X-ray film processor

Information

  • Patent Grant
  • 6247858
  • Patent Number
    6,247,858
  • Date Filed
    Wednesday, December 1, 1999
    25 years ago
  • Date Issued
    Tuesday, June 19, 2001
    23 years ago
Abstract
An improved drying chamber, which in the preferred embodiment is employed with an x-ray film processor, includes an infrared heater source. Preferably the infrared source is positioned to dry respective first and second sides of a material requiring drying, for example x-ray film. The infrared source includes a control circuit for driving the infrared source. The frequency at which the infrared source operates is chosen so as to cause fluid particles being dried to resonate, permitting a more efficient heating cycle. In an x-ray film process, this allows a smaller and faster operating unit to be provided
Description




S




TATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT Not Applicable.




BACKGROUND OF THE INVENTION




This invention relates to an improved drying chamber. While the invention is described with particular reference to its application in x-ray film processors, those skilled in the art will recognize the wider applicability and inventive principals disclosed hereinafter.




X-ray film processors have generally become smaller and more compact than units previously available. These processors all require a plurality of processing stations for processing the film. Film processors of this type are often employed in dentist offices, in order to process x-ray pictures often made of the area to be treated prior to the actual treatment of a patient. A variety of such processors have been developed in the past. These include those described in U.S. Pat. Nos. 4,316,663, 4,086,607 and 5,040,012. In general, these processors includes a first tank containing a developing solution, a second tank for containing a fixer solution, and often include a third tank containing a cleaning solution, generally water, followed by a drying station for drying the processed films, as well as a film transport system for transporting the film through the processing stations and the developed drying station from a film loading point to a film discharge point.




The present invention is particularly concerned with the drying system of the processors. Three methods have been developed through which heat is transferred from one body to another. These include conduction, convection and infrared (IR) radiation. While x-ray film processes in the past have used radiation, infrared radiation per se has not permitted any increase in processor speed.




I have found that efficient infrared drying can occur by paying close attention to the frequency at which the infrared radiation is provided. For example, in the film processor described hereinafter, I have found that the infrared radiation should occur at a frequency that causes the water particles associated with the cleansing operation of the film processor, to resonate. By operating at the infrared heater at a frequency tuned to the material for which evaporation occurs, the water particles, for example, evaporate at higher rates, permitting faster operating times and reduced equipment size.




In addition, I have found that implementation of reflective coatings on the quartz tube that generates the infrared frequency, so as to reflect a higher number of the rays in the direction towards the film, also increases the heat transfer and evaporative capabilities of the processor. Preferably, a reflective coating on the quartz or heater tube that generates the infrared frequency over approximately one-half of the tubes external surface, in combination with the choosing of the tube operating frequency to correspond to the fluid for which evaporation is desired, enables one to increase significantly the speeds of the processor and reduce the film processing time to approximately sixty seconds per film.




BRIEF SUMMARY OF THE INVENTION




One of the objects of this invention is to provide an improved drying plenum.




Another object of this invention is to provide a drying plenum in which infrared frequency is tuned to the material or fluid for which evaporative drying is sought.




Another object of this invention is to provide an improved x-ray film processor.




Another object of this invention is to provide a film processor in which increased film speeds and improved drying times are obtained.




Other objects of this invention will be apparent to those skilled in the art in light of the following description and accompanying drawings.




In accordance with this invention, generally stated, a drying chamber or plenum defines a path for transferring a material to be dried. At least one and preferably a pair of infrared heaters are positioned to divert IR rays toward the material to be dried. A control circuit for driving the heater also is provided, the control circuit operating the heater at a frequency that makes the fluid to be dried resonate. Preferably, a reflective coating on the heater also is employed to direct infrared energy towards the material being dried.











BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS




In the drawings,





FIG. 1

is a diagrammatic view of an x-ray film processor employing the drying chamber of the present invention; and





FIG. 2

is a diagrammatic view of one illustrative embodiment of the infrared source employed with the drying chamber of FIG.


