X-ray apparatus including a filter with filter elements having an adjustable absorptivity

Information

  • Patent Grant
  • 6438211
  • Patent Number
    6,438,211
  • Date Filed
    Wednesday, October 11, 2000
    24 years ago
  • Date Issued
    Tuesday, August 20, 2002
    22 years ago
Abstract
An X-ray apparatus includes an X-ray source for producing a beam of X-rays, an X-ray detector for detecting this radiation, and an X-ray filter with filter elements which is arranged between the X-ray source and the X-ray detector so as to attenuate the X-ray beam in each independent filter element individually. Each filter element can contain a liquid filling (22) which is electrically conductive and X-ray absorbing, the value of the X-ray absorptivity of each filter element being discretely adjustable by step-wise adjustment of the level of the liquid filling within each filter element. Each filter element includes an electrode (23) which is positioned between an isolator layer (34) and a substrate (38) in a wall of the filter element in order to apply an electric potential to the wall of this element. Another electric potential is applied to the liquid filling. Therefore, an electric capacitance can be defined per unit of surface area of the filter element. In order to achieve step-wise filling of the filter element, in accordance with the invention the electric capacitance per unit of surface area of the filter element is varied in its longitudinal direction z. This is realized, for example, by subdividing the electrode (23) into electrode segments of different surface area in the longitudinal direction z of the filter element, the first electrode segment (37) having a surface area which is larger than that of the second electrode segment (39).
Description




BACKGROUND OF INVENTION




The invention relates to an X-ray apparatus which includes an X-ray source for producing X-rays, an X-ray detector for detecting the X-rays, and a filter which is arranged between the X-ray source and the X-ray detector and includes a plurality of tubular filter elements having a longitudinal direction and a circumference, wherein




each filter element has an internal volume for receiving a liquid filling which contains at least one electrically conductive and one X-ray absorbing liquid component, the X-ray absorptivity of said filter element being dependent on the quantity of X-ray absorbing liquid component present in the internal volume,




each filter element is provided with a first electrode for applying a first electric voltage to a wall of the filter element and a second electrode for applying a second electric voltage to the internal volume of the filter element,




the first electrode is electrically isolated from the internal volume of the filter element by means of an isolator layer in such a manner that an electric capacitance per unit of surface area of the filter element exists between the first electrode and the electrically conductive liquid component when a quantity of the electrically conductive liquid component is present in at least a part of the internal volume of the filter element,




the X-ray absorptivity of each filter element is adjustable by step-wise control of a surface level of the X-ray absorbing liquid component in the longitudinal direction of each filter element.




An X-ray apparatus with an X-ray filter of this kind is known from U.S. Pat. No. 5,666,396 (PHN 15.378). The known X-ray apparatus includes a filter with a plurality of filter elements, each having an individual absorptivity which is being dependent on the level of a liquid filling present in the filter element. The X-ray apparatus is used inter alia for medical diagnostic imaging where a patient to be examined is arranged between the X-ray source and the X-ray detector in order to image internal structures. Because of the fact that there are structures of different electron density present within the patient, areas of different density are observed in a resultant X-ray image. The difference in density between the extreme values of the density in one X-ray image is defined as the dynamic range. The filter serves to limit a dynamic range per X-ray image.




In order to limit the dynamic range of the object to be examined, the known X-ray apparatus includes a filter with filter elements provided with a bundle of tubes for receiving a liquid filling which is X-ray absorbing as well as electrically conductive; each tube is connected to a common supply duct. Each filter element is provided with a first electrode which is arranged in a wall of the filter element in order to apply an electric voltage to the wall of the filter element. A second electrode is in contact with the liquid filling. The electric voltage applied to the first electrode of the filter element influences the adhesion between the liquid filling and an inner wall of the filter element; this adhesion determines whether the relevant filter element is filled with the liquid filling. The relative quantity of the liquid filling in individual filter elements is controlled on the basis of the electric voltages applied to the individual filter elements. For example, for a first value of the electric voltage the adhesion to the inner wall for the liquid filling is increased and the relevant filter element is filled with the liquid filling from the supply duct. For a second value of the electric voltage the adhesion is reduced and the liquid filling is drained from the filter element to the supply duct. The filter elements are adjusted to a high X-ray absorptivity by filling them with the liquid filling; they are adjusted to a low X-ray absorptivity by keeping filter elements empty.




