XYLOSE ISOMERASES AND THEIR USES

Abstract
This disclosure relates to novel xylose isomerases and their uses, particularly in fermentation processes that employ xylose-containing media.
Description
BACKGROUND OF THE INVENTION

The efficient, commercial production of biofuels from plant material, such as sugarcane, requires the fermentation of pentoses, such as xylose. Xylose in plant material typically comes from lignocellulose, which is a matrix composed of cellulose, hemicelluloses, and lignin. Lignocellulose is broken down either by acid hydrolysis or enzymatic reaction, yielding xylose in addition to other monosaccharides, such as glucose. (Maki et al., 2009, Int. J. Biol. Sci. 5:500-516).


Fungi, especially Saccharomyces cerevisiae, are commercially relevant microorganisms that ferment sugars into biofuels such as ethanol. However, S. cerevisiae does not endogenously metabolize xylose, requiring genetic modifications that allow it to convert xylose into xylulose. Other organisms, whose usefulness in ethanol production is limited, are able to metabolize xylose (Nevigot, 2008, Micobiol. Mol. Biol. Rev. 72:379-412).


Two pathways have been identified for the metabolism of xylose to xylulose in microorganisms: the xylose reductase (XR, EC 1.1.1.307)/xylitol dehydrogenase (XDH, EC 1.1.1.9, 1.1.1.10 and 1.1.1.B19) pathway and the xylose isomerase (XI, EC 5.3.1.5) pathway. Use of the XRIXDH pathway for xylose metabolism creates an imbalance of cofactors (excess NADH and NADP+) limiting the potential output of this pathway for the production of ethanol. The XI pathway, on the otherhand, converts xylose to xylulose in a single step and does not create a cofactor imbalance (Young et al., 2010, Biotechnol. Biofuels 3:24-36).


Because S. cerevisiae does not possess a native XI, it has been desirable to search for an XI in another organism to insert into S. cerevisiae for the purpose of biofuels production. Several XI genes have been discovered, although little or no enzymatic activity upon expression in S. cerevisiae has been a common problem. The XI from Piromyces sp. E2 was the first heterologously expressed XI in S. cerevisiae whose enzymatic activity could be observed (WO 03/062430).


SUMMARY OF THE INVENTION

Due to the physiology of S. cerevisiae and the process of commercial biofuel production, there are other characteristics besides activity that are valuable in a commercially useful XI. During fermentation, the pH of the yeast cell and its environment can become more acidic (Rosa and Sa-Correia, 1991, Appl. Environ. Microbiol. 57:830-835). The ability of the XI to function in an acidic environment is therefore highly desirable. Therefore, there is a still a need in the art for XI enzymes with enhanced activity to convert xylose to xylulose for biofuels production under a broader range of commercially relevant conditions.


The present disclosure relates to novel xylose isomerases. The xylose isomerases have desirable characteristics for xylose fermentation, such as high activity, tolerance to acidic conditions (i.e., pH levels below 7, e.g., pH 6.5 or pH 6), or both.


The present disclosure has multiple aspects. In one aspect, the disclosure is directed to XI polypeptides. The polypeptides of the disclosure typically comprise amino acid sequences having at least 70%, 75%, 80%, 85%, 90%, 93%, 95%, 96%, 98%, 99% or 100% sequence identity to any of the XI polypeptides of Table 1, or the catalytic domain or dimerization domain thereof, or are encoded by nucleic acid sequences comprising nucleotide sequences having at least 70%, 75%, 80%, 85%, 90%, 93%, 95%, 96%, 98%, 99% or 100% sequence identity to any of the nucleic acids of Table 1:














