The present invention relates to an X-ray generating apparatus, a method of adjusting a target, and a method of using the x-ray generating apparatus.
In a transmission type X-ray tube, a target is irradiated with an electron beam to emit X-rays from the target. The electron beam generated at the cathode is accelerated by an accelerating voltage and irradiates the target. Changing this accelerating voltage will change the energy of an electron beam colliding with the target. If the target is thinner than the optimal thickness, part of an electron beam is transmitted through the target, and hence the dose of X-rays generated decreases. In contrast to this, if the target is thicker than the optimal thickness, generated X-rays are attenuated when transmitted through the target. That is, the thickness of a target which maximizes the dose of X-rays changes depending on the accelerating voltage. Accordingly, a single target imposes limitation on the range of accelerating voltages. In order to expand the range of accelerating voltages, it is necessary to prepare a plurality of targets having thicknesses different from each other.
Japanese Patent Laid-Open No. 2001-126650 discloses a transmission type X-ray tube apparatus including an X-ray transmission window, a thin metal film that forms an X-ray target provided on the vacuum side of the X-ray transmission window, an electron gun that generates an electron beam, and a deflector that deflects the electron beam. This thin metal film has a gradually changing thickness. In this X-ray tube apparatus, an electron beam irradiates a place where the thickness of the thin metal film coincides with the depth that an electron enters. However, since X-ray tube apparatuses have individual differences due to the processing accuracies of thin metal films, the assembly tolerances of the X-ray tube apparatuses, and the like, it is difficult to cause an electron beam to accurately enter a target position on a thin metal film, that is, a position where the film has a target film thickness. Accordingly, a conventional X-ray tube apparatus requires a special configuration or adjustment step for adjusting the incident position of an electron beam with respect to a thin metal film.
The present invention provides a technique advantageous in efficiently generating X-rays.
A first aspect of the present invention relates to an X-ray generating apparatus including an electron gun and a target configured to generate X-rays by being irradiated with an electron beam emitted from the electron gun. The X-ray generating apparatus includes a controller configured to control a first mode for thinning the target by irradiating the target with an electron beam with a current adjusted within a first current range and a second mode for generating X-rays by irradiating the target with an electron beam with a current adjusted within a second current range. The first current range has a lower limit larger than the upper limit of the second current range.
A second aspect of the present invention relates to an adjustment method of adjusting a thickness of a target in an X-ray generating apparatus including an electron gun and the target configured to generate X-rays by being irradiated with an electron beam emitted from the electron gun. The adjustment method includes a thinning step of thinning the target by irradiating the target with an electron beam with a current adjusted within a first current range and a detecting step of detecting X-rays generated by irradiating the target with an electron beam with a current adjusted within a second current range. The first current range has a lower limit larger than an upper limit of the second current range.
A third aspect of the present invention relates to a method of using an X-ray generating apparatus including an electron gun and a target configured to generate X-rays by being irradiated with an electron beam emitted from the electron gun. The method includes a thinning step of thinning the target by irradiating the target with an electron beam with a current adjusted within a first current range and a generating step of generating X-rays by irradiating the target with an electron beam with a current adjusted within a second current range. The first current range has a lower limit larger than an upper limit of the second current range.
The disclosure includes an X-ray generating apparatus including an electron gun, a target configured to generate X-rays by being irradiated with an electron beam emitted from the electron gun, and a deflector configured to deflect the electron beam. In the X-ray generating apparatus, the target has a plurality of concave portions, the plurality of concave portions are arranged at positions respectively corresponding to a plurality of accelerating voltages to be applied between a cathode of the electron gun and the target, and the target has thicknesses different from each other at the plurality of concave portions.
Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. It should be noted that the following embodiments are not intended to limit the scope of the appended claims. A plurality of features are described in the embodiments. However, not all the combinations of the plurality of features are necessarily essential to the present invention, and the plurality of features may arbitrarily be combined. In addition, the same reference numerals denote the same or similar parts in the accompanying drawings, and a repetitive description will be omitted.
