X-ray tubes typically utilize an x-ray transmissive window formed in the vacuum enclosure of the x-ray tube that permits x-rays produced within the x-ray tube to be emitted from the housing and into an intended target. The window is typically set within a mounting structure, and is located in a side or in an end of the x-ray tube. The window separates the vacuum of the vacuum enclosure of the x-ray tube from the normal atmospheric pressure found outside the x-ray tube or from the pressure of a liquid coolant in which the x-ray tube is submerged.
Although window thicknesses vary depending on the particular x-ray tube application, windows are typically very thin. In particular, a window with a reduced thickness is generally desired so as to minimize the amount of x-rays that are absorbed by the window material during x-ray tube operation.
While a thinner window is desirable, a thin window is typically subjected to deforming stresses during the operation of the x-ray tube. One of the major challenges in developing x-ray tubes for modern, high performance x-ray systems is to provide design features to accommodate the high levels of heat produced. To produce x-rays, relatively large amounts of electrical energy must be transferred to an x-ray tube. Only a small fraction of the electrical energy transferred to the x-ray tube is converted into x-rays, as the majority of the electrical energy is converted to heat. If excessive heat is produced in the x-ray tube, the temperature can rise above critical values, and the window of the x-ray tube can be subject to thermally-induced deforming stresses. Such thermally-induced deforming stresses are non-uniformly distributed over the surface of the window and can produce cracking in the window, as well as leaks between the window and the mounting structure.
One portion of the window which is frequently deformed during x-ray tube operation due to relatively high heat is the portion of the window that is bonded to the mounting structure. The deformation of the window can result in cracking of the window and consequent loss of vacuum from the x-ray tube housing, and thereby limit the operational life of the x-ray tube.
In addition to increasing the likelihood of a cracked window, the heat produced during x-ray tube operation can also result in the boiling of liquid coolant in which the x-ray tube is submerged and that is in direct contact with the window. This boiling of the liquid coolant can result in detrimental attenuations in the x-rays as they pass through the boiling liquid on their way to the intended target. This detrimental attenuation of the x-rays can cause defects in the resulting x-ray images of the target, which can result, for example, in a misdiagnosis of a patent being x-rayed.
In general, example embodiments of the invention relate to systems and methods for cooling an x-ray tube. The examples disclosed herein can help dissipate heat generated during x-ray tube operation and thus have a cooling effect on, and thereby reduce thermally-induced deforming stresses on, various components of the x-ray tube. Other advantages can also be realized. For example, disclosed embodiments can help reduce boiling of liquid coolant in which the x-ray tube is disposed and that is in direct contact with components of the x-ray tube, thereby decreasing attenuation of x-rays passing through the liquid coolant.
In one example embodiment, an x-ray tube includes a housing, a window frame attached to the housing, and a window attached to the window frame. The housing includes an aperture through which electrons can pass from a cathode to an anode. The housing also includes an inlet port and an outlet port. The window frame defines an opening through which x-rays can pass. The window covers the opening defined by the window frame. The housing and the window frame are configured such that a liquid coolant can flow from the inlet port to the outlet port through either a first liquid path at least partially defined by the housing or a second liquid path cooperatively defined by the housing and the window frame. The second liquid path is disposed about at least a portion of the opening in the window frame.
In another example embodiment, an x-ray tube includes a housing, a window frame attached to the housing, and a window attached to the window frame. The housing includes an inlet port and an outlet port. The window frame defines an opening through which x-rays can pass. The window covers the opening defined by the window frame. The x-ray tube also includes first, third, and fourth liquid passageways at least partially defined by the housing, and a second liquid passageway cooperatively defined by the housing and the window frame. The second liquid passageway is disposed about at least a portion of the opening in the window frame. A first portion of a liquid coolant can flow from the inlet port to the outlet port through a first liquid path, defined by the first, second, and fourth liquid passageways, without flowing through the third liquid passageway. A second portion of the liquid coolant can flow from the inlet port to the outlet port through a second liquid path, defined by the first, third, and fourth liquid passageways, without flowing through the second liquid passageway.
