This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2009-293358, filed Dec. 24, 2009; the entire contents of which are incorporated herein by reference.
Embodiments described herein relate generally to an X-ray computed tomography apparatus.
Recently, an X-ray computed tomography apparatus capable of performing so-called CT fluoroscopy has come on the market. CT fluoroscopy is a technique of reconstruction and displaying tomograms in real time concurrently with a scan. CT fluoroscopy is effective for catheterization. CT reconstruction includes a very large number of processing steps. In current CT fluoroscopy, the field of view in the body axis direction is only about 6 mm (see
A recent wide area detector includes, for example, 320 arrays (320 segments).
However, the fluoroscopy range that allows CT fluoroscopy is still limited by the reconstruction processing speed. As shown in
Currently, therefore, it is not possible to practically apply an X-ray computed tomography apparatus to a situation that requires instantaneousness and a wide field of view as in the case of catheterization and the like. Even if advances in reconstruction techniques will allow to reconstruct several hundred slices in real time, it is necessary to continuously irradiate a wide range with X-rays. This leads to the problem of exposure.
In one embodiment, an X-ray computed tomography apparatus includes an X-ray tube; an X-ray detector; a rotating mechanism; a high voltage generating unit; a reconstruction processing unit; a projection image generating unit configured to generate a projection image based on output from the X-ray detector; an image display unit; and a fluoroscopy control unit configured to control the rotating mechanism, the high voltage generating unit, the X-ray detector, the projection image generating unit and the image display unit to implement stereo fluoroscopy.
An embodiment will be described below with reference to the views of the accompanying drawing. Note that X-ray computed tomography apparatuses include various types of apparatuses, e.g., a rotate/rotate-type apparatus in which an X-ray tube and an X-ray detector rotate together around an object, a stationary/rotate-type apparatus in which many detectors are arranged on a ring, and only an X-ray tube rotates around an object, and a stationary/stationary-type apparatus in which a plurality of X-ray tubes are arranged on a ring, and a plurality of X-ray detectors are also arranged on a ring. The present embodiment can be more effectively applied to the rotate/rotate- and stationary/rotate-types. In addition, X-ray computed tomography apparatuses include a single tube type apparatus in which a pair of an X-ray tube and an X-ray detector are mounted on a rotating frame, and a so-called multi-tube type apparatus in which a plurality of pairs of X-ray tubes and X-ray detectors are mounted on a rotating frame. The present embodiment can be applied to either type. As mechanisms of converting incident X-rays into electric charges, the following techniques are the mainstream: an indirect conversion type that converts X-rays into light through a phosphor such as a scintillator and converts the light into electric charges through photoelectric conversion elements such as photodiodes, and a direct conversion type that uses generation of electron-hole pairs in a semiconductor by X-rays and migration of the electron-hole pairs to an electrode, i.e., a photoconductive phenomenon. As an X-ray detection element, either of these schemes can be used.
The X-ray tube 101 and the X-ray detector 103 are mounted on an annular frame 102 supported so as to be rotatable around a rotation axis Z. The X-ray detector 103 faces the X-ray tube 101 through the object placed on a top 138 of a bed 137 in an imaging area 5 formed as an opening in the central portion of the gantry 100. A rotating unit 107 can rotate the annular frame 102 at a high speed of, for example, 0.25 sec/rotation. A rotational angle detection unit 111 implemented by a rotary encoder detects the rotational angle of the annular frame 102. The X-ray tube 101 receives a tube voltage and a filament current from a high voltage generator 109 via a slip ring 108. The high voltage generator 109 may be mounted on the annular frame 102 together with a capacitor. The X-ray tube 101 generates X-rays upon receiving the tube voltage and the filament current. The X-ray detector 103 detects the X-rays transmitted through the object.
The gantry 100 is supported on a tilt mechanism 127 so as to be tiltable. This can tilt the rotation axis Z of the annular frame 102, i.e., the rotation axis Z of the X-ray tube 101 and X-ray detector 103, forward or backward from the horizontal position at an arbitrary angle.