The electron gun EG can include a cathode CT, an extraction electrode EE that is arranged between the cathode CT and the anode 20, and a convergence electrode CE that is arranged between the extraction electrode EE and the anode 20. The cathode CT emits electrons. An accelerating voltage is supplied between the cathode CT and the anode 20. The amount of electrons entering the target 22 of the anode 20 per unit time, that is, a current, is called a tube current, which can depend on the extraction potential supplied to the extraction electrode EE. The convergence electrode CE converges the electrons or electron beam emitted from the cathode CT. The convergence electrode CE may include a plurality of electrodes.
The X-ray generating apparatus 1 can include a cathode potential supply source 41 that supplies a cathode potential to the cathode CT. The cathode potential supply source 41 may be understood as a constituent element that supplies an accelerating voltage between the cathode CT and the anode 20 that can be maintained at the ground potential. The X-ray generating apparatus 1 can include an extraction potential supply unit 42 that supplies an extraction potential to the extraction electrode EE. The extraction potential supply unit 42 may be understood as a constituent element that supplies an extraction potential between the cathode CT and the extraction electrode EE. The X-ray generating apparatus 1 can include a convergence potential supply unit 43 that supplies a convergence potential to the convergence electrode CE. The convergence potential supply unit 43 may be understood as a constituent element that supplies a convergence voltage between the cathode CT and the convergence electrode CE.
The X-ray generating apparatus 1 can further include a deflector 50 that deflects the electron beam emitted from the electron gun EG. The deflector 50 can be arranged outside the X-ray generating tube XG. For example, the deflector 50 can be arranged such that a virtual plane VP3 crossing the deflector 50 is positioned between a virtual plane VP1 including the electron beam incident surface (the surface facing the electron gun EG) of the target 22 and a virtual plane VP2 including the distal end face (the surface on the target 22 side) of the electron gun EG. The virtual planes VP1, VP2, and VP3 can be defined as planes vertically intersecting a central axis AX of the electron gun EG. The deflector 50 deflects the electron beam emitted from the electron gun EG by exerting an electric field on the electron beam. The amount of electron beam deflected by the deflector 50 can depend on the accelerating voltage.
The deflector 50 may be formed from a permanent magnet, an electromagnet, or a permanent magnet and an electromagnet. For example, the deflector 50 can include a first magnet and a second magnet. The first magnetic pole (for example, the S-pole) of the first magnet and the second magnetic pole (for example, the N-pole) of the second magnet can be arranged so as to face each other through the insulating tube 10 or the X-ray generating tube XG. The deflector 50 may be formed from one magnet arranged such that its magnetic pole faces in the radial direction of the insulating tube 10 or the X-ray generating tube XG.
The electrode 23 is electrically connected to the target 22 and supplies a potential to the target 22. When electrons from the electron gun EG collide with the target 22, X-rays are generated. The X-rays generated by the target 22 are transmitted through the target holding plate 21 and emitted outside the X-ray generating tube XG. The anode 20 can be maintained at, for example, the ground potential but may be maintained at another potential. The target 22 can be formed from a metal material. The target 22 is preferably formed from a material having a high melting point, for example, tungsten, tantalum, or molybdenum. These materials are advantageous in improving the generation efficiency of X-rays. The target holding plate 21 can be formed from, for example, a material that can easily transmit X-rays, such as beryllium or diamond. The X-ray generating apparatus 1 can further include a tube current detection unit 44 that detects the amount of electrons entering the target 22 of the anode 20 per unit time, that is, a tube current.
Referring to
Assume that the target 22 has an optimal thickness when it most efficiently emits X-rays at an applied accelerating voltage. In this case, if the thickness of the target 22 is larger than the optimal thickness, X-rays are attenuated until passage through the target 22. In contrast to this, if the thickness of the target 22 is smaller than the optimal thickness, the efficiency of conversion from an electron beam to X-rays in the target 22 decreases. Accordingly, the optimal thickness depends on the accelerating voltage. As described above, the deflection amount of an electron beam (the incident position of an electron beam with respect to the target 22) depends on the accelerating voltage. This means that it is possible to adjust the thickness of the target 22 for each deflection amount (that is, each incident position) corresponding to an accelerating voltage.