It is a drawback of the known device that the filling of each filter element is controlled by application of a sequence of electric voltage pulses to the first electrode of the filter element so that the filter element is electrically charged. The level of the electric charge determines the degree of filling of the filter element. It has been found that in the course of time the filling level of the filter element becomes poorly reproducible. In many practical cases it is desirable to have a reproducible filling with an a priori known degree of discretization so as to realize a reliable range of gray scale values.




SUMMARY OF INVENTION




It is an object of the invention to provide an X-ray apparatus which includes a filter provided with filter elements whose X-ray absorptivity can be controlled in steps.




An X-ray apparatus according to the invention is characterized in that the electric capacitance per unit of surface area of the wall of the filter element varies substantially in the longitudinal direction of the filter element.




The invention utilizes the known effect that a contact angle between an electrically conductive liquid and an electrode which is isolated therefrom is changed by creating a potential difference between the electrically conductive liquid and the electrode. This phenomenon is known as electrowetting. When electrowetting is applied to a tubular filter element which has an electrode provided in its wall and is filled with an electrically conductive liquid filling, the level of said liquid filling in the filter element can be influenced due to the fact that the electrowetting force is oriented in the longitudinal direction of the filter element so that the degree of filling of the filter element can be increased or decreased at option. In order to realize the potential difference between the liquid filling and the first electrode provided in the wall of the filter element, they are electrically isolated from one another by means of an isolator layer deposited on the inner wall of the filter element. In order to achieve a low wetting hysteresis, the isolator layer may also be covered by an inert cover layer so that the liquid filling directly contacts the cover layer. A capacitance per unit of surface area of the filter element which is due to the geometry of the filter element can then be defined. It is known that in electrowetting a balance exists between the capillary force, the force of gravity and the electric capillary force or electrowetting force. The relationship between the level of the electrically conductive liquid filling in the filter element and the relevant physical quantities can be derived from the equations for the energy balance in the filter element. There can be defined two dominant variables whose value determines the electrowetting force in the filter element. The first variable is the capacitance per unit of surface area which is averaged over the length of the contact edge between the meniscus of the electrically conductive liquid filling and the inert cover layer. The second variable is the potential difference between the electrically conductive liquid filling and the first electrode. The invention is based on the idea to realize the filter element filling in steps by step-wise varying the capacitance, and hence the minimum potential difference necessary for electrowetting to occur, in the longitudinal direction of the filter element.




The procedure for the step-wise filling of the filter element is as follows. The operation of the filter element will be described first of all for the case where the liquid filling contains two liquid components that can fully dissolve in one another, thus forming one electrically conductive and X-ray absorbing liquid. It is also assumed that the filter element is empty, that the capacitance variation profile in the longitudinal direction of the filter element is known a priori, and that no potential difference exists yet between the liquid filling and the first electrode. Finally, a distinction is made between a “fill” voltage for completely filling the filter element, a “hold” voltage for keeping the liquid filling in position, and a “drain” voltage for draining the filter element. The duration of the voltage pulse of the “drain” voltage or the “fill” voltage determines the volume of the filling. A relevant control chart is as follows: during step one a voltage is applied to the first electrode in such a manner that all filter elements are filled (the “fill” voltage). Subsequently, the voltage for all filter elements is lowered to the “hold” voltage. Finally, per individual filter element the pulses of the “drain” voltage are applied with a pulse duration such that the liquid filling is lowered to the required level.