A data acquisition circuit 104 generally called a DAS (Data Acquisition System) converts a signal output from the X-ray detector 103 for each channel into a voltage signal, amplifies it, and further converts it into a digital signal. This data (raw data) is sent to a preprocessing device 106 via a noncontact data transmitter 105. The preprocessing device 106 performs correction processing such as sensitivity correction for the raw data. A storage device 112 then stores the resultant data as so-called projection data at a stage immediately before reconstruction processing. A fluoroscopy control unit 120 reads out projection data from the storage device 112 in an order corresponding to the arrangement of the respective detection elements to generate the two-dimensional distribution of projection data, i.e., a projection image.
The storage device 112 is connected to a system controller 110 via a data/control bus, together with a reconstruction device 114, a three-dimensional image processing unit 128, a monitor 116, a stereo monitor 117, an eyeglass type stereo monitor 118, the operation unit 115, a footswitch 119, a fluoroscopy condition setting support unit 121, and the fluoroscopy control unit 120. The reconstruction device 114 reconstructs volume data based on projection data stored in the storage device 112 by using a cone beam image reconstruction method. As a cone beam image reconstruction method, the Feldkamp method is generally used. The Feldkamp method is an approximate reconstruction method based on a fan beam convolution/back projection method. Convolution processing is performed by regarding data as fan projection data on the premise that the cone angle is relatively small. However, back projection processing is performed along an actual ray corresponding to a tilted cone angle.
The three-dimensional image processing unit 128 generates a two-dimensional image which can be displayed on a two-dimensional window from volume data by volume rendering. Volume rendering is a technique of selectively extracting a target portion by defining opacities and colors stepwise in accordance with pixel values or the like. In practice, the three-dimensional image processing unit 128 sequentially adds the respective pixel values at points on a ray while applying predetermined coefficients to the pixel values, and sets the addition result as a pixel value on a projection plane. Such coefficients are determined based on opacities with respect to pixel values, the distances in the line-of-sight direction (the distances from the projection plane to the corresponding points), shading conditions, and the like. This volume rendering allows to generate a pseudo three-dimensional image like a seen-through image.
As described above, this embodiment includes the monitor 116, the stereo monitor 117, and the eyeglass type stereo monitor 118 as display units. The monitor 116 and the stereo monitor 117 are installed in an imaging room, together with the gantry 100. The operator who is executing, for example, catheterization wears the eyeglass type stereo monitor 118. The monitor 116 displays three-dimensional images and projection images. The stereo monitor 117 and the eyeglass type stereo monitor 118 each include a right-eye monitor unit (or a right-eye display area) and a left-eye monitor unit (or a left-eye display area). The operator uses them in the stereo fluoroscopy mode (to be described later). The operator visually recognizes the right- and left-eye monitor units of the stereo monitor 117 or the eyeglass type stereo monitor 118 with his/her right and left eyes to implement stereoscopic vision. This allows the operator to recognize the stereoscopic structure of the target.
The operation unit 115 is provided to mainly allow the operator to execute switching operation between the general CT scan mode and the fluoroscopy mode and condition setting operation for the respective modes. The general CT scan mode is a mode for executing a general volume scan, and is not a new function. A detailed description of this mode will therefore be omitted. The fluoroscopy mode is a mode for implementing a fluoroscopy function approximate to X-ray fluoroscopy using an X-ray diagnosis apparatus by using the X-ray computed tomography apparatus. The fluoroscopy mode will be described in detail below.
The fluoroscopy condition setting support unit 121 provides a setting window for allowing the operator to easily and simply set fluoroscopy conditions. The provided setting window will be described later. The footswitch 119 is a foot-operated type switch which can be placed at an arbitrary position on the floor near the gantry 100 or the bed 137. In the fluoroscopy mode, while the operator steps on the footswitch 119 to keep it on, this apparatus irradiates the object with X-rays and executes live fluoroscopy. That is, in the fluoroscopy mode, every time the X-ray tube 101 makes one rotation, the apparatus captures two or three images or a more set number of images. When the X-ray tube 101 continuously rotates, the apparatus repeatedly generates images at different imaging angles at a period equal to the time taken for one rotation of the X-ray tube 101, e.g., 0.4 sec. Displaying the repeatedly generated images in real time makes it possible to provide a moving image which allows the operator to recognize at least the dynamic displacement of an object even though the frame rate is relatively low. The fluoroscopy control unit 120 controls the respective units to execute CT fluoroscopy operation.