In yet another example embodiment, an x-ray tube includes a can, a liquid manifold attached to the can, a shield structure attached to the can, a window frame attached to the can, and a window attached to the window frame. The liquid manifold defines an inlet port and an outlet port. The shield structure defines an aperture that allows electrons to pass from an electron source to a target anode. The window frame defines an opening through which x-rays can pass. The window covers the opening defined by the window frame. The x-ray tube also includes first, second, third, and fourth liquid passageways. The first liquid passageway is cooperatively defined by the liquid manifold, the can, and the shield structure. The second liquid passageway is cooperatively defined by the can and the window frame and is disposed about at least a portion of the opening in the window frame. The third liquid passageway is cooperatively defined by the can and the shield structure. The fourth liquid passageway is cooperatively defined by the can, the shield structure, and the liquid manifold. A first portion of a liquid coolant can flow from the inlet port to the outlet port through a first liquid path, defined by the first, second, and fourth liquid passageways, without flowing through the third liquid passageway. A second portion of the liquid coolant can flow from the inlet port to the outlet port through a second liquid path, defined by the first, third, and fourth liquid passageways, without flowing through the second liquid passageway.
These and other aspects of example embodiments of the invention will become more fully apparent from the following description and appended claims.
To further clarify the above and other aspects of example embodiments of the present invention, a more particular description of these examples will be rendered by reference to specific embodiments thereof which are disclosed in the appended drawings. It is appreciated that these drawings depict only example embodiments of the invention and are therefore not to be considered limiting of its scope. It is also appreciated that the drawings are diagrammatic and schematic representations of example embodiments of the invention, and are not limiting of the present invention nor are they necessarily drawn to scale. Example embodiments of the invention will be disclosed and explained with additional specificity and detail through the use of the accompanying drawings in which:
In general, example embodiments of the invention are directed to x-ray tube cooling systems. The example x-ray tube cooling systems disclosed herein can be employed to dissipate heat generated during x-ray tube operation and thus reduce thermally-induced deforming stresses on the cooled components of the x-ray tube and reduce boiling of liquid coolant in which the x-ray tube is submerged and that is in direct contact with cooled components of the x-ray tube, thereby decreasing attenuation of x-rays passing through the liquid coolant.
I. Example X-Ray Tube Cooling System
With reference first to
The example x-ray tube 102 generally includes a housing made up of a can 108, a liquid manifold 110 attached to the can 108, a shield structure 112 attached to the can 108, and a cathode cylinder 114 attached to the can 108. The liquid manifold 110 includes an inlet port 116 and an outlet port 118. The shield structure 112 is substantially similar in form and function to the shield structure 108 disclosed in U.S. Pat. No. 6,519,318, titled “Large Surface Area X-Ray Tube Shield Structure,” the disclosure of which is incorporated herein by reference in its entirety. The example x-ray tube 102 also includes a window frame 200 attached to the can 108 and a window 250 attached to the window frame 200.
The example reservoir 104 includes a sidewall 120 which substantially encloses the example x-ray tube 102 such that the example x-ray tube 102 is positioned substantially within the reservoir 104. The sidewall 120 also cooperates with the cathode cylinder 114 of the x-ray tube 102 to hold a liquid coolant 122 which substantially surrounds the x-ray tube 102. The liquid coolant 122 can be circulated into and out of the reservoir 104 (not shown) in order to dissipate heat generated during the operation of the x-ray tube 102. In one example embodiment, the liquid coolant 122 can be a dielectric liquid coolant. Examples of dielectric liquids include, but are not limited to: fluorocarbon or silicon based oils, or de-ionized water. Further, the sidewall 120 defines an inlet port 124 and an outlet port 126, aspects of which will be discussed below in connection with the example cooling unit 106.
