1. Field of the Invention
The present invention relates to a woven product, especially to an X weave of composite material and method of weaving thereof.
2. Description of Related Art
Generally, weave of composite material may be made of carbon fibers, glass fibers, aramid fibers, or other high toughness fibers, and include plain weave, unidirectional weave, or multidirectional weave. The weave of composite material is widely applied for the cases of portable electronic products to provide protection.
With reference to
With reference to
With reference to
Current market demands for a portable electronic product include low cost, slim thickness, and high intensity. The costs of the plain weave 50 and the unidirectional weave 60 are low respectively, and the stacked plain weaves 50 and the stacked unidirectional weaves 60 both have high intensity. However, warping easily appears on the stacked plain weaves 50 and the stacked unidirectional weaves 60. The stacked plain weaves 50 and the stacked unidirectional weaves 60 have large thickness, such that adjusting the thickness to meet the demand of slimness for the portable electronic product is difficult. The multidirectional weave 70 has little warping, but the cost of the multidirectional weave 70 is high. Therefore, the plain weave 50, the unidirectional weave 60, and the multidirectional weave 70 are all inadequate to meet the current demands for the portable electronic product.
The main object of the present invention is to provide an X weave of composite material and a method of weaving the X weave.
The X weave of composite material in accordance with the present invention comprises multiple latitudinal fibers adjacently arranged in a horizontal direction, multiple longitudinal fibers adjacently arranged in a longitudinal direction relative to the latitudinal fibers, and at least one woven center.
Each longitudinal fiber is layered on at least two of the latitudinal fibers and then is woven through and layered under at least two of the latitudinal fibers, and the longitudinal fibers are each woven by shifting in relative alignment position from at least one of the latitudinal fibers sequentially, and are woven radially with respect to the at least one woven center.
The method of weaving the X weave of composite material comprises preparing multiple latitudinal fibers and multiple longitudinal fibers, arranging the latitudinal fibers adjacently in a horizontal direction, and weaving the longitudinal fibers to inter-layer with the latitudinal fibers and to form an X woven structure with respect to a woven center.
The X weave is woven by arranging each longitudinal fiber, skipping at least two latitudinal fibers sequentially, to be layered under and on the latitudinal fibers, and the longitudinal fibers are each shifted in relative alignment position from at least one latitudinal fiber respectively and sequentially to form the X woven structure with the woven center.
The longitudinal fibers are woven radially with respect to the woven center, such that the elasticity and the intensity of the X weave can be enhanced by the X woven structure and the woven center. Therefore, the X weave does not need to be layered with another weave to increase the intensity. Stress concentration and warping hardly occur on the X weave. As the X weave is woven by controlling the longitudinal fibers only, the manufacturing cost of the X weave is relatively low. Therefore, the X weave can meet the demands for the portable electronic products easily.
With reference to
The latitudinal fibers 10 are adjacently arranged in a horizontal direction and the longitudinal fibers 20 are adjacently arranged in a longitudinal direction relative to the latitudinal fibers 10. Each latitudinal fiber 10 is layered on two of the latitudinal fibers 20 and then is woven through and layered under two of the latitudinal fibers 20 to be inter-layered with the latitudinal fibers 20. The longitudinal fibers 20 are woven to form an X-shaped woven structure with respect to the woven center 30, which means the longitudinal fibers 20 are woven by shifting in relative alignment position from one of the latitudinal fibers 10 sequentially, and are woven radially with respect to the woven center 30.
With reference to
The X weave may be woven by different fibers to adjust the intensity of the X weave to meet different demands for different portable electronic products. For example, the X weave may be woven by carbon fibers, glass fibers, aramid fibers or the other fibers.
With reference to
The X weave is woven by arranging each longitudinal fiber, skipping two latitudinal fibers sequentially, to be layered under and on the multiple latitudinal fibers. The longitudinal fibers are each shifted in relative alignment position from a latitudinal fiber respectively and sequentially to form the X woven structure with the woven center.
Because the longitudinal fibers and the latitudinal fibers are woven longitudinally and horizontally respectively, the structure of the X weave is compact and reinforced. Woven radially from the woven center, the X weave as well as the woven center can both have enhanced intensity and elasticity. Therefore, stress concentration and warping hardly occur on the X weave of the present invention.
Because the intensity of the X weave is higher than the intensity of the conventional plain weave and the intensity of the conventional unidirectional weave, the X weave can achieve the same level of intensity with multiple conventional combined plain weaves and multiple conventional unidirectional weaves. The X weave of composite material of the present invention has a slim thickness. When the X weave is applied on a portable electronic product, the total thickness of the X weave and the electronic product is adjusted easily. On the other hand, as the X weave is woven by controlling the longitudinal fibers by a weaving board, the manufacturing cost of the X weave of composite material of the present invention is lower than the manufacturing cost of the conventional multidirectional weave.