The fluoroscopy mode includes a stereo fluoroscopy form, a biplane form, and a combined form of the stereo fluoroscopy form and the biplane form. Fluoroscopy is operation to display a series of X-ray images (projection images) repeatedly detected by the X-ray detector 103 as a moving image in real time. Stereo fluoroscopy is operation to display right- and left-eye images, as moving images, which correspond to a binocular parallax falling within the range of 5° to 10°. The operator can stereoscopically view the target by viewing a right-eye image with his/her right eye and a left-eye image with his/her left eye.
These forms differ in fluoroscopic angles. In the fluoroscopy mode according to this embodiment, the X-ray tube 101 and the X-ray detector 103 continuously rotate around the object, together with the frame 102. While they keep rotating and the footswitch 119 is in the ON state, the apparatus repeatedly generates pulse-like X-rays every time the X-ray tube 101 passes through a pair of viewpoints (to be referred to as fluoroscopy positions or fluoroscopic angles hereinafter), of many viewpoints on the rotational orbit of the X-ray tube 101, which corresponds to a binocular parallax. The apparatus generates a projection image (planar image) based on data output from the X-ray detector 103 in synchronism with the generation of the X-rays. The monitors 116, 117, and 118 assigned to the respective fluoroscopy positions in advance then display the projection image as a moving image in real time.
When the stereo fluoroscopy form is selected, the two fluoroscopic angles are limited to an angle difference in the range of 5° to 10°. This angle difference corresponds to a binocular parallax. Viewing two fluoroscopic images with the left and right eyes can implement stereoscopic vision. When the biplane form is selected, the difference between the two fluoroscopic angles is not specifically limited but is typically and initially set to 90°. When the combined form is selected, three fluoroscopy positions are set. The two fluoroscopy positions are set to an angle difference in the range of 5° to 10° to make the apparatus function in the stereo fluoroscopy form. One of the two fluoroscopy positions and the remaining fluoroscopy position are typically set to an angle difference of 90° to make the apparatus function in the biplane form.
In addition, this apparatus forms a fluoroscopy condition setting support window including the pseudo three-dimensional image. The fluoroscopy conditions mainly include a condition for the selection of the stereo fluoroscopy form, the biplane form, or the combined form and a condition for the designation of a fluoroscopic angle. The apparatus displays a line representing the rotation axis Z of the X-ray tube 101 upon superimposing it on the pseudo three-dimensional image. A plurality of candidate lines with different fluoroscopic angles are superimposed within a plane which is centered on the above line and perpendicular to it. A candidate line is a line connecting a viewpoint on the rotational orbit from which X-rays are applied to the center of a detector. When the operator designates one of the plurality of candidate lines which is determined as a line allowing to easily see a surgery target region, the apparatus displays a translucent cone beam model indicating the field of view centered on the designated candidate line. The operator confirms that a fluoroscopy target region is included in the cone beam model, and determines the designated candidate line, thus setting a fluoroscopic angle. When the stereo fluoroscopy form is selected, the apparatus displays only candidate lines within the range of angle difference of 5° to 10° from the determined fluoroscopic angle. This indicates that a limitation is practically imposed on the differences between fluoroscopic angles. This angle difference range corresponds to the range of binocular parallaxes which can implement stereoscopic vision (
As shown in
In the biplane form as well, two fluoroscopic angles are set. However, there is no limitation on angle differences, and hence it is possible to set two arbitrary fluoroscopic angles. In the biplane form, when the operator sets one fluoroscopic angle, the apparatus initially displays two candidate lines having a fluoroscopic angle difference of 90° at front and back positions (see
When the doctor sets fluoroscopic angles in the above manner, the apparatus moves the gantry 100 or the top 138 to the fluoroscopy position (S13). Upon completing the above preparation, the doctor issues an instruction to start fluoroscopy (S14). The apparatus continuously rotates the annular frame 102 together with the X-ray tube 101 and the X-ray detector 103. The annular frame 102 keeps rotating until the doctor issues an instruction to finish fluoroscopy (S19). When the doctor turns on the footswitch 119 during continuous rotation of the annular frame 102, the X ray tube 101 irradiates the object with pulse X-rays two or three times per rotation during the ON period of the footswitch 119 (S15). As shown in
The projection image corresponding to the first fluoroscopic angle is displayed as, for example, a right-eye image, on a window (right-eye window) assigned in advance to the stereo monitor 117 or the eyeglass type stereo monitor 118. The projection image corresponding to the second fluoroscopic angle is displayed in real time as, for example, a left-eye image, on a window (left-eye window) assigned in advance to the stereo monitor 117 or the eyeglass type stereo monitor 118. Right- and left-eye images each are displayed as a moving image at a frame rate equal to the reciprocal of the time taken for one rotation.
