing portion


17


in the periphery of the proximal portion of the relay body


15


provided in the upper portion of the writing-element-side relay core


21


, the ink in the ink storing portion


17


is consumed preferentially.




That is, when the ink in the saturated porous material, i.e., the writing-element-side relay core


21


and relay body


15


in this case, is consumed, a load is required to some extent in order for the ink existing in a saturated condition on surfaces of the core


21


and of the body


15


to be drawn inside from the surface of the porous relay body


15


. However, the ink stored and held in the ink storing portion


17


is in contact with the outer periphery of the proximal portion of the relay body


15


, and in the contact portion, the surface of the proximal portion of the relay body


15


is dipped into the ink and is saturated with the ink. Accordingly, as the ink in the relay body


15


is consumed, the ink is absorbed from a portion with the least resistance, i.e., the ink storing portion


17


, whereby the ink in the ink storing portion


17


is consumed preferentially.




When the ink in the ink storing portion


17


is thus consumed, the volume of a spatial portion of the blocking chamber


11


increases corresponding to the consumed amount of ink, whereby the pressure of the air enclosed in the blocking chamber


11


decreases. Thus, as shown in

FIG. 4

, the liquid-cylindrical ink


19


held in the ink holding passage


18


descends to compensate for the pressure decrease. Then, when the free surface


20


of the liquid-cylindrical ink


19


contacts the front end portion of the cone portion


16


of the relay body


15


, part of the surface tension of the free surface


20


is broken due to the fact that the surface of the cone portion


16


is wet with the ink, and thereby part of the ink is transferred to the ink storing portion


17


, while flowing along the surface of the cone portion


16


.




When the ink is stored in ink storing portion


17


, the volume of the spatial portion in the blocking chamber


11


decreases corresponding to the stored amount of ink, and the pressure of the air enclosed in the spatial portion increases, thereby pushing up the liquid-cylindrical ink


19


in the ink holding passage


18


. Thus, as shown in

FIG. 5

, the free surface


20


is disposed apart from the cone portion


16


again, and recovers the condition as shown in FIG.


3


.




When the writing instrument is used continuously for writing, the ink in the ink storing portion


17


is consumed again, the operation as described above is repeated, and the ink in the ink chamber


2


is supplied to the ball chip


5


. In addition, since the volume of the blocking chamber


11


is small and the relay body


15


or the like is also small in its size, when the free surface


20


of the ink


19


in the ink holding passage


18


contacts the front end of the cone portion


16


of the relay body


15


, part of the ink


19


is transferred to the ink storing portion


17


in an extremely short time.




The operation described above is basically an intermittent operation. Accordingly, during the continuous use for writing, the ink is supplied to the ball chip


5


intermittently by the intermittent operation described above. However, since the intermittent ink supplying operation is repeated at extremely short intervals as described above and the writing-element-side relay core


21


has the ink storing capability to some extent, the ink is stably and continuously supplied to the ball chip


5


, and the writing does not cause concentration differences.




In this embodiment, the ink-chamber-side relay core


14


is set to have the higher density and the higher ink flow resistance than the writing-element-side relay core


21


. Thereby, the ink supplied to the ball chip


5


is pulled back.




That is, in the ball chip, the ink adhered on the surface of the ball is transferred to a writing surface of paper or the like due to the rotation of the ball. As described previously, the ink is held due to the capillary force in the slight gap between the ball and the ball holder holding the ball rotatably, and the liquid ink is also held in a ball holding portion in the ball holder. Accordingly, even when the supply of the ink is controlled as described above, it sometimes happens that a slight amount of the ink is pushed out of the gap between the ball and the ball holder in the case where the rotation of the ball is suddenly halted to stop the writing. If the pushed out ink thus exists excessively on the periphery of the ball, when the writing instrument is used next to start writing, a starting portion of the writing line becomes a shape of a comma (,) as described previously, providing the problem that the writing appearance deteriorates.




