These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
The present technique is generally directed to X-ray tubes. Particularly, the invention relates to bearings used in X-ray tubes, and to arrangements designed to enhance heat dissipation in X-ray tubes. X-ray tubes may be used in variety of applications, such as in imaging systems, particularly for medical imaging and baggage or package screening. Though the present discussion provides examples in a medical imaging context, one of ordinary skill in the art will readily comprehend that the application of these X-ray tubes in other settings, including non-medical imaging contexts, such as for security screening, is well within the scope of the present technique.
Referring now to
Further, a motor 26 may be employed to rotate the shaft 14 of the anode assembly 12. The motor 26 may include, for example, an induction motor. The induction motor may include a stator (not shown), which may have driving coils disposed outside the envelope 22. Further, the motor 26 may also include a rotor 28, which may be disposed inside the envelope 22 and in operative association with the shaft 14 of the rotating anode assembly 12.
In the illustrated embodiment, the shaft 14 is disposed in an anode housing or cartridge 32. The anode housing 32 has cylindrical walls. The motor 26 is secured to the walls of the anode housing 32. As will be described in detail below with regard to
When the motor 26 is energized, the driving coils induce magnetic fields, which cause the bearing member to rotate relative to a rotor support 34. The rotor support 34 is typically cylindrical in shape and may be connected, at a rearward end, by a mounting assembly 36 with the envelope 22. A portion 30 of the mounting assembly 36 extends out of the envelope 16 to rigidly support the rotor 34. The tube 10 further includes an oil expansion bellows 38 to house oil in order to provide thermal cooling to the tube 10.
Turning now to
Further, the rotating anode assembly 12 includes one or more rolling contact bearing assemblies disposed about the shaft 14. In the presently contemplated embodiment, the shaft 14 employs two rolling contact bearing assemblies 50 and 52. Although not illustrated, in some embodiments, the shaft 14 may employ single rolling contact bearing assembly. The rolling contact bearing assemblies 50 and 52 are disposed at the front end 54 and the back end 56, respectively of the shaft 14. In one embodiment, the two rolling contact bearing assemblies 50 and 52 may be employed relatively closer to each other. For example, both the rolling contact bearing assemblies 50 and 52 may be employed either on the front end 54 or the back end 56 of the shaft 14.
Each of the roller contact bearing assemblies 50 and 52 includes an inner ring 58 and an outer ring 60. As will be described in detail below, the inner and outer rings 58 and 60 include races between which a plurality of rolling contact elements is disposed. Further, as described in detail below with regard to
Further, as noted above, the rolling contact element 66 includes a solid lubricant coating 76 disposed on the surface of the rolling contact elements 66. In certain embodiments, the solid lubricant coating 76 may be present on the elements 66 in the form of a thin film. In some embodiments, the solid lubricant coating 76 may act as a lubricant between elements 66. During operation of the X-ray tube 10, contact between the elements 66 and the races 80 and 82, and any contact between the elements 66 is lubricated by the lubricant coating to reduce the wear in the elements 66 and races. As will be appreciated, in the absence of lubrication at the contact points, the races 80 and 82, and elements 66 may experience wear at the contact points due to high sliding velocities created due to high rotating speeds of the shaft 14 (
In certain embodiments, the elements 66 may include two or more solid lubricant coatings. These solid lubricant coatings, such as solid lubricant coatings 76 may be chemically resistive. For example, the solid lubricant coatings 76 may be chemically resistive to stainless steel and gallium-based cooling solutions 84. As will be appreciated, the inner and outer rings 58 and 60 may typically be made of stainless steel. In these embodiments, the solid lubricant coatings 76 may protect elements 66 from the chemical attack of the gallium-based cooling solution 84 and the stainless steel material of the inner and outer rings 58 and 60. In one embodiment, the races 80 and 82 and the outer rings 58 and 60 may be coated with lubricant coatings 76. In an exemplary embodiment, deposition techniques, such as electroplating, chemical vapor deposition, or physical vapor deposition, may be employed to coat the elements 66 with the solid lubricant coating 76. The thickness of the lubricant coatings 76 may be in a range of from about 0.01 microns to about 5 microns.
In some embodiments, the solid lubricant coating 76 may include molybdenum, tantalum, vanadium, cobalt, or a combination thereof. In other embodiments, the solid lubricant coating 76 may include nitrides of titanium, chromium, tantalum, vanadium, boron, titanium-aluminum, titanium-carbon, aluminum-chromium, or a combination thereof. For example, the solid lubricant coating 76 may include hexagonal boron nitride. In one embodiment, the solid lubricant coating 76 may include di-chalcogenides of molybdenum, niobium, tungsten, or a combination thereof. The di-chalcogenides may include di-sulphides, di-selenides, di-tellurides, or a combination thereof. In an exemplary embodiment, the di-chalcogenides may be doped by titanium. As will be described in detail below, in some embodiments, the solid lubricant coatings 76 may include a combination of two or more such coatings.