The example cooling unit 106 includes an outlet port 128 and an inlet port 130. The cooling unit 106 is configured to cool liquid coolant (not shown—separate from the liquid coolant 122) received at the inlet port 130 and then circulate the cooled liquid coolant through the outlet port 128.
The operation of the example x-ray tube cooling system 100 will now be disclosed in connection with
In another example embodiment, the hose 134, possibly in combination with other hoses (not shown) may enable a liquid coolant to circulate through another portion of the x-ray tube 102 after the liquid coolant passes through the inlet port 124 but before the liquid coolant enters the inlet port 116. Similarly, the hose 136, possibly in combination with other hoses (not shown), may enable the liquid coolant to circulate through yet another portion of the x-ray tube 102 after the liquid coolant exits the outlet port 118 but before the liquid coolant pass through the outlet port 126. For example, the outlet port 118 of the x-ray tube 102 may be connected to a second inlet port 117 (see
The hoses 132-138 thus enable a liquid coolant to be circulated between the cooling unit 106 and the x-ray tube 102 without mixing with the liquid coolant 122 held by the reservoir 104. Thus, the liquid coolant circulating through the hoses 132-138 and the liquid coolant 122 in the reservoir 104 may be different types of liquid coolant. For example, the liquid coolant circulating through the hoses 132-138 can be a non-dielectric liquid coolant and the coolant 122 can be a dielectric coolant. In this example embodiment, a non-dielectric liquid may be employed because the non-dielectric liquid coolant is electrically insulated from electrically sensitive portions of the x-ray tube 102. In another example, both the liquid coolant circulating through the hoses 132-138 and the coolant 122 can be dielectric coolants, but may be different types of dielectric coolants. Examples of non-dielectric liquids include, but are not limited to: water, propylene glycol, or some combination thereof. Examples of dielectric liquids include, but are not limited to: fluorocarbon or silicon based oils, or de-ionized water. In one example embodiment, the hoses 132-138 may be rubber hoses capable of maintaining a hose pressure of about 30 psi, although hoses of other materials that are capable of maintaining other hose pressures can be employed. For example, the hoses 132 and 134 may be capable of maintaining a hose pressure of about 22.5 psi and the hoses 136 and 138 may be capable of maintaining a hose pressure of about 16.5 psi. In one example embodiment, the hoses 132-138 may be attached to the corresponding ports using a hose clamp, although any other suitable device or method for attachment can be employed.
In operation, a liquid coolant having a relatively low temperature can flow from the cooling unit 106 through the hoses 132 and 134 to the x-ray tube 102. The liquid coolant is then circulated through the x-ray tube 102 where the temperature of the liquid coolant is raised as heat generated by the x-ray tube is transferred to the liquid coolant. The liquid coolant having a relatively high temperature can then flow back to the cooling unit 106 through the hoses 136 and 138 where the temperature of the liquid coolant is once lowered in preparation for re-circulation through the system 100. Positioning the cooling unit 106 external to the reservoir 104 enables relatively cool liquid coolant to be circulated into the x-ray tube 102 and relatively warm liquid coolant to be circulated out of the x-ray tube 102 without the need for a cooling unit internal to the reservoir 104. Including a cooling unit internal to the reservoir 104, either attached to the x-ray tube 102 or the reservoir 104 can add cost and complexity to the system 100.
II. Example X-ray Tube
With reference now to
Although the example x-ray tube 102 is depicted as a rotary anode x-ray tube, example embodiments of the x-ray tube cooling systems disclosed herein can be employed in any type of x-ray tube that utilizes an x-ray transmissive window. Thus, the example x-ray tube cooling systems disclosed herein can alternatively be employed, for example, in a stationary anode x-ray tube.