In this embodiment, since the ink in the ink storing portion


17


is always consumed continuously during the period of the time the ink is consumed by the writing, the pressure inside the blocking chamber


11


is of a negative pressure. When the writing is finished, due to the negative pressure inside the blocking chamber


11


, the ink flows into the blocking chamber


11


from the ink-chamber-side passage


12


and the writing-element-side passage


13


. In this case, since the flow resistance of the ink-chamber-side relay core


14


in the ink-chamber-side passage


12


is set to be greater than the flow resistance of the writing-element-side relay core


21


, the ink flows backward to the blocking chamber


11


from the side of the writing-element-side passage


13


before flowing into the blocking chamber


11


from the ink-chamber-side passage


12


.




Since such an ink back flow causes the ink inside the ball holder of the ball chip


5


to be pulled back, the excessive ink is not pushed out to the periphery of the ball, whereby it is possible to assuredly prevent a starting portion of the writing line from forming a shape of a comma (,). In addition, the blocking chamber


11


has a small volume therein, and an amount of the ink to be pulled back as described above is small, however, which is enough to pull back the ink in the ball holder because an amount of the ink in the ball holder of the ball chip


5


is also small.




In this embodiment, in order to perform the operation for controlling the ink as described above, it is necessary to set an amount of air enclosed in the blocking chamber


11


accurately. That is, the excessive amount of the enclosed air provides a long distance between the free surface


20


of the liquid-cylindrical ink


19


held in the ink holding passage


18


and the front end of the cone portion


16


of the relay body


15


. Accordingly, even when the ink in the ink storing portion


17


is consumed and the liquid-cylindrical ink


19


descends, there occurs a case that the free surface


20


does not contact the front end of the cone portion


16


. When the writing instrument is continuously used for writing in such a condition, the ink in the porous relay body


15


is consumed, and decreases its amount in the ink relay body


15


. As a result, the relay body


15


becomes the ink-poor condition, and may have a possibility that air is absorbed into the porous relay body


15


. Once the air is thus absorbed into the porous relay body


15


, the air is not eliminated assuredly even when the ink is newly absorbed into the relay body


15


as described previously, and is sent to the ball chip


5


as well as the ink, thereby resulting in a disadvantage in the writing using the ball chip


5


.




When an amount of the air enclosed in the blocking chamber


11


is small, the free surface


20


of the liquid-cylindrical ink


19


contacts the front end of the cone portion


16


with the ink in ink storing portion


17


consumed little. Therefore, the operation for blocking the ink does not work, and the ink in the ink chamber


2


remains in continuous contact with the ball chip


5


, whereby excessive ink is supplied to the ball chip


5


and a disadvantage arises in the writing.




In this embodiment, in order to enclose a predetermined amount of air accurately in the blocking chamber


11


, applied is a producing method for filling ink as described below. The producing method will be described below with reference to

FIGS. 6

to


8


.




The writing instrument as described above is first assembled. In this case, the ink-chamber-side relay core


14


, writing-element-side relay core


21


, relay body


15


and the like are made dry with no ink contained. The ball chip


5


, slide plug


3


and end plug


6


remain unattached.




The writing instrument is held in a generally vertical posture with the side of the ball chip


5


directed downward, and the ink is injected into the ink chamber


2


. The injected ink passes through the ink-chamber-side relay core


14


due to the gravity and capillary force, flows into the ink holding passage


18


, and as shown in

FIG. 6

, is held in the ink holding passage


18


as the liquid-cylindrical ink


19


.




In this case, the writing-element-side relay core


21


and the relay body


15


remain dry with no ink contained, and enable the air to pass therethrough. Thus, the air inside the blocking chamber


11


passes through the writing-element-side relay core


21


and relay body


15


, and is evacuated from the front end portion of the writing element holder


4


. Upon the evacuation of the air, the liquid-cylindrical ink


19


in the ink holding passage


18


descends.




Then, as shown in

FIG. 7

, when the free surface


20


of the liquid-cylindrical ink


19


contacts the front end portion of the cone portion


16


of the relay body


15


, the ink is absorbed into the relay body


15


due to the capillary force. In addition, since the size of the relay body


15


is small, the ink is instantaneously absorbed into the relay body


15


. Once the ink is absorbed into the relay body


15


, the air cannot pass through the relay body


15


, and the air remaining inside the blocking chamber


11


is enclosed in the blocking chamber


11


.