When the biplane form is selected, a projection image corresponding to the first fluoroscopic angle is displayed on one window of the stereo monitor 117 or eyeglass type stereo monitor 118, and a projection image corresponding the second fluoroscopic angle is displayed on the other window or the monitor 116. When the combined form is selected, left- and right-eye projection images are displayed on the respective windows of the stereo monitor 117 or eyeglass type stereo monitor 118, and a projection image having a fluoroscopic angle difference of 90° is displayed on the monitor 116.
When the doctor inputs an instruction to tilt the gantry during fluoroscopy, the apparatus tilts the gantry 100 in the designated direction while continuing fluoroscopy, as shown in
When the doctor issues an instruction to change (re-set) the fluoroscopy position during fluoroscopy as in step S12 (S17), the flow returns to step S13 to move the gantry 100 to the position.
The apparatus repeats the above fluoroscopy operation until the achievement of the object, i.e., the end of catheterization (S18). Thereafter, the apparatus terminates the fluoroscopy (S19). Finally, the apparatus executes a volume scan. The reconstruction device 114 then reconstructs volume data based on the projection data acquired by the above operation. The three-dimensional image processing unit 128 generates a pseudo three-dimensional image from the volume data. The monitor 116 displays the generated image. This allows the doctor to check the catheterization result (S20).
The following is the operation based on the assumption of specific treatment.
(Liver Cancer TAE (Transcatheter Hepatic Arterial Embolization)
(1) The doctor captures a simple CT image, and then determines a range for fluoroscopy by ADCT Volume Scan (16 cm) including a wide field-of-view area detector.
(2) The doctor moves the catheter to the SMA (Superior Mesenteric Artery) by using the plane fluoroscopy function, and then captures a CTAP (CT during Arterial Portography) image with Volume Scan.
(3) The doctor moves the catheter to the common hepatic artery with the aid of plane fluoroscopy, and then captures a CTA image with Volume Scan.
(4) The doctor generates a three-dimensional image of blood vessels by CTA, and then identifies the feeding vessel of the tumor.
(5) The doctor manipulates and moves the microcatheter to the feeding vessel of the tumor while checking the three-dimensional image.
(6) The doctor checks how the tumor is contrast-enhanced by CTA.
(7) The doctor injects an embolus to the tumor while checking it with the aid of plane fluoroscopy.
(8) The doctor determines by CTA that the embolus is fully applied to the tumor.
In step (5) described above, this apparatus displays a position where the doctor can recognize a blood vessel branch portion from the generated three-dimensional image. The gantry is rotated and tilted to the position (manually or automatically), and the doctor checks it with the aid of plane fluoroscopy. The apparatus performs stereoscopic imaging to implement stereoscopic vision while rotating the gantry. The doctor operates the catheter and guides it to a proper blood vessel while checking the actual state of the microcatheter and a blood vessel running state in a three-dimensional CTA image. General triple-slice fluoroscopy cannot be effectively used with an insufficient range.
This embodiment can implement stereoscopic vision with only two times of X-ray irradiation per rotation, and hence allows smooth operation with low X-ray exposure. The doctor repeats the operation while changing the display position, as needed (in this case, the three-dimensional display mode based on CTA operates in association with the operation of the doctor).
(Needle Biopsy (Lung Fields))
(1) The doctor determines a range in which fluoroscopy is performed by ADCT Volume Scan (16 cm) upon capturing a simple CT image.
(2) The doctor generates a three-dimensional image and makes an examination on a guide which guides a needle to the tumor without damaging the bronchi and blood vessels.
(3) The apparatus calculates a display angle at which the doctor can easily recognize main blood vessels and bronchi along the guide.
(4) The apparatus rotates and tilts the gantry in accordance with the angle, and the doctor checks the resultant state with the aid of plane fluoroscopy.
(5) The doctor performs stereoscopic imaging while rotating the gantry, obtains stereoscopic vision, and moves the biopsy needle to the target tumor while checking the positions of blood vessels and bronchi around the needle.
(6) The doctor repeats this operation while changing the display position, as needed.