TABLE 1





SEQ



Catal-
Dimer-


ID

Organism
Type of
ytic
ization


NO:
Clone No.
Classification
Sequence
Domain
Domain







 1
1754MI2_001
Bacteroidales
DNA




 2
1754MI2_001
Bacteroidales
Amino
2-376
377-





Acid

437


 3
5586MI6_004
Bacteroidales
DNA




 4
5586MI6_004
Bacteroidales
Amino
2-376
377-





Acid

437


 5
5749MI1_003
Bacteroidales
DNA




 6
5749MI1_003
Bacteroidales
Amino
2-381
382-





Acid

442


 7
5750MI1_003
Bacteroidales
DNA




 8
5750MI1_003
Bacteroidales
Amino
2-381
382-





Acid

442


 9
5750MI2_003
Bacteroidales
DNA




 10
5750MI2_003
Bacteroidales
Amino
2-381
382-





Acid

442


 11
5586MI5_004

Bacteroides

DNA




 12
5586MI5_004

Bacteroides

Amino
2-375
376-





Acid

435


 13
5586MI202_004

Bacteroides

DNA




 14
5586MI202_004

Bacteroides

Amino
2-377
378-





Acid

438


 15
5586MI211_003

Bacteroides

DNA




 16
5586MI211_003

Bacteroides

Amino
2-376
377-





Acid

437


 17
5606MI1_005

Bacteroides

DNA




 18
5606MI1_005

Bacteroides

Amino
2-377
378-





Acid

438


 19
5606MI2_003

Bacteroides

DNA




 20
5606MI2_003

Bacteroides

Amino
2-378
379-





Acid

439


 21
5610MI3_003

Bacteroides

DNA




 22
5610MI3_003

Bacteroides

Amino
2-377
378-





Acid

439


 23
5749MI2_004

Bacteroides

DNA




 24
5749MI2_004

Bacteroides

Amino
2-377
378-





Acid

438


 25
5750MI3_003

Bacteroides

DNA




 26
5750MI3_003

Bacteroides

Amino
2-377
378-





Acid

438


 27
5750MI4_003

Bacteroides

DNA




 28
5750MI4_003

Bacteroides

Amino
2-377
378-





Acid

438


 29
5751MI4_002

Bacteroides

DNA




 30
5751MI4_002

Bacteroides

Amino
2-376
377-





Acid

437


 31
5751MI5_003

Bacteroides

DNA




 32
5751MI5_003

Bacteroides

Amino
2-377
378-





Acid

438


 33
5751MI6_004

Bacteroides

DNA




 34
5751MI6_004

Bacteroides

Amino
2-377
378-





Acid

438


 35
5586MI22_003
Clostridiales
DNA




 36
5586MI22_003
Clostridiales
Amino
2-375
376-





Acid

439


 37
1753MI4_001
Firmicutes
DNA




 38
1753MI4_001
Firmicutes
Amino
2-374
375-





Acid

440


 39
1753MI6_001
Firmicutes
DNA




 40
1753MI6_001
Firmicutes
Amino
2-374
375-





Acid

440


 41
1753MI35_004
Firmicutes
DNA




 42
1753MI35_004
Firmicutes
Amino
2-375
376-





Acid

441


 43
1754MI9_004
Firmicutes
DNA




 44
1754MI9_004
Firmicutes
Amino
2-375
376-





Acid

440


 45
1754MI22_004
Firmicutes
DNA




 46
1754MI22_004
Firmicutes
Amino
2-375
376-





Acid

440


 47
727MI1_002
Firmicutes
DNA




 48
727MI1_002
Firmicutes
Amino
2-372
373-





Acid

436


 49
727MI9_005
Firmicutes
DNA




 50
727MI9_005
Firmicutes
Amino
2-374
375-





Acid

438


 51
727MI27_002
Firmicutes
DNA




 52
727MI27_002
Firmicutes
Amino
2-374
375-





Acid

439


 53
1753MI2_006
Neocallimastigales
DNA




 54
1753MI2_006
Neocallimastigales
Amino
2-376
377-





Acid

437


 55
5586MI3_005
Neocallimastigales
DNA




 56
5586MI3_005
Neocallimastigales
Amino
2-376
377-





Acid

437


 57
5586MI91_002
Neocallimastigales
DNA




 58
5586MI91_002
Neocallimastigales
Amino
2-376
377-





Acid

437


 59
5586MI194_003
Neocallimastigales
DNA




 60
5586MI194_003
Neocallimastigales
Amino
2-376
377-





Acid

438


 61
5586MI198_003
Neocallimastigales
DNA




 62
5586MI198_003
Neocallimastigales
Amino
2-375
376-





Acid

437


 63
5586MI201_003
Neocallimastigales
DNA




 64
5586MI201_003
Neocallimastigales
Amino
2-376
377-





Acid

438


 65
5586MI204_002
Neocallimastigales
DNA




 66
5586MI204_002
Neocallimastigales
Amino
2-375
376-





Acid

437


 67
5586MI207_002
Neocallimastigales
DNA




 68
5586MI207_002
Neocallimastigales
Amino
2-375
376-





Acid

437


 69
5586MI209_003
Neocallimastigales
DNA




 70
5586MI209_003
Neocallimastigales
Amino
2-375
376-





Acid

437


 71
5586MI214_002
Neocallimastigales
DNA




 72
5586MI214_002
Neocallimastigales
Amino
2-375
376-





Acid

437


 73
5751MI3_001
Neocallimastigales
DNA




 74
5751MI3_001
Neocallimastigales
Amino
2-375
376-





Acid

437


 75
5753MI3_002

Prevotella

DNA




 76
5753MI3_002

Prevotella

Amino
2-376
377-





Acid

439


 77
1754MI1_001

Prevotella

DNA




 78
1754MI1_001

Prevotella

Amino
2-377
378-





Acid

439


 79
1754MI3_007

Prevotella

DNA




 80
1754MI3_007

Prevotella

Amino
2-377
378-





Acid

439


 81
1754MI5_009

Prevotella

DNA




 82
1754MI5_009

Prevotella

Amino
2-375
376-





Acid

437


 83
5586MI1_003

Prevotella

DNA




 84
5586MI1_003

Prevotella

Amino
2-377
378-





Acid

439


 85
5586MI2_006

Prevotella

DNA




 86
5586MI2_006

Prevotella

Amino
2-377
378-





Acid

439


 87
5586MI8_003

Prevotella

DNA