Next, when the entire relay body


15


and writing-element-side relay core


21


are saturated by the ink being absorbed therein and become the ink-rich condition, as shown in

FIG. 8

, the ink flows along the relay body


15


and is stored in the ink storing portion


17


. Since the volume of the spatial portion of the blocking chamber


11


thus decreases, the pressure of the enclosed air increases, the liquid-cylindrical ink


19


is pushed up, and the free surface


20


is spaced apart from the front end of the cone portion


16


of the relay body


15


. The flow of the ink is thereby halted, providing the condition that the writing instrument is not used for writing as shown in

FIG. 3

described previously. The unattached parts are next attached to the writing instrument to complete the assembly thereof.




Such a method enables an accurate required amount of the air to be enclosed in the blocking chamber


11


, by a simple process for holding the writing instrument in a generally vertical posture and injecting the ink into the ink chamber


2


.




In addition, since the relay body


15


and writing-element-side relay core


21


have a relatively small diameter and the ink is absorbed from the front end portion of the cone portion


16


provided on the upper end, the air inside the body


15


and core


21


is pushed out to the side of the front end of the writing element holder


4


as the ink penetrates, and is not mixed with the ink in the body


15


and core


21


.




In the above-mentioned method, only the case is described that the air is enclosed in the blocking chamber


11


, however, a gas to be enclosed is not limited to the air. For example, in the case where particular ink is used that reacts with oxygen, nitrogen or inert gas may be enclosed in the blocking chamber


11


. In such a case, prior to the process described above, the gas inside the writing instrument may be replaced with such a gas.




In addition, the present invention is not limited to the above-mentioned embodiment. For example,

FIG. 9

shows a writing instrument of a second embodiment of the present invention.




In the second embodiment, the front end portion of the relay body


15


is cut aslant and thereby forms an aslant cut portion


25


. The ink storing portion


17


with a wedge-shaped cross section is formed between the cut surface of the proximal portion of the aslant cut portion


25


and the inner periphery of the blocking chamber


11


. The free surface


20


of the liquid-cylindrical ink


19


descending in the ink holding passage


18


contacts the front end portion of the aslant cut portion


25


.




The writing instrument of the second embodiment has the same structure as that of the first embodiment except the point described above, and in

FIG. 9

, portions corresponding to the first embodiment are assigned the same reference numerals as in the first embodiment to omit the explanation thereof.




The writing instrument of the second embodiment has the same operation, producing method and the like as those of the first embodiment. In the writing instrument of the second embodiment, it is possible to form the aslant cut portion


25


only by cutting aslant a rod-shaped member made of the porous material composing the relay body


15


, thereby further facilitating the production.





FIG. 10

shows a third embodiment of the present invention. In a writing instrument of this embodiment, the upper end portion of the writing-element-side relay core


21


is provided with a relay body


35


made of another material. The relay body


35


is formed of a material other than the porous material. The front end portion of the relay body


35


is provided with a cone portion


36


formed in a pointed cone shape. The relay body


35


is attached to the upper end portion of the writing-element-side relay core


21


, and is inserted into the blocking chamber


11


. A gap is formed between the outer periphery of the relay body


35


and the inner periphery of the blocking chamber


11


, and the gap and the wedge-shaped gap between the base portion of the cone portion


36


and the inner periphery of the blocking chamber


11


are formed as the ink storing portion


17


.




The relay body


35


is formed of a material with the wettability by ink, or undergoes coating or surface treatment to have on its surface the wettability by the ink. Further, in this embodiment, in order to guide the ink assuredly, a fine relay grove


37


is formed along the generating line on the periphery of the cone portion


36


.




The structure of the third embodiment is the same as that of the first embodiment except the point described above, and in

FIG. 10

, portions corresponding to the first embodiment are assigned the same reference numerals as in the first embodiment to omit the explanation thereof.




The instrument of this embodiment has the same function as that of the first embodiment except that when the free surface


20


of the liquid-cylindrical ink


19


in the ink holding passage


18


contacts the front end of the cone portion


36


of the relay body


35


, the ink is transferred to the ink storing portion


17


due to the wettability of the surface of the body


35


and the caterpillar force of the relay groove


37


.