It is alternatively possible to form the liquid filling from more, notably two, liquid components which are not miscible. In that situation, for example the properties of the liquid components can be individually optimized so that, for example, one liquid component has optimum electrical conductivity properties and hardly absorbs X-rays whereas the second liquid component has optimum X-ray absorbing properties and is electrically insulating. This situation can also be used to make one of the liquid components electrically conductive as well as X-ray absorbing and to choose the second liquid component to be such that it prevents degradation of the inert cover layer. The respective liquid columns may then be contiguous so that a common interface is formed in the transverse direction. However, it is also feasible for the two liquid components to remain separated by a gas layer. Furthermore, it must be possible to supply the liquid components from a respective supply duct. In that case the filter element is always filled with the liquid filling, the degree of the X-ray absorption being determined by the level of the X-ray absorbing liquid component in the filter element. The operation of the filter element is then similar to that according to the described control chart. According to this method the level of the X-ray absorbing liquid component is determined passively by the level of the electrically conductive liquid component in the filter element and the maximum X-ray absorption is reached when the filter element is completely filled with the X-ray absorbing liquid component.




One method of varying the mean capacitance per unit of surface area consists in locally changing the surface area of the electrode relative to the surface area of the tubular filter element, for example by means of electrode constrictions. To this end, a first embodiment of the X-ray apparatus according to the invention is characterized in that the first electrode includes a number of electrically interconnected first and second electrode segments, each of which extends at least over a part of the circumference of the tubular filter element, the first and the second electrode segments being arranged so as to succeed one another in the longitudinal direction of the filter element, and that the first electrode segment extends over a larger part of the circumference of the filter element in comparison with the second electrode segment.




Another method of varying the capacitance per unit of surface area consists in the use of a number of different isolator materials. A further embodiment is characterized in that the isolator layer includes a number of first and second isolator segments, the first and second isolator segments succeeding one another in the longitudinal direction of the filter element, the first isolator segment having a dielectric constant which is higher than that of the second isolator segment.




It is alternatively possible to vary the capacitance per unit of surface area by varying a distance between the liquid filling and the first electrode. This is the case in a third embodiment which is characterized in that the isolator layer includes a number of first and second isolator layer segments, the first and second isolator layer segments succeeding one another in the longitudinal direction of the filter element and the first isolator layer segment having a layer thickness which is larger than that of the second isolator layer segment.











BRIEF DESCRIPTION OF DRAWINGS




These and other aspects of the invention will be elucidated and described on the basis of the following embodiments and the accompanying drawing; therein:





FIG. 1

shows diagrammatically an X-ray apparatus according to the invention,





FIG. 2



a


is a diagrammatic sectional view of a filter element of the filter of

FIG. 1

which is filled with a liquid filling consisting of one liquid component,





FIG. 2



b


is a diagrammatic sectional view of a filter element of the filter shown in

FIG. 1

which is filled with a liquid filling consisting of two liquid components,





FIGS. 3



a


and


3




b


show diagrammatically the geometry of the filter element and a 360° view of the first electrode provided with electrode constrictions.





FIG. 4

is a diagrammatic sectional view of the filter element provided with an isolator layer composed of different isolator segments, and





FIG. 5

is a diagrammatic sectional view of the filter element provided with an isolator layer composed of isolator layer segments of different thickness.











DETAILED DESCRIPTION





FIG. 1

shows diametrically an X-ray apparatus which includes a filter in accordance with the invention. The X-ray source


1


emits an X-ray beam


2


which irradiates an object


3


, for example a patient to be examined. As a result of local differences in the absorption of X-rays in the object


3


and X-ray image is formed on the X-ray detector


4


which in this case an image intensifier


6


and is converted into a light image on the exit window


7


; this light image is imaged on a video camera


9


by means of a lens system


8


. The video camera


9


forms an electronic image signal from the light image. The electronic image signal is applied, for example for further processing, to an image processing unit


10


or to a monitor


11


on which the image information in the X-ray image is displayed.