1


.




Corresponding reference numerals will be used throughout the several figures of the drawings.











DETAILED DESCRIPTION OF THE INVENTION




The following detailed description illustrates the invention by way of example and not by way of limitation. This description will clearly enable one skilled in the art to make and use the invention, and describes several embodiments, adaptations, variations, al ternatives and uses of the invention, including what I presently believe is the best mode of carrying out the invention.




Referring now to

FIG. 1

, reference numeral


1


indicates a film processor


1


having a plenum


2


of the p resent invention associated with it.




In general, the film processor


1


includes a transport system


5


for transporting a film


6


through a series of containers for processing the film, and through the plenum


2


.




The film processor


1


includes a first tank


9


for containing a fluid solution (typically the developer solution), a second tank


10


for containing a second solution (typically the fixer), and a third tank


11


for containing a cleaning solution (typically water). The tanks


9


,


10


and


11


are conventional, and any of a variety of transport system


5


and devices for defining the tanks


9


-


11


may be employed. For example, the roller tank system as described in U.S. Pat. No. 5,182,593 the specification of which is incorporated herein by reference may be used in some embodiments of the present invention. In any event, the plenum


2


includes an enclosure


15


. The transport system


5


defines a travel path


16


for the film.




In the embodiment illustrated, a pair of infrared heaters or tubes


20


are positioned on opposite sides of the path


16


, generally spaced 180° from each other. Other mounting arrangements and positions are compatible with the broader aspects of this invention. The infrared heaters


20


are driven by a control system


25


.




Control system


25


is conventional in that any common electrical system for driving the heaters


20


may be employed. The control system


25


varies, however, from prior art systems in that the operating point of the IR heaters


20


is specifically chosen or tuned to the particular moisture for which the plenum


2


is provided for evaporation or drying. Thus, the system


25


drives the heater


20


so as to cause the moisture particles to resonate or vibrate, thereby raising the heat transferred to the particles and causing them to evaporate at higher rates. I found that with a water bath commonly employed in the processor


1


, a frequency of approximately three microns makes water particles resonate and evaporate at high rates. As will be appreciated by those skilled in art, if one knows the particular fluid for which evaporation is desired, the control device


20


may be specifically designed to drive the IR heaters


20


so that the heaters generate the desired infrared frequency. In the alternative, the control


25


may be adjustable so that the frequencies at which the infrared heaters


20


are driven may be varied to permit to tuning of the heaters after a plenum


2


installation, so that the plenum


2


may be operated efficiently for the particular fluid for which high evaporation rates available with the present invention, is desired.




While I have found that tuning the infrared frequency to the fluid for which evaporation is desired greatly increases the efficiency of the plenum


1


, additional efficiencies can be obtained by also incorporating improvements in the design of the heaters


20


. Referring now to

FIG. 2

, a heater


20


is diagrammatic shown as including a reflective coating


26


. The reflective coating


26


generally is intended to cover approximately one-half of the surface area of the heater


20


. The non-reflective portion


27


of the heater


20


is positioned so that the infrared rays are directed toward the path


16


in the plenum


16


. I have found that the best operation of the plenum


2


is obtained when a reflective gold coating of suitable thickness is positioned on the outer surface of the heater


20


. Gold reflects a high percentage of infrared rays back towards the film, instead of permitting those rays to escape through the plenum walls.




Operation of the processor


1


is conventional in that an operator inserts film on an input side


30


of the path


16


, and removes processed film on an output side


40


of the path


16


. Because of the improved efficiencies obtained with my invention, the plenum


2


size can be reduced, the number of heaters employed may be reduced. Generally, only a single heater


20


is required for same application. However, in the case of the processor shown in the preferred embodiment two of the heaters


20


, are located to disable the heater


20


to dry both sides of the film. As indicated, processing time is substantially reduced for a film processor


1


that is of desk top size.