In this embodiment, since the relay body


35


is not of the porous material, in case that the free surface


20


of the liquid-cylindrical ink


19


does not contact the relay body


35


after the ink in the ink storing portion


17


is entirely consumed, the air is not absorbed into the relay body


35


. Further, it is not necessary to process the porous material such as a bundle of fibers, and the relay body


35


can be produced readily and processed in the accurate form.





FIG. 11

shows a fourth embodiment of the present invention. In a writing instrument of this embodiment, the upper end portion of the writing-element-side relay core


21


is provided with a relay core


45


made of another material. The relay core


45


is formed of a material other than the porous material. The front end portion of the relay core


45


is cut aslant and thereby forms an aslant cut portion


46


in the form of a pointed shape. The relay body


45


is attached to the upper end portion of the writing-element-side relay core


21


, and is inserted into the blocking chamber


11


. Between the outer periphery of the relay body


45


and the inner periphery of the blocking chamber


11


is provided a gap, which is formed as a relay gap


47


that relays the ink.




A plurality of thin annular grooves in the shape of bellows is formed on the outer periphery of the proximal end portion of the relay body


45


. The bellows portion and a wedge-shaped gap between the base portion of the aslant cut portion


46


and the inner periphery of the blocking chamber


11


are formed as the ink storing portion


17


. The relay gap


47


communicates with the ink storing portion


17


.




The relay body


45


is, as in the third embodiment, formed of a material with the wettability by ink, or undergoes coating or surface treatment to have on its surface the wettability by the ink.




The structure of the fourth embodiment is the same as that of the first embodiment except the point described above, and in

FIG. 11

, portions corresponding to the first embodiment are assigned the same reference numerals as in the first embodiment to omit the explanation thereof.




The instrument of this embodiment has the same function as that of the third embodiment except that when the free surface


20


of the liquid-cylindrical ink


19


in the ink holding passage


18


contacts the front end of aslant cut portion


46


of the relay body


45


and the front end of the relay gap


47


, the ink is transferred to the ink storing portion


17


due to the wettability of the surface of the body


45


and the caterpillar force of the relay gap


47


.




The present invention is not limited to the embodiments previously described, and it may be possible to provide the blocking chamber, ink storing portion, ink holding means and ink relay means with respective other structures. For example,

FIG. 12

shows a fifth embodiment of the present invention.




In this embodiment, the bottom of the ink chamber


2


is formed as an ink holding surface


58


vertical to the center axis of the writing instrument. Under the ink chamber


2


is engaged with a blocking chamber member


50


in the form of a cup, and a space surrounded by a concavity portion provided in the lower portion of the member


50


and the ink holding surface


58


is formed as a blocking chamber


51


.




On the outer periphery of the blocking chamber member


50


is formed an ink-chamber-side passage


52


in the axial direction. The lower end surface of the blocking chamber member


50


is provided with a restriction passage


54


. The restriction passage


54


communicates on its one end with the ink-chamber-side passage


52


, and is opened on its other end into the lower portion of the blocking chamber


51


, while being in contact with the ink holding surface


58


.




The restriction passage


54


is comprised of, for example as shown in

FIG. 13

, a plurality of thin grooves


54




a


in the shape of a lattice formed on the lower end surface of the blocking chamber member


50


, and as described previously, communicates with the ink-chamber-side passage


52


, while having an ink supply opening


54




b


which is in contact with the ink holding surface


58


and which is opened into the blocking chamber


51


.




Further, the restriction passage


54


may be comprised of, as shown in

FIG. 14

, an arc-shaped long groove


54




c


formed on the lower end surface of the blocking chamber member


50


, and as described previously, may communicate with the ink-chamber-side passage


52


, while having an ink supply opening


54




d


which is in contact with the ink holding surface


58


and which is opened into the blocking chamber


51


.




In the center portion of the ink holding surface


58


projects the upper end portion of the writing-element-side relay core


21


, and the projecting portion is formed as a relay body


55


. A corner portion consisting of the base portion of the projecting relay body


55


and the ink holding surface


58


is formed as an ink storing portion


57


, and the ink is stored and held in the ink storing portion due to the surface tension of the ink. An interval between the ink storing portion


57


in the base portion of the relay body


55


and the opening


54




b


or


54




d


on the outer periphery of the lower portion of the blocking chamber


51


is set to a predetermined distance.