With reference now to
As disclosed in
As disclosed in
In some example embodiments, the first liquid path 160 and the second liquid path 162 are sized and configured such that a pressure gradient exists when the liquid coolant is flowing from the inlet port 116 to the outlet port 118. For example, the pressure gradient between the inlet port 116 and the outlet port 118 can be about 6 psi, although other pressure gradients greater than 0 psi can be employed depending on performance requirements of the x-ray tube 102.
Further, in some example embodiments, the first liquid path 160 and the second liquid path 162 can be sized and configured such that a relatively high volume/minute of the liquid coolant can flow between the inlet port 116 and the outlet port 118. For example, about 4.2 gallons/minute of the liquid coolant can flow between the inlet port 116 and the outlet port 118, although other rates of liquid coolant flow can be employed depending on performance requirements of the x-ray tube 102.
Moreover, in some example embodiments, the first liquid path 160 and the second liquid path 162 are sized and configured such that, when the liquid coolant is flowing between the inlet port 116 and the outlet port 118, between about 90% and about 98% of the liquid coolant flows through the first liquid path 160 and between about 2% and about 10% of the liquid coolant flows through the second liquid path 162. For example, between about 93% and about 98% of the liquid can flow through the first liquid path 160 and between about 2% and about 7% of the liquid coolant can flow through the second liquid path 162. In another example, between about 94% and about 97% of the liquid coolant can flow through the first liquid path 160 and between about 3% and about 6% of the liquid coolant can flow through the second liquid path 162. In yet another example, about 95.5% of the liquid coolant can flow through the first liquid path 160 and about 4.5% of the liquid coolant can flow through the second liquid path 162. The relative percentages of liquid coolant that will flow through the first liquid path 160 or the second liquid path 162 can be adjusted during the design of the x-ray tube 102 depending on the respective heat dissipation needs of the shield structure 112 on the one hand, and the window frame 200 and the window 250 on the other. For example, where the opening 202 in the window frame 200 is relatively larger, the heat dissipation needs of the window 250 may be greater than where the opening 202 is relatively smaller.
In some example embodiments, the inlet 154 and the outlet 156 of the second liquid passageway 150 can alternatively be positioned proximate each other in a single liquid passageway. For example, the window frame 200 can be configured such that the inlet 154 and the outlet 156 are both positioned near the outlet port 118 in the fourth liquid passageway 158. In this example, at least a portion of the liquid coolant entering through the inlet port 116 can flow through all of the first, second, third, and fourth liquid passageways before exiting through the outlet port 118.
II. Example Window Frame and Window
With reference now to
As disclosed in
As disclosed in
As disclosed elsewhere herein, the second liquid passageway 150 includes the inlet 154 and the outlet 156, as well as additional inlets and/or outlets. Further, the sizes, locations, and orientations of the inlet 154 and/or the outlet 156 may vary from those disclosed in
In some example embodiments, the portion of the window frame 200 to which the window 250 is bonded may be recessed slightly (see, for example, recess 204 of
As disclosed in
The example embodiments disclosed herein may be embodied in other specific forms. The example embodiments disclosed herein are therefore to be considered in all respects only as illustrative and not restrictive.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/864,603, filed on Sep. 28, 2007, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5511104 | Mueller et al. | Apr 1996 | A |
6005918 | Harris et al. | Dec 1999 | A |
6215852 | Rogers et al. | Apr 2001 | B1 |
6263046 | Rogers | Jul 2001 | B1 |
6438208 | Koller | Aug 2002 | B1 |
6457859 | Lu et al. | Oct 2002 | B1 |
6529579 | Richardson | Mar 2003 | B1 |
6594341 | Lu et al. | Jul 2003 | B1 |
6714626 | Subraya et al. | Mar 2004 | B1 |
7042981 | Subraya et al. | May 2006 | B2 |
7260181 | McDonald et al. | Aug 2007 | B2 |
Number | Date | Country | |
---|---|---|---|
20090086917 A1 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11864603 | Sep 2007 | US |
Child | 12028698 | US |