Numerous variations within the scope of the appended claims will be apparent to those skilled in the art and allotted by the foregoing description and accompanying. For example, other reflective coatings may be employed with the heaters


20


, if desired. Likewise, the design of the conventional film processing portion of the device


1


may be altered. While roller tanks were described as a one system for the fluid tanks, other embodiments of the invention may employ actual separate containers for the film processing fluids. The enclosure for the apparatus I may vary, and any aesthetically pleasing design suitable for its intended purpose may be utilized. These variations are merely illustrative.



Claims
  • 1. In an x-ray film processor having:(a) a first tank for containing a developer solution; (b) a second tank for containing a fixer solution; and (c) a fluid tank for containing a cleaning solution, the improvement which comprises a plenum drying chamber, said chamber including at least one infrared heating assembly, the assembly including an infrared heater source of radiation, and a control circuit for electrically driving the heater, the control circuit operating to drive the heater to produce radiation at a frequency to cause particles of the fluid for which drying is intended to resonate.
  • 2. The improvement of claim 1 wherein the cleaning fluid is water.
  • 3. The improvement of claim 2 wherein the infrared frequency at which the heaters are driven is three microns.
  • 4. The improvement of claim 1 wherein the heater has a reflective coating for directing infrared energy along a preselected direction.
  • 5. The improvement of claim 4 wherein the reflective coating is gold.
  • 6. The improvement of claim 5 wherein a pair of heaters are positioned so that x-ray film being processed passes between them.
  • 7. A drying chamber comprising:a path for transferring a material to be dried, said material having a first side and a second side and having a fluid to be dried associated with it; a pair of infrared heaters positioned along said path so that the material to be dried is exposed to said heaters along both the first side and the second side of the said material; a control circuit for driving said heaters, said control circuit being adjustable and adapted to drive said heaters at a frequency that makes the fluid to be dried resonate; and a reflective coating on said heaters adapted to direct the infrared energy toward said material.
  • 8. The chamber of claim 7 wherein said fluid is water and the infrared frequency is approximately three microns.
  • 9. The chamber of claim 8 wherein said reflective coating is gold.
  • 10. The drying chamber of claim 9 adapted for use in an x-ray film processor, wherein the material being dried is x-ray film.
  • 11. A drying chamber, comprising:a path for transferring a material to be dried, said material having a first side and a second side, and having fluid to be dried associated with at least one of said first and second sides; at least one infrared heater assembly, said assembly including an infrared heater source of radiation, and a control circuit operatively connected to said heater, the control circuit being adjustable to drive the heater at a frequency to produce radiation from the heater at a predetermined frequency with frequency causing particles of the fluid to resonate during the drying operation, a reflective coating positioned about said heater so as to direct the infrared energy toward said material.
  • 12. The drying chamber of claim 11 wherein the fluid is water.
  • 13. The drying chamber of claim 12 wherein the infrared frequency at which the heater is driven is three microns.
  • 14. The drying chamber of claim 13 wherein the reflective coating is gold.
  • 15. The drying chamber of claim 14, further including a second infrared heating assembly, the second assembly including an infrared heater source of radiation, and a control circuit operatively connected to said heater, the control circuit driving the heater so as to produce radiation therefrom.
  • 16. The drying chamber of claim 14 wherein the heater assemblies are positioned so that the material being processed passes between the infrared heaters.
  • 17. The drying chamber of claim 16 adapted for use in an x-ray film processor, the material being processed comprising x-ray film.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to provisional application Ser. No. 60/110,456, filed Dec. 1, 1998.

US Referenced Citations (6)
Number Name Date Kind
4086607 Muller Apr 1978
4316663 Fischer Feb 1982
5040012 Eklund et al. Aug 1991
5105557 Vadasz et al. Apr 1992
5754208 Szlucha May 1998
5805949 Nozawa et al. Sep 1998
Foreign Referenced Citations (3)
Number Date Country
3-036034 Feb 1991 JP
4-157789 May 1992 JP
10-274475 Oct 1998 JP
Provisional Applications (1)
Number Date Country
60/110456 Dec 1998 US