The structure of the fifth embodiment is the same as that of the first embodiment except the point described above, and in

FIG. 12

, portions corresponding to the first embodiment are assigned the same reference numerals as in the first embodiment to omit the explanation thereof.




The writing instrument of this embodiment operates as described below. That is, when the instrument is not used for writing, the ink in the ink storing portion


57


is blocked and divided from the ink in the restriction passage


54


by the air enclosed in the blocking chamber


51


.




Then, when the ink in the ink storing portion


57


is consumed by the writing, the volume of the spatial portion of the blocking chamber


51


increases corresponding to the consumed amount of ink, and the pressure of the air enclosed in the blocking chamber


51


decreases. The ink thereby enters the blocking chamber


51


from the ink supplying opening


54




b


or


54




d


through the ink-chamber-side passage


52


and the restriction passage


54


. The entering ink is held on the corner portion between the ink holding surface


58


and the inner periphery of the blocking chamber


51


in its ridging state due to its surface tension, as shown by a two-dot-rash line


59


.




When an amount of the held ink increases, the ink goes forward to the ink storing portion


57


in the center portion, and contacts the base of the relay core


55


of the ink storing portion


57


. By the contact, part of the held ink is transferred to the ink storing portion


57


due to the surface tension, and the ink is stored again in the storing portion


57


. Part of the ink is thus transferred, whereby the ink entering from the opening of the restriction passage


54


moves backward to be spaced from the ink storing portion


57


, and the ink communication is blocked again.




Further in this embodiment, since the restriction passage


54


is provided in the ink-chamber-side passage


52


, the ink flowing inside the passage is given the large flow resistance. Accordingly, as described previously, when the writing is halted, the ink in the writing-element-side passage


13


and writing-element-side relay core


21


is pulled back due to the negative pressure of the air in the blocking chamber


51


, and thereby the excessive ink in the periphery of the ball of the ball chip


5


is pulled back.




When the writing instrument of this embodiment is produced, in the same way as described previously, the writing instrument is held in a generally vertical posture with the writing-element-side relay core


21


and the relay body


55


on the upper end of the core


21


both dried with no ink contained therein, and the ink is injected into the ink chamber


2


. The ink flows into the lower portion of the blocking chamber


51


from the restriction passage


54


, reaches the base portion of the relay body


55


while flowing along the ink holding surface


58


, and is absorbed into the porous relay body


55


. The ink being absorbed prevents the air from escaping through the relay body


55


and writing-element-side relay core


21


, and thereby a predetermined amount of the air is accurately enclosed in the blocking chamber


51


.





FIG. 15

shows a sixth embodiment of the present invention. In a writing instrument of this embodiment, the ink holding surface in the fifth embodiment is formed as an ink holding surface


68


with the shape of a cone, and corresponding to the cone shape, the lower end portion of the blocking chamber member


50


is also formed in the shape of a cone.




The structure of the sixth embodiment is generally the same as that of the fifth embodiment except the above-mentioned point, and in

FIG. 15

, portions corresponding to the fifth embodiment are assigned the same reference numerals as in the fifth embodiment to omit the explanation thereof.




In this embodiment, the ink storing portion


57


is formed in a portion surrounded by the bottom of the cone-shaped ink holding surface


68


and the base portion of the relay body


55


projecting from the bottom, and has the cross section in the form of a wedge, whereby as in the first embodiment, the ink is assuredly held in the ink storing portion


57


.




In the fifth and sixth embodiments, the ink-chamber-side passage communicates with the lower portion of the blocking chamber, however, a portion with which the ink-chamber-side passage communicates is not limited to the lower portion of the blocking chamber, and may be the inner periphery or the upper portion of the blocking chamber. In this case, in order to hold a predetermined amount of the ink having entered the blocking chamber, it may be possible to provide an annular concavity portion around the periphery of the opening to the blocking chamber to hold the ink in the concavity portion, or to project the periphery of the opening to provide a projecting nozzle portion in the form of a pipe with a small diameter. On the front end of such a nozzle portion in the form of a pipe with a small diameter, the ink is held in the form of a sphere drop due to its surface tension.





FIG. 16

shows a seventh embodiment of the present invention. A writing instrument of this embodiment uses an annular ridge-shaped projecting portion as the ink holding means and the relay means.