 88
5586MI8_003

Prevotella

Amino
2-377
378-





Acid

439


 89
5586MI14_003

Prevotella

DNA




 90
5586MI14_003

Prevotella

Amino
2-377
378-





Acid

439


 91
5586MI26_003

Prevotella

DNA




 92
5586MI26_003

Prevotella

Amino
2-377
378-





Acid

439


 93
5586MI86_001

Prevotella

DNA




 94
5586MI86_001

Prevotella

Amino
2-376
377-





Acid

438


 95
5586MI108_002

Prevotella

DNA




 96
5586MI108_002

Prevotella

Amino
2-377
378-





Acid

439


 97
5586MI182_004

Prevotella

DNA




 98
5586MI182_004

Prevotella

Amino
2-377
378-





Acid

439


 99
5586MI193_004

Prevotella

DNA




100
5586MI193_004

Prevotella

Amino
2-376
377-





Acid

438


101
5586MI195_003

Prevotella

DNA




102
5586MI195_003

Prevotella

Amino
2-376
377-





Acid

438


103
5586MI216_003

Prevotella

DNA




104
5586MI216_003

Prevotella

Amino
2-376
377-





Acid

438


105
5586MI197_003

Prevotella

DNA




106
5586MI197_003

Prevotella

Amino
2-376
377-





Acid

438


107
5586MI199_003

Prevotella

DNA




108
5586MI199_003

Prevotella

Amino
2-376
377-





Acid

438


109
5586MI200_003

Prevotella

DNA




110
5586MI200_003

Prevotella

Amino
2-376
377-





Acid

438


111
5586MI203_003

Prevotella

DNA




112
5586MI203_003

Prevotella

Amino
2-376
377-





Acid

438


113
5586MI205_004

Prevotella

DNA




114
5586MI205_004

Prevotella

Amino
2-376
377-





Acid

438


115
5586MI206_004

Prevotella

DNA




116
5586MI206_004

Prevotella

Amino
2-376
377-





Acid

438


117
5586MI208_003

Prevotella

DNA




118
5586MI208_003

Prevotella

Amino
2-376
377-





Acid

438


119
5586MI210_002

Prevotella

DNA




120
5586MI210_002

Prevotella

Amino
2-374
375-





Acid

437


121
5586MI212_002

Prevotella

DNA




122
5586MI212_002

Prevotella

Amino
2-376
377-





Acid

438


123
5586MI213_003

Prevotella

DNA




124
5586MI213_003

Prevotella

Amino
2-376
377-





Acid

438


125
5586MI215_003

Prevotella

DNA




126
5586MI215_003

Prevotella

Amino
2-376
377-





Acid

438


127
5607MI1_003

Prevotella

DNA




128
5607MI1_003

Prevotella

Amino
2-376
377-





Acid

438


129
5607MI2_003

Prevotella

DNA




130
5607MI2_003

Prevotella

Amino
2-376
377-





Acid

442


131
5607MI3_003

Prevotella

DNA




132
5607MI3_003

Prevotella

Amino
2-376
377-





Acid

438


133
5607MI4_005

Prevotella

DNA




134
5607MI4_005

Prevotella

Amino
2-376
377-





Acid

438


135
5607MI5_002

Prevotella

DNA




136
5607MI5_002

Prevotella

Amino
2-376
377-





Acid

439


137
5607MI6_002

Prevotella

DNA




138
5607MI6_002

Prevotella

Amino
2-376
377-





Acid

438


139
5607MI7_002

Prevotella

DNA




140
5607MI7_002

Prevotella

Amino
2-376
377-





Acid

438


141
5608MI1_004

Prevotella

DNA




142
5608MI1_004

Prevotella

Amino
2-376
377-





Acid

438


143
5608MI2_002

Prevotella

DNA




144
5608MI2_002

Prevotella

Amino
2-375
376-





Acid

437


145
5608MI3_004

Prevotella

DNA




146
5608MI3_004

Prevotella

Amino
2-376
377-





Acid

438


147
5609MI1_005

Prevotella

DNA




148
5609MI1_005

Prevotella

Amino
2-376
377-





Acid

438


149
5610MI1_003

Prevotella

DNA




150
5610MI1_003

Prevotella

Amino
2-376
377-





Acid

438


151
5610MI2_004

Prevotella

DNA




152
5610MI2_004

Prevotella

Amino
2-376
377-





Acid

438


153
5751MI1_003

Prevotelld

DNA




154
5751MI1_003

Prevotella

Amino
2-376
377-





Acid

438


155
5751MI2_003

Prevotella

DNA




156
5751MI2_003

Prevotella

Amino
2-376
377-





Acid

438


157
5752MI1_003

Prevotella

DNA




158
5752MI1_003

Prevotella

Amino
2-376
377-





Acid

438


159
5752MI2_003

Prevotella

DNA




160
5752MI2_003

Prevotella

Amino
2-376
377-





Acid

438


161
5752MI3_002

Prevotella

DNA




162
5752MI3_002

Prevotella

Amino
2-376
377-





Acid

438


163
5752MI5_003

Prevotella

DNA




164
5752MI5_003

Prevotella

Amino
2-376
377-





Acid

438


165
5752MI6_004

Prevotella

DNA




166
5752MI6_004

Prevotella

Amino
2-376
377-





Acid

438


167
5753MI1_002

Prevotella

DNA




168
5753MI1_002

Prevotella

Amino
2-376
377-





Acid

438


169
5753MI2_002

Prevotella

DNA




170
5753MI2_002

Prevotella

Amino
2-376
377-





Acid

438


171
5753MI4_002

Prevotella

DNA




172
5753MI4_002

Prevotella

Amino
2-376
377-





Acid

438


173
5752MI4_004

Prevotella

DNA




174
5752MI4_004

Prevotella

Amino
2-376
377-





Acid

438


175
727MI4_006

Rhizobiales

DNA




176
727MI4_006

Rhizobiales

Amino
2-373
374-





Acid

435









In specific embodiments, a polypeptide of the disclosure comprises an amino acid sequence having:

    • (1) (a) at least 97% or 98% sequence identity to SEQ ID NO:78 or the catalytic domain thereof (amino acids 2-377 of SEQ ID NO:78) and/or (b) at least 80%, 85%, 90%, 93% or 95% sequence identity to SEQ ID NO:78 or the catalytic domain thereof (amino acids 2-377 of SEQ ID NO:78) and further comprises (i) SEQ ID NO:212 or SEQ ID NO:213 and/or (ii) SEQ ID NO:214;
    • (2) (a) at least 95%, 97% or 98% sequence identity to SEQ ID NO:96 or the catalytic domain thereof (amino acids 2-377 of SEQ ID NO:96) and/or (b) at least 80%, 85%, 90%, 93% or 95% sequence identity to SEQ ID NO:96 or the catalytic domain thereof (amino acids 2-377 of SEQ ID NO:96) and further comprises (i) SEQ ID NO:212 or SEQ ID NO:213 and/or (ii) SEQ ID NO:214;
    • (3) at least 80%, 85%, 90%, 93%, 95%, 97% or 98% sequence identity to SEQ ID NO:38 or the catalytic domain thereof (amino acids 2-374 of SEQ ID NO:38), and optionally further comprises one, two, three, four or all five of (i) SEQ ID NO:206 or SEQ ID NO:207; (ii) SEQ ID NO:208; (iii) SEQ ID NO:209; (iv) SEQ ID NO:210; and (iv) SEQ ID NO:211;
    • (4) at least 80%, 85%, 90%, 93%, 95%, 97% or 98% sequence identity to SEQ ID NO:2 or the catalytic domain thereof (amino acids 2-374 of SEQ ID NO:2);
    • (5) at least 93%, 95%, 97% or 98% sequence identity to SEQ ID NO:58 or the catalytic domain thereof (amino acids 2-376 of SEQ ID NO:58),
    • (6) at least 80%, 85%, 90%, 93%, 95%, 97% or 98% sequence identity to SEQ ID NO:42 or the catalytic domain thereof (amino acids 2-375 of SEQ ID NO:42), and optionally further comprises one, two or all three of (i) SEQ ID NO:206 or SEQ ID NO:207; (ii) SEQ ID NO:210; and (iii) SEQ ID NO:211;
    • (7) (a) at least 97% or 98% sequence identity to SEQ ID NO:84 or the catalytic domain thereof (amino acids 2-376 of SEQ ID NO:84), and/or (b) at least 80%, 85%, 90%, 93% or 95% sequence identity to SEQ ID NO:84 or the catalytic domain thereof (amino acids 2-376 of SEQ ID NO:84) and further comprises (i) SEQ ID NO:212 or SEQ ID NO:213 and/or (ii) SEQ ID NO:214;
    • (8) (a) at least 97% or 98% sequence identity to SEQ ID NO:80 or the catalytic domain thereof (amino acids 2-377 of SEQ ID NO:80) and/or (b) at least 80%, 85%, 90%, 93% or 95% sequence identity to SEQ ID NO:80 or the catalytic domain thereof (amino acids 2-377 of SEQ ID NO:80) and further comprises (i) SEQ ID NO:212 or SEQ ID NO:213 and/or (ii) SEQ ID NO:214;
    • (9) at least 93%, 95%, 97% or 98% sequence identity to SEQ ID NO:54 or the catalytic domain thereof (amino acids 2-376 of SEQ ID NO:54);
    • (10) at least 80%, 85%, 90%, 93%, 95%, 97% or 98% sequence identity to SEQ ID NO:46 or the catalytic domain thereof (amino acids 2-376 of SEQ ID NO:46), and optionally further comprises SEQ ID NO:206 or SEQ ID NO:207;
    • (11) at least 90%, 93%, 95%, 97% or 98% sequence identity to SEQ ID NO: 16 or the catalytic domain thereof (amino acids 2-376 of SEQ ID NO: 16);
    • (12) at least 85%, 90%, 93%, 95%, 97% or 98% sequence identity to SEQ ID NO:82 or the catalytic domain thereof (amino acids 2-375 of SEQ ID NO:82); and/or
    • (13) at least 90%, 93%, 95%, 97% or 98% sequence identity to SEQ ID NO:32 or the catalytic domain thereof (amino acids 2-377 of SEQ ID NO:32).


The XIs of the disclosure can be characterized in terms of their activity. In some embodiments, a XI of the disclosure has at least 1.3 times the activity of the Orpinomyces sp. XI assigned Genbank Accession No. 169733248 (“Op-XI”) at pH 7.5, for example using the assay described in any of Examples 5, 7 and 8. In certain specific embodiments, a XI of the disclosure has an activity ranging from 1.25 to 3.0 times, from 1.5 to 3 times, from 1.5 to 2.25 times, or from 0.1.75 to 3 times the activity of Op-XI at pH 7.5.


The XIs of the disclosure can also be characterized in terms of their tolerance to acidic environments (e.g., at a pH of 6.5 or 6). In some embodiments, a XI of the disclosure has at least 1.9 times the activity of the Op-XI at pH 6, for example using the assay described in Example 8. In certain specific embodiments, a XI of the disclosure has an activity ranging from 1.9 to 4.1 times, from 2.4 to 4.1 times, from 2.4 to 3.9 times, or 2.4 to 4.1 times the activity of Op-XI at pH 6.


Tolerance to acidic environments can also be characterized as a ratio of activity at pH 6 to activity at pH 7.5 (“a pH 6 to pH 7.5 activity ratio”), for example as measured using the assay of Example 8. In some embodiments, the pH 6 to pH 7.5 activity ratio is at least 0.5 or at least 0.6. In various embodiments, the pH 6 to pH 7.5 activity ratio is 0.5-0.9 or 0.6-0.9.


In another aspect, the disclosure is directed to a nucleic acid which encodes a XI polypeptide of the disclosure. In various embodiments, the nucleic acid comprises a nucleotide sequence with at least 70%, 75%, 80%, 85%, 90%, 93%, 95%, 96%, 98%, 99% or 100% sequence identity to the nucleotide sequence of any one of SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63; 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, and 175, or the portion of any of the foregoing sequences encoding a XI catalytic domain or dimerization domain.


In other aspects, the disclosure is directed to a vector comprising a XI-encoding nucleotide sequence, for example a vector having an origin of replication and/or a promoter sequence operably linked to the XI-encoding nucleotide sequence. The promoter sequence can be one that is operable in a eukaryotic cell, for example in a fungal cell. In some embodiments, the promoter is operable in yeast (e.g., S. cerevisiae) or filamentous fungi.


In yet another aspect, the disclosure is directed to a recombinant cell comprising a nucleic acid that encodes a XI polypeptide. Particularly, the cell is engineered to express any of the XI polypeptides described herein. The recombinant cell may be of any species, and is preferably a eukaryotic cell, for example a yeast cell. Suitable genera of yeast include Saccharomyces, Kluyveromyces, Candida, Pichia, Schizosaccharomyces, Hansenula, Klockera, Schwanniomyces, Issatchenkia and Yarrowia. In specific embodiments, the recombinant cell is a S. cerevisiae, S. bulderi, S. barnetti, S. exiguus, S. uvarum, S. diastaticus, K. lactis, I. orientalis, K. marxianus or K. fragilis. Suitable genera of filamentous fungi include Aspergillus, Penicillium, Rhizopus, Chrysosporium, Myceliophthora, Trichoderma, Humicola, Acremonium and Fusarium. In specific embodiments, the recombinant cell is an Aspergillus niger, Aspergillus oryzae, Trichoderma reesei, Penicillium chrysogenum, Myceliophthora thermophila, or Rhizopus oryzae.