As has been described above, according to this embodiment, it is possible to obtain a three-dimensional CT fluoroscopic image in a wide range with the minimum X-ray exposure utilizing the advantages of ADCT. In addition, it can be expected to improve accuracy and shorten the surgery time by fusing puncture or catheterization with a three-dimensional volume image. Furthermore, it is possible to implement the X-ray computed tomography apparatus at a low cost without performing reconstruction and MPR for several hundred images in real time.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2009-293358 | Dec 2009 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4214267 | Roese et al. | Jul 1980 | A |
4578802 | Itoh | Mar 1986 | A |
4637040 | Sohval et al. | Jan 1987 | A |
4737972 | Schoolman | Apr 1988 | A |
5073914 | Asahina et al. | Dec 1991 | A |
5090038 | Asahina | Feb 1992 | A |
5163076 | Koyama | Nov 1992 | A |
5173852 | Lonn | Dec 1992 | A |
5233639 | Marks | Aug 1993 | A |
5361291 | Toth et al. | Nov 1994 | A |
5448610 | Yamamoto et al. | Sep 1995 | A |
5568533 | Kumazaki et al. | Oct 1996 | A |
6041097 | Roos et al. | Mar 2000 | A |
6256372 | Aufrichtig et al. | Jul 2001 | B1 |
6359961 | Aufrichtig et al. | Mar 2002 | B1 |
6393090 | Hsieh et al. | May 2002 | B1 |
6400791 | Schwarz | Jun 2002 | B1 |
6449333 | Yamasaki | Sep 2002 | B1 |
6580777 | Ueki et al. | Jun 2003 | B1 |
6760469 | Berestov et al. | Jul 2004 | B1 |
6807292 | Goto et al. | Oct 2004 | B1 |
6862364 | Berestov | Mar 2005 | B1 |
6914959 | Bailey et al. | Jul 2005 | B2 |
7031425 | Hsieh et al. | Apr 2006 | B2 |
7035371 | Boese et al. | Apr 2006 | B2 |
7164745 | Tsuyuki | Jan 2007 | B2 |
7209538 | Sukovic et al. | Apr 2007 | B2 |
7227925 | Mansfield et al. | Jun 2007 | B1 |
7486763 | Popescu | Feb 2009 | B2 |
7558368 | Klingenbeck-Regn | Jul 2009 | B2 |
7657304 | Mansfield et al. | Feb 2010 | B2 |
7684538 | Morton et al. | Mar 2010 | B2 |
7693256 | Brahme et al. | Apr 2010 | B2 |
7702065 | Lozano Fantoba et al. | Apr 2010 | B2 |
7708462 | Fujiwara et al. | May 2010 | B2 |
7809102 | Brada et al. | Oct 2010 | B2 |
7826585 | Proksa et al. | Nov 2010 | B2 |
7869561 | Dafni | Jan 2011 | B2 |
7933378 | Proksa | Apr 2011 | B2 |
7949089 | Dafni et al. | May 2011 | B2 |
8094778 | Sendai | Jan 2012 | B2 |
8160337 | Rasche et al. | Apr 2012 | B2 |
8180017 | Forthmann et al. | May 2012 | B2 |
8270562 | Sainath et al. | Sep 2012 | B2 |
8471222 | Handa et al. | Jun 2013 | B2 |
20030031291 | Yamamoto et al. | Feb 2003 | A1 |
20040208279 | Xiao et al. | Oct 2004 | A1 |
20050047541 | Tsuyuki | Mar 2005 | A1 |
20070003007 | Carrano et al. | Jan 2007 | A1 |
20080031411 | Klingenbeck-Regn | Feb 2008 | A1 |
20090257551 | Dafni et al. | Oct 2009 | A1 |
20090285355 | Brada et al. | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
03-123537 | May 1991 | JP |
04-259454 | Sep 1992 | JP |
2000-83941 | Mar 2000 | JP |
2003-038477 | Feb 2003 | JP |
2006-141709 | Jun 2006 | JP |
2006-524529 | Nov 2006 | JP |
2007-301228 | Nov 2007 | JP |
Entry |
---|
Office Action issued Jun. 2, 2015 in Japanese Patent Application No. 2014-167865. |
Office Action mailed Dec. 14, 2015, in Chinese Application No. 201010606070.3. |
Number | Date | Country | |
---|---|---|---|
20110158380 A1 | Jun 2011 | US |