That is, in this embodiment, on the bottom of the ink chamber


2


is formed an engaging projecting portion


73


in the form of a cone, a cup-shaped blocking chamber member


70


is engaged with the engaging projecting portion


73


, and a space surrounded by the inner surface of the blocking chamber member


70


and the upper surface of the engaging projecting portion


73


is formed as a blocking chamber


71


. The upper end portion of the writing-element-side relay core


21


projects inside the blocking chamber


71


from the center portion of the engaging projecting portion


73


, and the projecting portion of the core


21


is formed as a relay body


75


. Between the outer periphery of the blocking chamber member


71


and the inner periphery of the ink chamber


2


is formed a gap, which is formed as an ink-chamber-side passage


72


. A thin restriction groove


78


is formed on the outer periphery of the engaging projecting portion


73


, and communicates with the ink-chamber-side passage


72


, while being opened into the periphery of the lower portion of the blocking chamber


71


.




On the upper surface of the engaging projecting portion


73


forming the bottom of the blocking chamber


71


, an annular ridge-shaped projecting portion


80


with the mountain-shaped cross section is formed surrounding the projecting relay body


75


. A gap portion with the wedge-shaped cross section between the slant inner periphery of the projecting portion


80


and the base portion of the relay body


75


is formed as an ink storing portion


77


. An annular concavity groove portion formed by the slant outer periphery of the projecting portion


80


and the inner periphery of the blocking chamber


71


is formed as an ink holding portion


79


. The restriction groove


78


communicates with the ink holding portion


79


.




The structure of the seventh embodiment is the same as that of the fifth embodiment except the point described above, and in

FIG. 16

, portions corresponding to the fifth embodiment are assigned the same reference numerals as in the fifth embodiment to omit the explanation thereof




When the writing instrument of this embodiment is not used for writing, the ink in the ink storing portion


77


is blocked and divided from the ink in the ink holding portion


79


by the ridge-shaped projecting portion


80


. Then, when the ink in the ink storing portion


77


is consumed by the writing, the volume of the spatial portion of the blocking chamber


71


increases corresponding to the consumed amount of ink, and the pressure of the air enclosed in the blocking chamber


71


decreases. The ink thereby enters the ink holding portion


79


through the ink-chamber-side passage


72


and restriction groove


78


. The entering ink ridges on the vertex of the ridge-shaped projecting portion


80


due to its surface tension, as shown by a two-dot-rash line


81


in

FIG. 16

, and is held temporarily.




When an amount of the entering ink exceeds a predetermined amount, part of the ink climbs over the ridge-shaped projecting portion


80


, flows into the ink storing portion


77


, and is stored and held in the ink storing portion


77


. Such an operation is repeated to control the ink to supply.




The writing instrument of this embodiment is capable of arbitrarily setting ink holding amounts of the ink storing portion


77


and of the ink holding portion


79


, by setting the diameter of the blocking chamber


71


and the form of the ridge-shaped projecting portion


80


, and thereby has the feature for providing a large degree of the freedom of design.




The present invention is not limited to the above-mentioned embodiments. For example, the structure of the ink chamber of the writing instrument of the present invention is not limited to those described above. The above-mentioned embodiments are of the writing instrument of the ball chip type using water-soluble ink, but may be also applicable to a writing instrument using oil-soluble ink or fast-drying ink. The kind of the writing element is not limited to a ball chip, and may be a felt chip or other writing element. The present invention is not limited to the disposable type of writing instrument, and may be applicable to a writing instrument enabling ink replenishment or the refill type of writing instrument.




INDUSTRIAL APPLICABILITY




As described above, in the writing instrument of the present invention, when the instrument is not used for writing, the communication of the ink between the ink chamber and writing element is blocked by a gas such as air enclosed in the blocking chamber, and the ink is thereby prevented from being supplied undesirably to the writing element.




Then, when the ink is consumed by the writing, the ink entering the blocking chamber is transferred to the ink storing portion, thereby storing the ink in the ink storing portion again, and such an operation is repeated to supply the ink to the writing element, whereby the instrument does not require a mechanically movable portion, and enables the opening and closing operation to be performed assuredly by slight pressure difference.