The recombinant cell may also be mutagenized or engineered to include modifications other than the recombinant expression of XI, particularly those that make the cell more suited to utilize xylose in a fermentation pathway. Exemplary additional modifications create one, two, three, four, five or even more of the following phenotypes: (a) increase in xylose transport into the cell; (b) increase in aerobic growth rate on xylose; (c) increase in xylulose kinase activity; (d) increase in flux through the pentose phosphate pathway into glycolysis, (e) decrease in aldose reductase activity, (f) decrease in sensitivity to catabolite repression, (g) increase in tolerance to biofuels, e.g., ethanol, (h) increase tolerance to intermediate production (e.g., xylitol), (i) increase in temperature tolerance, (j) osmolarity of organic acids, and (k) a reduced production of byproducts.


Increases in activity can be achieved by increased expression levels, for example expression of a hexose or pentose (e.g., xylose) transporter, a xylulose kinase, a glycolytic enzyme, or an ethanologenic enzyme is increased. The increased expression levels are achieved by overexpressing an endogenous protein or by expressing a heterologous protein.


Other modifications to the recombinant cell that are part of the disclosure are modifications that decrease the activity of genes or pathways in the recombinant cell. Preferably, the expression levels of one, two, three or more of the genes for hexose kinase, MIG-1, MIG-2, XR, aldose reductase, and XDH are reduced. Reducing gene activity can be achieved by a targeted deletion or disruption of the gene (and optionally reintroducing the gene under the control of a different promoter that drives lower levels of expression or inducible expression).


In yet other aspects, the disclosure is directed to methods of producing fermentation products, for example one or more of ethanol, butanol, diesel, lactic acid, 3-hydroxy-propionic acid, acrylic acid, acetic acid, succinic acid, citric acid, malic acid, fumaric acid, itaconic acid, an amino acid, 1,3-propane-diol, ethylene, glycerol, a β-lactam antibiotic and a cephalosporin. Typically, a cell that recombinantly expresses a XI of the disclosure is cultured in a xylose-containing medium, for example a medium supplemented with a lignocellulosic hydrolysate. The media may also contain glucose, arabinose, or other sugars, particularly those derived from lignocellulose. The media may be of any pH, particularly a pH between 3.0 and 9.0, preferably between 4.0 and 8.0, more preferably between 5.0 and 8.0, even more preferably between 6.0 and 7.5. The culture may occur in any media where the culture is under anaerobic or aerobic conditions, preferably under anaerobic conditions for production of compounds mentioned above and aerobically for biomass/cellular production. Optionally, the methods further comprise recovering the fermentation product produced by the recombinant cell.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1B are maps for the vector pMEV-ΔxylA (MEV3 xylA del) and PCR-BluntII-TOPO-xylA, respectively, used in the activity-based screen for XIs.



FIG. 2 illustrates the experimental strategy for the two-step marker exchange approach.



FIG. 3 is a map of the vector p426PGK1 for expressing XI in yeast strain, Saccharomyces cerevisiae CEN.PK2-1Ca (ATCC: MYA1108).



FIG. 4 shows the growth rates on xylose containing media of selected clones expressed in yeast strain, Saccharomyces cerevisiae CEN.PK2-1Ca (ATCC: MYA1108).



FIGS. 5A-5D are maps for the vectors pYDAB-006, pYDURA01, pYDPt-005 and pYDAB-0006, respectively, all used in creating strains of industrial S. cerevisiae strain yBPA130 with a single genomic copy of select XI clones.



FIG. 6 is a map of vector YDAB008-rDNA for multiple XI integration into S. cerevisiae strain yBPB007 and yBPB008.



FIGS. 7A-7B show monosaccharide (including xylose) utilization and ethanol production by strains of industrial S. cerevisiae with multiple copies of XI clones integrated into ribosomal DNA loci.



FIG. 8 illustrate production of ethanol from glycolytic and pentose phosphate (“PPP”) pathways. Not all steps are shown. For example, glyceraldehyde-3-phosphate is converted to pyruvate via a series of glycolytic steps: (1) glyceraldehyde-3-phosphate to 3-phospho-D-glycerol-phosphate catalyzed by glyceraldehyde-3-phosphate dehydrogenase (TDH1-3); (2) 3-phospho-D-glycerol-phosphate to 3-phosphoglycerate catalyzed by 3-phosphoglycerate kinase (PGK1); (3) 3-phosphoglycerate to 2-phosphoglycerate catalyzed by phosphoglycerate mutase (GPM1); (4) 2-phosphoglycerate to phosphoenolpyruvate catalyzed by enolase (ENO1; ENO2); and (5) phosphoenolpyruvate to pyruvate calatyzed by pyruvate kinase (PYK2; CDC19). Other abbreviations: DHAP=dihydroxy-acetone-phosphate; GPD=Glycerol-3-phosphate dehydrogenase; RHR2/HOR2=DL-glycerol-3-phosphatase; XI=xylose isomerase; GRE=xylose reductase/aldose reductase; XYL=xylitol dehydrogenase; XKS=xylulokinase; PDC=pyruvate decarboxylase; ADH=alcohol dehydrogenase; ALD=aldehyde dehydrogenase; HXK=hexokinase; PGI=phosphoglucose isomerase; PFK=phosphofructokinase; FBA=aldolase; TPI=triosephosphate isomerase; ZWF=glucose-6 phosphate dehydrogenase; SOL=6-phosphogluconolactonase; GND=6-phosphogluconate dehydrogenase; RPE=D-ribulose-5-Phosphate 3-epimerase; RKI=ribose-5-phosphate ketol-isomerase; TKL=transketolase; TAL=transaldolase. Heavy dashed arrows indicate reactions and corresponding enzymes that can be reduced or eliminated to increase xylose utilization; particularly in the production of ethanol, and heavy solid arrows indicate reactions and corresponding enzymes that can be increased to increase xylose utilization, particularly in the production of ethanol. The enzymes shown in FIG. 8 are encoded by S. cerevisiae genes. The S. cerevisiae genes are used for exemplification purposes. Analogous enzymes and modifications in other organisms are within the scope of the present disclosure.