Between the X-ray source


1


and the object


3


there is arranged a filter


12


for local attenuation of the X-ray beam


2


. The filter


12


includes various tubular filter elements


13


whose X-ray absorptivity can be adjusted by application of electric voltages to the wall of the filter elements by means of an adjusting circuit


14


. The electric voltages are adjusted, for example on the basis of the setting of the X-ray source


1


, by means of the power supply


15


of the X-ray source and/or on the basis of, for example brightness values of the X-ray image which can be derived from the signal present on the output terminal


16


of the video camera


9


. The general construction of a filter


12


of this kind and the composition of the liquid filling thereof are described in greater detail in U.S. Pat. No. 5,625,665 (PHN 15.044).





FIG. 2



a


is a diagrammatic sectional view of the tubular filter element


13


of a filter as shown in FIG.


1


. The filter element


13


is filled, via the supply duct


20


, with the liquid filling


22


which is formed by one electrically conductive and X-ray absorbing liquid. For each filter element the longitudinal direction z and the internal volume


21


are defined, the latter being bounded by the walls


28


of the filter element. Each filter element includes the first electrode


23


in the form of an electrically conductive layer which is electrically isolated from the liquid filling in the internal volume


21


by means of an isolator layer


34


, an inert cover layer


24


which is provided on an inner side of the walls


28


, and a second electrode


29


for applying an electric potential to the liquid filling. The electrically conductive layer


23


of the filter element


13


is coupled to a switching element which, in the present embodiment, is formed by a drain contact


30


of a field effect transistor


25


whose source contact


31


is coupled to a power supply circuit


26


. The field effect transistor


25


is turned on, i.e. the switching element is closed, by means of a control voltage which is applied, via the control line


27


, to a gate contact


32


of the field effect transistor


25


. The electric voltage of the voltage line


26


is applied to the electrically conductive layer


23


by closing the switching element. When the voltage line is adjusted to the value of the “filling” voltage, the contact angle θ between the liquid filling


22


and the inert cover layer


24


decreases and the relevant filter element is filled with the liquid filling.





FIG. 2



b


is a diagrammatic sectional view of the tubular filter element


113


of a filter as shown in

FIG. 1

in case the filter element is filled with a liquid filling composed of an electrically conductive liquid component


122


and an X-ray absorbing liquid component


124


which is not miscible therewith. The liquid components are supplied via respective supply ducts


120


and


121


. The other functional parts of the filter element


113


are substantially identical to those of the filter element


13


, so that the control chart for the electrically conductive liquid component can be executed in a similar manner. This control chart determines the level of the electrically conductive liquid component


122


in the internal volume


21


of the filter element


113


which in its turn determines the level of the X-ray absorbing liquid component


124


in the filter element


113


, because the respective components constitute one common liquid column with an interface


130


. The degree of X-ray absorption is in this case determined by the degree of filling of the filter element


113


with the X-ray absorbing component


124


.





FIG. 3



a


is a diagrammatic cross-sectional view of a first embodiment of the tubular filter element


13


. In this embodiment the filter element


13


has a circular cross-section whereas, generally speaking, the cross-section of the filter element may be a polygon. The filter element contains the liquid filling


22


which is in contact with the inert cover layer


24


. The liquid filling is electrically isolated from the first electrode


23


by means of the isolator layer


34


; this involves a capacitance per unit of surface area of the filter element. The electrode


23


is provided on a substrate


38


.

FIG. 3



b


is a 360° view of the projection of the electrode


23


on the substrate


38


. In order to enable local variation of the capacitance per unit of surface area in the longitudinal direction z of the filter element, the electrode


23


in this embodiment is subdivided into successive first electrode segments


37


and second electrode segments


39


of different surface area. The voltage line


27


enables application of the electric voltage to the electrode


23


.