Further, since the blocking and communication of the ink by the enclosed air is performed by increase and decrease in an amount of the ink stored and held in the ink storing portion, it is not necessary to perform operations in the porous member for absorbing air, causing the ink to penetrate, eliminating the air, and the like, thereby providing great effects of having reliable operation and simple structure.




Furthermore, the producing method of the present invention is capable of enclosing a required predetermined amount of a gas in the blocking chamber, by a simple operation for holding the writing instrument in its dry state in a generally vertical posture and injecting the ink into the ink chamber, and thereby provides great effects such that writing instruments with accurate characteristics can be produced efficiently and assuredly.



Claims
  • 1. A writing instrument provided with an ink chamber that stores ink, a writing element provided on a front end portion of said writing instrument, and an ink control mechanism provided between said ink chamber and said writing element, said ink control mechanism comprising:a blocking chamber with a gas enclosed therein; an ink-chamber-side passage for causing said blocking chamber to communicate with said ink chamber; a writing-element-side passage for causing said blocking chamber to communicate with said writing element; ink holding means for holding the ink entering said blocking chamber from said ink-chamber-side passage at a predetermined position in said blocking chamber; an ink storing portion which is formed in said blocking chamber, and which stores and holds a small amount of the ink, movement of the ink held by said ink holding means to said ink storing portion being blocked by said gas held by the blocking chamber, while said small amount of the ink communicates with said writing-element-side passage; and ink relay means for transferring, when an amount of the ink held by said ink holding means is equal to or more than a predetermined amount, at least part of the held ink to said ink storing portion.
  • 2. The writing instrument according to the claim 1, wherein said ink holding means forms an ink holding passage which communicates with said blocking chamber and with said ink-chamber-side passage, and which has a small cross-sectional area enabling the ink to be held in a liquid-cylindrical form in said ink holding passage due to a surface tension of the ink and further enabling the ink and the gas not to be exchanged in their positions.
  • 3. The writing instrument according to claim 1, wherein said ink holding means comprises an ink holding surface which is formed under said blocking chamber to cross the axial direction of said writing instrument, and part of which is provided with said ink storing portion, and an ink supplying opening which is opened adjacent said ink holding surface at a position spaced apart from said ink storing portion, and which communicates with said ink-chamber-side passage.
  • 4. The writing instrument according to claim 1, wherein said ink holding means comprises a ridge-shaped projecting portion which is formed between said ink storing portion formed in said blocking chamber while communicating with said writing-element-side passage and an ink supplying opening opened into said blocking chamber while communicating with said ink-chamber-side passage, to divide said ink storing portion and said ink supplying opening, and which prevents a flow of the ink supplied from said ink supplying opening while enabling the ink to climb over said ridge-shaped projecting portion.
  • 5. The writing instrument according to claim 1, wherein said ink relay means forms a relay body having wettability by the ink which is disposed on its one end adjacent said ink holding means, and which communicates on its other end with said ink storing portion.
  • 6. The writing instrument according to claim 5, wherein said relay body is formed of a porous material.
  • 7. The writing instrument according to claim 5, wherein said ink storing portion forms a corner portion formed in a base portion of said relay body of ink provided to project in said blocking chamber.
  • 8. The writing instrument according to claim 5, wherein said ink storing portion forms a gap with a wedge-shaped cross section formed between a proximal portion of a pointedly formed front end portion of said relay body of ink provided to project in said blocking chamber and to have the pointedly formed front end portion, and an inner periphery of said blocking chamber.
  • 9. The writing instrument according to claim 5, wherein said ink storing portion forms a gap with a wedge-shaped cross section formed between a base portion of said relay body of ink provided to project in said blocking chamber, and a cone-shaped concavity portion formed on a bottom of said blocking chamber to surround said base portion of said relay body.
  • 10. The writing instrument according to claim 1, wherein said ink relay means forms a relay gap which is formed between a relay body provided in said blocking chamber and an inner surface of said blocking chamber, which is disposed on its one end adjacent said ink holding means, and which communicates on its other end with said ink storing portion.