As mentioned above, the solid lubricant coatings 76 may include a combination of two or more such coatings. For example, the solid lubricant coating 76 may include a molybdenum disulphide coating having a silver coating disposed thereon. This may be done to protect the inner coating from chemical attack by the gallium-based cooling solution 84. In one embodiment, the solid lubricant coating is chemically resistant to the gallium-based cooling solution 84. The thickness of the solid lubricant coating 76 may be in a range from about 100 nanometers to about 1500 nanometers, for example.
Although not illustrated, in some embodiments, the inner ring 58 may be integral with the shaft 14. For example, the inner ring 58 along with the races 80 may be machined on the shaft 14. Further, in some embodiments, the anode assembly 12 may follow inner rotation, where the inner ring 58 rotates along with the shaft 14. Whereas, in other embodiments, the anode assembly 14 may follow outer rotation where the inner ring 58 may be stationary. In these embodiments, the target 16 rotates on the outer ring 60 and the shaft 14. Further, the anode housing 32 rotates along with the outer ring 60 and the shaft 14.
In some embodiments, the races 80 and 82 may be coated with the solid lubricant coating 76, thereby creating a surface of lubricant to allow a low friction interface between the rolling elements 66 and the inner and outer races 80 and 82, during operation.
During operation, when an electron beam is directed from a cathode 18 (
In certain embodiments of the present technique, the heat generated in the X-ray tube may be effectively discharged outwardly of the X-ray tube 10 by, for example, a gallium-based cooling solution. For this purpose, a gallium-based cooling solution 84 may be disposed between the inner and outer rings 58 and 60. The gallium-based cooling solution 84 may be employed to reduce the temperature within the bearings, particularly at the contact points between the rolling contact elements 66 and the races 80 and 82. Consequently, the gallium-based cooling solution 84 may prevent welding between the elements 66 coated with the solid lubricant coating 76, and the races 80 and 82 and reduce excessive wear at high temperatures, thereby improving the overall life of the bearing components. Moreover, due to the cooling effect provided by the gallium-based cooling solution 84, the X-ray tube 10 runs at lower temperature. Also, the damping provided by the gallium-based cooling solution 84, results in the noise reduction of about 10 decibels to about 15 decibels.
In certain embodiments, the gallium-based cooling solution 84 may include an alloy of gallium, indium, tin, or a combination thereof. The melting point of the gallium-based cooling solution 84 may be such that the gallium-based cooling solution 84 remains in a molten state at the operating temperatures of the X-ray tube, such as X-ray tube 10 (
In addition, when employing the gallium-based cooling solution 84 in the X-ray tube 10, the gallium-based cooling solution 84 may be introduced directly in the anode housing 32. In some embodiments, the housing 32 may be partially filled with the gallium-based cooling solution 84. In these embodiments, the gallium based cooling solution 84 may be retained between the inner and outer rings 58 and 60 mainly due to hydrodynamic forces experienced by the gallium-based cooling solution 84 during the operation of the X-ray tube 10. In other words, as the rolling contact elements 66 start moving, a thin film is formed on the elements 66 due to squeezing action between the races 80 and 82. This film may be useful to remove heat from the contact areas between the rolling contact element 66 and one or both of the races 80 and 82.
In other embodiments, the housing 32 may be completely filled with the gallium-based cooling solution 84. In these embodiments, the gallium-based cooling solution 84 may be in contact with the rolling contact elements 66 during and after the operation of the X-ray tube 10.
Referring now to
In certain embodiments, the angular contact ball bearings 88 are configured to support combined radial and thrust loads (caused by rotation of the shaft 14). The magnitude of the thrust loads supported by the angular contact ball bearings 88 may depend on the contact angle of the radial contact ball bearings 88 and the races 98 and 106. In one exemplary embodiment, the radial contact ball bearings 88 having large contact angles may support heavier thrust loads. Accordingly, the radial contact ball bearings 88 may be suitable for applications including high speed of the shaft 14.
The gallium-based cooling solution 84 may also directly contact the inner and outer rings 80 and 82 to transfer heat between the rings 80 and 82. The heat is transferred from the inner ring 80 to the outer ring 82 via the rolling contact elements 66 as well as through the cooling solution directly. In one embodiment, the gallium-based cooling solution reduces the temperature at the contact zones by about 100° C. to about 150° C. Advantageously, the gallium-based cooling solution 84 facilitates reduction of overall temperature inside the X-ray tube 10 (
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.