FIG. 4

is a diagrammatic sectional view of a second embodiment of the filter element


13


. The filter element in this embodiment is provided with an isolator layer which is composed of different isolator segments. The isolator layer


134


is subdivided into first isolator segments


136


and second isolator segments


138


which succeed one another in the longitudinal direction z of the filter element. The first isolator segment


136


has a dielectric constant which is higher than that of the second isolator segment


138


, thus enabling a local variation of the capacitance per unit of surface area in the longitudinal direction of the filter element. This step enables the step-wise filling of the filter element


13


with the liquid filling


22


.





FIG. 5

is a diagrammatic sectional view of the third embodiment of the filter element


13


which is provided with an isolator layer composed of different isolator layer segments. The isolator layer


234


is subdivided into first isolator layer segments


236


and second isolator layer segments


238


which succeed one another in the longitudinal direction of the filter element. The thickness of the first isolator layer segment


236


is greater than that of the second isolator segment


238


, thus enabling a local variation of the capacitance per unit of surface area in the longitudinal direction of the filter element. This step enables the step-wise filling of the filter element


13


with the liquid filling


22


. In order to realize an optimum effect of this embodiment it is advantageous when the diameter of the tubular filter element


13


is reduced only slightly at the area of the first isolator layer segment


236


.



Claims
  • 1. An X-ray apparatus which includes an X-ray source (1) for producing X-rays (2), an X-ray detector (4) for detecting the X-rays, and a filter (14) which is arranged between the X-ray source and the X-ray detector and includes a plurality of tubular filter elements (13) having a longitudinal direction z and a circumference, whereineach filter element has an internal volume (21) for receiving a liquid filling (22) which contains at least one electrically conductive and one X-ray absorbing liquid component, the X-ray absorptivity of said filter element being dependent on the quantity of X-ray absorbing liquid component present in the internal volume (21), each filter element is provided with a first electrode (23) for applying a first electric voltage to a wall (28) of the filter element and a second electrode (29) for applying a second electric voltage to the internal volume (21) of the filter element, the first electrode is electrically isolated from the internal volume (21) of the filter element by means of an isolator layer (34) in such a manner that an electric capacitance per unit of surface area of the filter element exists between the first electrode (23) and the electrically conductive liquid component when a quantity of the electrically conductive liquid component is present in at least a part of the internal volume of the filter element (13), the X-ray absorptivity of each filter element (13) is adjustable by step-wise control of a surface level of the X-ray absorbing liquid component in the longitudinal direction z of each filter element, characterized in that the electric capacitance per unit of surface area of the wall (28) of the filter element (13) varies substantially in the longitudinal direction z of the filter element.
  • 2. An X-ray apparatus as claimed in claim 1, wherein the first electrode (23) includes a number of electrically interconnected first and second electrode segments, each of which extends at least over a part of the circumference of the tubular filter element (13), the first and the second electrode segments being arranged so as to succeed one another in the longitudinal direction z of the filter element and that the first electrode segment (37) extends over a larger part of the circumference of the filter element in comparison with the second electrode segment (39).
  • 3. An X-ray apparatus as claimed in claim 1, wherein the isolator layer (134) includes a number of first and second isolator segments, the first and second isolator segments succeeding one another in the longitudinal direction z of the filter element (13), the first isolator segment (136) having a dielectric constant which is higher than that of the second isolator segment (138).
  • 4. An X-ray apparatus as claimed in claim 1, wherein the isolator layer (234) includes a number of first and second isolator layer segments, the first and second isolator layer segments succeeding one another in the longitudinal direction z of the filter element (13) and the first isolator layer segment (236) having a layer thickness which is larger than that of the second isolator layer segment (238).
Priority Claims (1)
Number Date Country Kind
99203409 Oct 1999 EP
US Referenced Citations (4)
Number Name Date Kind
5625665 Fokkink et al. Apr 1997 A
5666396 Linders et al. Sep 1997 A
5751786 Welters et al. May 1998 A
20010024486 Herbert Sep 2001 A1