  • 11. The writing instrument according to claim 1, wherein said ink relay means forms a relay groove which is formed in a relay body provided in said blocking chamber, which is disposed on its one end adjacent said ink holding means, and which communicates on its other end with said ink storing portion.
  • 12. The writing instrument according to claim 1, wherein said blocking chamber has an inner diameter enabling the ink to be held in a liquid-cylindrical form in one end portion thereof, has a predetermined amount of the gas enclosed therein, and further has an ink relay body which projects into said blocking chamber from a side of the other end portion thereof, which communicates in its proximal end portion with said writing-element-side passage, which has a front end portion formed in a pointed shape being disposed adjacent a free surface of the ink held in a liquid-cylindrical form in said blocking chamber, and which transfers part of the ink to said writing-element-side passage by contacting the free surface.
  • 13. The writing instrument according to claim 12, wherein said ink relay body transfers the ink to said writing-element-side passage by capillary force.
  • 14. The writing instrument according to claim 12, wherein said ink relay body transfers the ink to said writing-element-side passage by wettability of a surface thereof.
  • 15. The writing instrument according to claim 12, wherein said ink relay body has the front end portion in the form of a cone.
  • 16. The writing instrument according to claim 15, wherein between an outer periphery of a proximal portion of the front end portion in the form of a cone of said ink relay body and an inner periphery of said blocking chamber is formed said ink storing portion in the form of a ring with a wedge-shaped cross section.
  • 17. The writing instrument according to claim 12, wherein said ink relay body has the front end portion in the form of an aslant cut shape.
  • 18. The writing instrument according to claim 17, wherein between a proximal portion of an aslant cut portion in the front end portion of said ink relay body and an inner periphery of said blocking chamber is formed said ink storing portion with a wedge-shaped cross section.
  • 19. The writing instrument according to claim 12, wherein said ink relay body has the front end portion provided with a projecting portion with a small diameter.
  • 20. The writing instrument according to claim 19, wherein in a base portion of said projecting portion in the front end portion of said relay body is formed said ink storing portion.
  • 21. The writing instrument according to claim 12, wherein said ink relay body is formed of a porous material.
  • 22. The writing instrument according to claim 12, wherein said ink relay body has the front end portion provided with a relay groove capable of transferring the ink to a proximal end side from a front end side due to a capillary force thereof.
  • 23. The writing instrument according to claim 12, wherein between an outer periphery of the front end portion of said ink relay body and an inner periphery of said blocking chamber is formed a relay gap capable of transferring the ink to a proximal end side from a front end side of said ink relay due to a capillary force thereof.
  • 24. The writing instrument according to claim 12, wherein a porous relay core is inserted into said ink-chamber-side passage.
  • 25. A method for producing the writing instrument according to claim 1, said method comprising the steps of:holding said writing instrument in a generally vertical posture with said writing element directed downward, and having no ink in said ink control mechanism; injecting the ink into said ink chamber; evacuating the gas in said ink chamber and said blocking chamber through said ink relay means, thereby filling the ink injected into said ink chamber to said ink holding means of said ink control mechanism; and halting the evacuation of the gas through the ink relay means by flowing the injected ink to the ink relay means in the ink control mechanism thereby enclosing the gas with a predetermined amount remaining in said blocking chamber.
Priority Claims (2)
Number Date Country Kind
10-337376 Nov 1998 JP
10-337377 Nov 1998 JP
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of International Application No. PCT/JP99/06579 filed Nov. 25, 1999, which claims dual priority of Japanese Patent Application No. 10/337376 filed Nov. 27, 1998, and Japanese Patent Application No. 10/337377 filed Nov. 27, 1998.

US Referenced Citations (9)
Number Name Date Kind
3345674 De Groft Oct 1967 A
3397939 Berry Aug 1968 A
3421823 Matsumoto Jan 1969 A
3792932 Henriksen Feb 1974 A
4588319 Niemeyer May 1986 A
4776718 Heinzmann et al. Oct 1988 A
4973180 Hori Nov 1990 A
5967687 Oike Oct 1999 A
6095707 Kaufmann Aug 2000 A
Foreign Referenced Citations (3)
Number Date Country
1417143 Nov 1939 JP
362745 Dec 1949 JP
5848484 Apr 1983 JP
Continuations (1)
Number Date Country
Parent PCT/JP99/06579 Nov 1999 US
Child 09/864533 US