DETAILED DESCRIPTION OF THE INVENTION
Xylose Isomerase Polypeptides

A “xylose isomerase” or “XI” is an enzyme that catalyzes the direct isomerisation of D-xylose into D-xylulose and/or vice versa. This class of enzymes is also known as D-xylose ketoisomerases. A xylose isomerase herein may also be capable of catalyzing the conversion between D-glucose and D-fructose (and accordingly may therefore be referred to as a glucose isomerase).


A “XI polypeptide of the disclosure” or a “XI of the disclosure” is a xylose isomerase having an amino acid sequence that is related to any one of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, or 176. In some embodiments, the xylose isomerase of the disclosure has an amino acid sequence that is at least about 70%, at least 80%, at least 90%, at least 95%, at least 96%, at least 98%, or at least 99% sequence identity thereto, or to a catalytic or dimerization domain thereof. The xylose isomerase of the disclosure can also have 100% sequence identity to one of the foregoing sequences.


The disclosure provides isolated, synthetic or recombinant XI polypeptides comprising an amino acid sequence having at least about 80%, e.g., at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or complete (100%) sequence identity to a polypeptide of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, or 176, over a region of at least about 10, e.g., at least about 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, or 350 residues, or over the full length of the polypeptide, over the length of catalytic domain, or over the length of the dimerization domain.


The XI polypeptides of the disclosure can be encoded by a nucleic acid sequence having at least about 80%, about 85%, about 86%, about 87%, about 88%, about 89%, or about 90% sequence identity to 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, or 175, or by a nucleic acid sequence capable of hybridizing under high stringency conditions to a complement of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 1.51, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, or 175, or to a fragment thereof. Exemplary nucleic acids of the disclosure are described in the following subtitled section “Xylose Isomerase Nucleic Acids”.


In specific embodiments, a polypeptide of the disclosure comprises an amino acid sequence having:

    • (1) (a) at least 97% or 98% sequence identity to SEQ ID NO:78 or the catalytic domain thereof (amino acids 2-377 of SEQ ID NO:78) and/or (b) at least 80%, 85%, 90%, 93% or 95% sequence identity to SEQ ID NO:78 or the catalytic domain thereof (amino acids 2-377 of SEQ ID NO:78) and further comprises (i) SEQ ID NO:212 or SEQ ID NO:213 and/or (ii) SEQ ID NO:214;
    • (2) (a) at least 95%, 97% or 98% sequence identity to SEQ ID NO:96 or the catalytic domain thereof (amino acids 2-377 of SEQ ID NO:96) and/or (b) at least 80%, 85%, 90%, 93% or 95% sequence identity to SEQ ID NO:96 or the catalytic domain thereof (amino acids 2-377 of SEQ ID NO:96) and further comprises (i) SEQ ID NO:212 or SEQ ID NO:213 and/or (ii) SEQ ID NO:214;
    • (3) at least 80%, 85%, 90%, 93%, 95%, 97% or 98% sequence identity to SEQ ID NO:38 or the catalytic domain thereof (amino acids 2-374 of SEQ ID NO:38), and optionally further comprises one, two, three, four or all five of (i) SEQ ID NO:206 or SEQ ID NO:207; (ii) SEQ ID NO:208; (iii) SEQ ID NO:209; (iv) SEQ ID NO:210; and (iv) SEQ ID NO:211;
    • (4) at least 80%, 85%, 90%, 93%, 95%, 97% or 98% sequence identity to SEQ ID NO:2 or the catalytic domain thereof (amino acids 2-374 of SEQ ID NO:2);
    • (5) at least 93%, 95%, 97% or 98% sequence identity to SEQ ID NO:58 or the catalytic domain thereof (amino acids 2-376 of SEQ ID NO:58),
    • (6) at least 80%, 85%, 90%, 93%, 95%, 97% or 98% sequence identity to SEQ ID NO:42 or the catalytic domain thereof (amino acids 2-375 of SEQ ID NO:42), and optionally further comprises one, two or all three of (i) SEQ ID NO:206 or SEQ ID NO:207; (ii) SEQ ID NO:210; and (iii) SEQ ID NO:211;
    • (7) (a) at least 97% or 98% sequence identity to SEQ ID NO:84 or the catalytic domain thereof (amino acids 2-376 of SEQ ID NO:84), and/or (b) at least 80%, 85%, 90%, 93% or 95% sequence identity to SEQ ID NO:84 or the catalytic domain thereof (amino acids 2-376 of SEQ ID NO:84) and further comprises (i) SEQ ID NO:212 or SEQ ID NO:213 and/or (ii) SEQ ID NO:214;
    • (8) (a) at least 97% or 98% sequence identity to SEQ ID NO:80 or the catalytic domain thereof (amino acids 2-377 of SEQ ID NO:80) and/or (b) at least 80%, 85%, 90%, 93% or 95% sequence identity to SEQ ID NO:80 or the catalytic domain thereof (amino acids 2-377 of SEQ ID NO:80) and further comprises (i) SEQ ID NO:212 or SEQ ID NO:213 and/or (ii) SEQ ID NO:214;
    • (9) at least 93%, 95%, 97% or 98% sequence identity to SEQ ID NO:54 or the catalytic domain thereof (amino acids 2-376 of SEQ ID NO:54);
    • (10) at least 80%, 85%, 90%, 93%, 95%, 97% or 98% sequence identity to SEQ ID NO:46 or the catalytic domain thereof (amino acids 2-376 of SEQ ID NO:46), and optionally further comprises SEQ ID NO:206 or SEQ ID NO:207;
    • (11) at least 90%, 93%, 95%, 97% or 98% sequence identity to SEQ ID NO: 16 or the catalytic domain thereof (amino acids 2-376 of SEQ ID NO: 16);
    • (12) at least 85%, 90%, 93%, 95%, 97% or 98% sequence identity to SEQ ID NO:82 or the catalytic domain thereof (amino acids 2-375 of SEQ ID NO:82); and/or
    • (13) at least 90%, 93%, 95%, 97% or 98% sequence identity to SEQ ID NO:32 or the catalytic domain thereof (amino acids 2-377 of SEQ ID NO:32).