In the first mode (processing mode), the target 22 is thinned or the thickness of the target 22 is adjusted by evaporating a portion of the target 22, which the electron beam EB enters, with the Joule heat generated by irradiating the target 22 with the electron beam EB. According to this embodiment, in the first mode, the thickness of the target 22 can be adjusted to the optimal thickness with a set tube voltage, and in the second mode (X-ray generating mode), the target 22 can be irradiated with the electron beam EB with the set tube voltage. This makes it possible to efficiently generate X-rays by irradiating the electron beam EB at the position where the thickness is adjusted to the optimal thickness. X-rays can be efficiently generated at each of a plurality of tube voltages by adjusting the thickness of the target 22 to an optimal thickness for each of a plurality of tube voltages, that is, each of a plurality of positions of the target 22.
The driving circuit 40 can include, for example, the cathode potential supply source 41, the extraction potential supply unit 42, the convergence potential supply unit 43, and the tube current detection unit 44. The controller CNT includes, for example, a CPU and a memory storing programs. The CPU can operate so as to control the driving circuit 40 by operating based on the programs. Alternatively, the controller CNT may be formed from, for example, a PLD (abbreviation for Programmable Logic Device) such as an FPGA (abbreviation for Field Programmable Gate Array) or an ASIC (abbreviation for Application Specific Integrated Circuit).
The controller CNT may be incorporated in the driving circuit 40. All or part of the controller CNT may be arranged inside or outside a housing (not shown) accommodating the booster circuit 110, the driving circuit 40, and the X-ray generating tube XG. The controller CNT can be configured to control the execution of the first mode for thinning the target 22 by irradiating the target 22 with the electron beam EB with a current adjusted within the first current range and the second mode for generating X-rays by irradiating the target 22 with the electron beam EB with a current adjusted within the second current range. If the execution of the first mode is unnecessary, a module for executing the first mode may be removed from the controller CNT.
In step S603, as a preparation for the execution of the first mode (processing mode), the controller CNT sets the extraction potential supply unit 42 so as to generate a first extraction potential for making a tube current within the first current range flow. In step S604, as a preparation for the execution of the second mode (X-ray generating mode), the controller CNT sets the extraction potential supply unit 42 so as to generate a second extraction potential for making a tube current within the second current range flow.
In step S703, the controller CNT starts the operation shown in
In step S705, the controller CNT calculates a change rate Δ of Ddet from Dmax. A calculation formula for calculating the change rate Δ can be provided by, for example, Δ=(Dmax−Ddet)/Dmax. In this case, that the value of the change rate Δ is positive indicates that a change in the dose of X-rays due to processing (thinning) of the target 22 in the first mode (processing mode) has exceeded its peak. In contrast to this, that the value of the change rate Δ is negative indicates that a change in the dose of X-rays due to processing (thinning) of the target 22 in the first mode (processing mode) has not exceeded its peak.
In step S706, the controller CNT determines whether the value of the change rate Δ becomes equal to or more than a determination reference value R, in other words, whether thinning is completed. If the value of the change rate Δ becomes equal to or more than the determination reference value R, the operation shown in
In step S707, the controller CNT determines whether Ddet is larger than Dmax. If Ddet is larger than Dmax, the value of Dmax is replaced with the value of Ddet in step S708 (that is, Dmax is updated).
In step S709, the controller CNT starts the operation shown in
In step S802, the controller CNT starts the operation shown in
In the example in
In the example in
In this embodiment, in the first and second modes, if the accelerating voltage remains the same, an electron beam enters at the same position on the target and hence can be entered at the optimal position on the target 22 (the position where the target 22 has a thickness adjusted in the first mode). Accordingly, in the embodiment, there is no need to have an arrangement or perform an operation for the adjustment of the incident position of an electron beam with respect to a target in accordance with an accelerating voltage.
The present invention is not limited to the above embodiments and various changes and modifications can be made within the spirit and scope of the present invention. Therefore, to apprise the public of the scope of the present invention, the following claims are made.
This application is a Continuation of International Patent Application No. PCT/JP2022/016711 filed Mar. 31, 2022, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2022/016711 | Mar 2022 | US |
Child | 18350953 | US |