The present invention relates to X-ray sources and in particular to the design of anodes for X-ray sources.
Multifocus X-ray sources generally comprise a single anode, typically in a linear or arcuate geometry, that may be irradiated at discrete points along its length by high energy electron beams from a multi-element electron source. Such multifocus X-ray sources can be used in tomographic imaging systems or projection X-ray imaging systems where it is necessary to move the X-ray beam.
The present invention provides an anode for an X-ray tube comprising a target arranged to produce X-rays when electrons are incident upon it, the anode defining an X-ray aperture through which the X-rays from the target are arranged to pass thereby to be at least partially collimated by the anode.
The anode may be formed in two parts, and the X- ray aperture can conveniently be defined between the two parts. This enables simple manufacture of the anode. The two parts are preferably arranged to be held at a common electrical potential.
Preferably a plurality of target regions are defined whereby X-rays can be produced independently from each of the target regions by causing electrons to be incident upon it. This makes the anode suitable for use, for example, in X-ray tomography scanning. In this case the X- ray aperture may be one of a plurality of X-ray apertures, each arranged so that X-rays from a respective one of the target regions can pass through it.
Preferably the anode further defines an electron aperture through which electrons can pass to reach the target. Indeed the present invention further provides an anode for an X-ray tube comprising a target arranged to produce X-rays when electrons are incident upon it, the anode defining an electron aperture through which electrons can pass to reach the target.
Preferably the parts of the anode defining the electron aperture are arranged to be at substantially equal electrical potential. This can result in zero electric field within the electron aperture so that electrons are not deflected by transverse forces as they pass through the electron aperture. Preferably the anode is shaped such that there is substantially zero electric field component perpendicular to the direction of travel of the electrons as they approach the anode. In some embodiments the anode has a surface which faces in the direction of incoming electrons and in which the electron aperture is formed, and said surface is arranged to be perpendicular to the said direction.
Preferably the electron aperture has sides which are arranged to be substantially parallel to the direction of travel of electrons approaching the anode. Preferably the electron aperture defines an electron beam direction in which an electron beam can travel to reach the target, and the target has a target surface arranged to be impacted by electrons in the beam, and the electron beam direction is at an angle of 10° or less, more preferably 5° or less, to the target surface.
Preferably the anode claim further comprises cooling means arranged to cool the anode. For example the cooling means may comprise a coolant conduit arranged to carry coolant through the anode. Preferably the anode comprises two parts and the coolant conduit is provided in a channel defined between the two parts.
The present invention further provides an X-ray tube including an anode according to the invention.
Preferred embodiments of the present invention will now be described by way of example only with reference to the accompanying drawings in which:
Referring to
Referring to
Adjacent the outer end 36a of the electron aperture 36, the surface 42 of the anode 14 which faces the incoming electrons and is made up on one side of the electron aperture 36 by the main part 18 and on the other side by the collimating part 22, is substantially flat and perpendicular to the electron aperture surfaces 30, 34 and the direction of travel of the incoming electrons. This means that the electrical field in the path of the electrons between the source elements 12 and the target 20 is parallel to the direction of travel of the electrons between the source elements 12 and the surface 42 of the anode facing the source elements 12. Then within the electron aperture 36 between the two parts 18, 22 of the anode 14 there is substantially no electric field, the electric potential in that space being substantially constant and equal to the anode potential.
In use, each of the source elements 12 is activated in turn to project a beam 44 of electrons at a respective area of the target region 20. The use of successive source elements 12 and successive areas of the target region enables the position of the X-ray source to be scanned along the anode 14 in the longitudinal direction perpendicular to the direction of the incoming electron beams and the X-ray beams. As the electrons move in the region between the source 12 and the anode 14 they are accelerated in a straight line by the electric field which is substantially straight and parallel to the required direction of travel of the electrons. Then, when the electrons enter the electron aperture 36 they enter the region of zero electric field which includes the whole of the path of the electrons inside the anode 14 up to their point if impact with the target 20. Therefore throughout the length of their path there is substantially no time at which they are subject to an electric field with a component perpendicular to their direction of travel. The only exception to this is any fields which are provided to focus the electron beam. The advantage of this is that the path of the electrons as they approach the target 20 is substantially straight, and is unaffected by, for example, the potentials of the anode 14 and source 12, and the angle of the target 20 to the electron trajectory.
When the electron beam 44 hits the target 20 some of the electrons produce fluorescent radiation at X-ray energies. This X-ray radiation is radiated from the target 20 over a broad range of angles. However the anode 14, being made of a metallic material, provides a high attenuation of X-rays, so that only those leaving the target in the direction of the collimating aperture 38 avoid being absorbed within the anode 14. The anode therefore produces a collimated beam of X-rays, the shape of which is defined by the shape of the collimating aperture 38. Further collimation of the X-ray beam may also be provided, in conventional manner, externally of the anode 14.
Some of the electrons in the beam 44 are backscattered from the target 20. Backscattered electrons normally travel to the tube envelope where they can create localised heating of the tube envelope or build up surface charge that can lead to tube discharge. Both of these effects can lead to reduction in lifetime of the tube. In this embodiment, electrons backscattered from the target 20 are likely to interact with the collimating part 22 of the anode 14, or possibly the main part 18. In this case, the energetic electrons are absorbed back into the anode 14 so avoiding excess heating, or surface charging, of the tube envelope 16. These backscattered electrons typically have a lower energy than the incident (full energy) electrons and are therefore more likely to result in lower energy bremsstrahlung radiation than fluorescence radiation. There is a high chance that this extra off-focal radiation will be absorbed within the anode 14 and therefore there is little impact of off-focal radiation from this anode design.
In this particular embodiment shown in
Referring to
As with the embodiment of
Referring to
Number | Date | Country | Kind |
---|---|---|---|
0309374.7 | Apr 2003 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB04/01732 | 4/23/2004 | WO | 10/25/2005 |