An example of an algorithm that is suitable for determining sequence similarity is the BLAST algorithm, which is described in Altschul et al., 1990, J. Mol. Biol. 215:403-410. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence that either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. These initial neighborhood word hits act as starting points to find longer HSPs containing them. The word hits are expanded in both directions along each of the two sequences being compared for as far as the cumulative alignment score can be increased. Extension of the word hits is stopped when: the cumulative alignment score falls off by the quantity X from a maximum achieved value; the cumulative score goes to zero or below; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLAST program uses as defaults a word length (W) of 11, the BLOSUM62 scoring matrix (see Henikoff & Henikoff, 1992, Proc. Nat'l. Acad. Sci. USA 89:10915-10919) alignments (B) of 50, expectation (E) of 10, M′5, N′-4, and a comparison of both strands.


Any of the amino acid sequences described herein can be produced together or in conjunction with at least 1, e.g., at least (or up to) 2, 3, 5, 10, or 20 heterologous amino acids flanking each of the C- and/or N-terminal ends of the specified amino acid sequence, and or deletions of at least 1, e.g., at least (or up to) 2, 3, 5, 10, or 20 amino acids from the C- and/or N-terminal ends of a XI of the disclosure.


The XIs of the disclosure can be characterized in terms of their activity. In some embodiments, a XI of the disclosure has at least 1.3 times the activity of the Orpinomyces sp. XI assigned Genbank Accession No. 169733248 (“Op-XI”) at pH 7.5, for example using the assay described in any of Examples 5, 7 and 8. In certain specific embodiments, a XI of the disclosure has an activity ranging from 1.25 to 3.0 times, from 1.5 to 3 times, from 1.5 to 2.25 times, or from 1.75 to 3 times the activity of Op-XI at pH 7.5.


The XIs of the disclosure can also be characterized in terms of their tolerance to acidic environments (e.g., at a pH of 6.5 or 6). In some embodiments, a XI of the disclosure has at least 1.9 times the activity of the Op-XI at pH 6, for example using the assay described in Example 8. In certain specific embodiments, a XI of the disclosure has an activity ranging from 1.9 to 4.1 times, from 2.4 to 4.1 times, from 2.4 to 3.9 times, or 2.4 to 4.1 times the activity of Op-XI at pH6.


Tolerance to acidic environments can also be characterized as a ratio of activity at pH 6 to activity at pH 7.5 (“a pH 6 to pH 7.5 activity ratio”), for example as measured using the assay of Example 8. In some embodiments, the pH 6 to pH 7.5 activity ratio is at least 0.5 or at least 0.6. In various embodiments, the pH 6 to pH 7.5 activity ratio is 0.5-0.9 or 0.6-0.9.


The xylose isomerases of the disclosure can have one or more (e.g., up to 2, 3, 5, 10, or 20) conservative amino acid substitutions relative to the polypeptide of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, or 176 or to the portion thereof of discussed above. The conservative substitutions can be chosen from among a group having a similar side chain to the reference amino acid. For example, a group of amino acids having aliphatic side chains is glycine, alanine, valine, leucine, and isoleucine; a group of amino acids having aliphatic-hydroxyl side chains is serine and threonine; a group of amino acids having amide-containing side chains is asparagine and glutamine; a group of amino acids having aromatic side chains is phenylalanine, tyrosine, and tryptophan; a group of amino acids having basic side chains is lysine, arginine, and histidine; and a group of amino acids having sulphur-containing side chains is cysteine and methionine. Accordingly, exemplary conservative substitutions for each of the naturally occurring amino acids are as follows: ala to ser; arg to lys; asn to gin or his; asp to glu; cys to ser or ala; gin to asn; glu to asp; gly to pro; his to asn or gin; ile to leu or val; leu to ile or val; lys to arg; gin or glu; met to leu or ile; phe to met, leu or tyr; ser to thr; thr to ser; trp to tyr; tyr to trp or phe; and, val to ile or leu.


The present disclosure also provides a fusion protein that includes at least a portion (e.g., a fragment or domain) of a XI polypeptide of the disclosure attached to one or more fusion segments, which are typically heterologous to the XI polypeptide. Suitable fusion segments include, without limitation, segments that can provide other desirable biological activity or facilitate purification of the XI polypeptide (e.g., by affinity chromatography). Fusion segments can be joined to the amino or carboxy terminus of a XI polypeptide. The fusion segments can be susceptible to cleavage.


Xylose Isomerase Nucleic Acids

A “XI nucleic acid of the disclosure” is a nucleic acid encoding a xylose isomerase of the disclosure. In certain embodiments, the xylose isomerase nucleic acid of the disclosure is encoded by a nucleotide sequence of any one of SEQ ID NOs:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, or 175, or a sequence having at least about 70%, at least 80%, at least 90%, at least 95%, at least 96%, at least 98%, or at least 99% sequence identity thereto. The xylose isomerase nucleic acid of the disclosure can also have 100% sequence identity to one of the foregoing sequences.


The present disclosure provides nucleic acids encoding a polypeptide of the disclosure, for example one described in the preceding subtitled section “Xylose Isomerase Polypeptides”. The disclosure provides isolated, synthetic or recombinant nucleic acids comprising a nucleic acid sequence having at least about 70%, e.g., at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%; 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, or complete (100%) sequence identity to a nucleic acid of SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, or 175, over a region of at least about 0.10, e.g., at least about 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450, 1500, 1550, 1600, 1650, 1700, 1750, 1800, 1850, 1900, 1950, or 2000 nucleotides.


Nucleic acids of the disclosure also include isolated, synthetic or recombinant nucleic acids encoding a XI polypeptide having the sequence of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, or 176, and subsequences thereof (e.g., a conserved domain or a catalytic domain), and variants thereof.


To increase the likelihood that a XI polypeptide is recombinantly expressed, a XI nucleic acid may be adapted to optimize its codon usage to that of the chosen cell. Several methods for codon optimization are known in the art. For expression in yeast, an exemplary method to optimize codon usage of the nucleotide sequences to that of the yeast is a codon pair optimization technology as disclosed in WO2006/077258 and/or WO2008/000632. WO2008/000632 addresses codon-pair optimization. Codon-pair optimization is a method wherein the nucleotide sequences encoding a polypeptide are modified with respect to their codon-usage, in particular the codon-pairs that are used, to obtain improved expression of the nucleotide sequence encoding the polypeptide and/or improved production of the encoded polypeptide. Codon pairs are defined as a set of two subsequent triplets (codons) in a coding sequence.


Host Cells and Recombinant Expression

The disclosure also provides host cells transformed with a XI nucleic acid and recombinant host cells engineered to express XI polypeptides. The XI nucleic acid construct may be extrachromosomal, on a plasmid, which can be a low copy plasmid or a high copy plasmid. The nucleic acid construct may be maintained episomally and thus comprise a sequence for autonomous replication, such as an autosomal replication sequence. Alternatively, a XI nucleic acid may be integrated in one or more copies into the genome of the cell. Integration into the cell's genome may occur at random by non-homologous recombination but preferably, the nucleic acid construct may be integrated into the cell's genome by homologous recombination as is well known in the art. In certain embodiments, the host cell is bacterial or fungal (e.g., a yeast or a filamentous fungus).


Suitable host cells of the bacterial genera include, but are not limited to, cells of Escherichia, Bacillus, Lactobacillus, Pseudomonas, and Streptomyces. Suitable cells of bacterial species include, but are not limited to, cells of Escherichia coli, Bacillus subtilis, Bacillus licheniformis, Lactobacillus brevis, Pseudomonas aeruginosa, and Streptomyces lividans.


Suitable host cells of the genera of yeast include, but are not limited to, cells of Saccharomyces, Kluyveromyces, Candida, Pichia, Schizosaccharomyces, Hansenula, Klockera, Schwanniomyces, Phaffia, Issatchenkia and Yarrowia. In specific embodiments, the recombinant cell is a S. cerevisiae, C. albicans, S. pombe, S. bulderi, S. barnetti, S. exiguus, S. uvarum, S. diastaticus, H. polymorpha, K. lactis, I. orientalis, K. marxianus, K. fragilis, P. pastoris, P. canadensis, K. marxianus or P. rhodozyma. Exemplary yeast strains that are suitable for recombinant XI expression include, but are not limited to, Lallemand LYCC 6391, Lallemand LYCC 6939, Lallemand LYCC 6469, (all from Lallemand, Inc., Montreal, Canada); NRRL YB-1952 (ARS (NRRL) Collection, U.S. Department of Agriculture); and BY4741.


Suitable host cells of filamentous fungi include all filamentous forms of the subdivision Eumycotina. Suitable cells of filamentous fungal genera include, but are not limited to, cells of Acremonium, Aspergillus, Aureobasidium, Bjerkandera, Ceriporiopsis, Chrysoporium, Coprinus, Coriolus, Corynascus, Chaetomium, Cryptococcus, Filobasidium, Fusarium, Gibberella, Humicola, Hypocrea, Magnaporthe, Mucor, Myceliophthora, Neocallimastix, Neurospora, Paecilomyces, Penicillium, Phanerochaete, Phlebia, Piromyces, Pleurotus, Scytaldium, Schizophyllum, Sporotrichum, Talaromyces, Thermoascus, Thielavia, Tolypocladium, Trametes, and Trichoderma. In certain aspects, the recombinant cell is a Trichoderma sp. (e.g., Trichoderma reesei), Penicillium sp., Humicola sp. (e.g., Humicola insolens); Aspergillus sp. (e.g., Aspergillus niger), Chrysosporium sp., Fusarium sp., or Hypocrea sp. Suitable cells can also include cells of various anamorph and teleomorph forms of these filamentous fungal genera.


Suitable cells of filamentous fungal species include, but are not limited to, cells of Aspergillus awamori, Aspergillus fumigatus, Aspergillus foetidus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Chrysosporium lucknowense, Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium torulosum, Fusarium trichothecioides, Fusarium venenatum, Bjerkandera adusta, Ceriporiopsis aneirina, Ceriporiopsis aneirina, Ceriporiopsis caregiea, Ceriporiopsis gilvescens, Ceriporiopsis pannocinta, Ceriporiopsis rivulosa, Ceriporiopsis subrufa, Ceriporiopsis subvermispora, Coprinus cinereus, Coriolus hirsutus, Humicola insolens, Humicola lanuginosa, Mucor miehei, Myceliophthora thermophila, Neurospora crassa, Neurospora intermedia, Penicillium purpurogenum, Penicillium canescens, Penicillium solitum, Penicillium funiculosum, Phanerochaete chrysosporium, Phlebia radiate, Pleurotus eryngii, Talaromyces flavus, Thielavia terrestris, Trametes villosa, Trametes versicolor, Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum; Trichoderma reesei, and Trichoderma viride.


Typically, for recombinant expression, the XI nucleic acid will be operably linked to one or more nucleic acid sequences capable of providing for or aiding the transcription and/or translation of the XI sequence, for example a promoter operable in the organism in which the XI is to be expressed. The promoters can be homologous or heterologous, and constitutive or inducible.


Preferably, the XI polypeptide is expressed in the cytosol and therefore lacks a mitochondrial or peroxisomal targeting signal.


Where recombinant expression in a filamentous fungal host is desired, the promoter can be a fungal promoter (including but not limited to a filamentous fungal promoter), a promoter operable in plant cells, a promoter operable in mammalian cells.


As described in U.S. provisional application No. 61/553,901, filed Oct. 31, 2011, the contents of which are hereby incorporated in their entireties, promoters that are constitutively active in mammalian cells (which can derived from a mammalian genome or the genome of a mammalian virus) are capable of eliciting high expression levels in filamentous fungi such as Trichoderma reesei. An exemplary promoter is the cytomegalovirus (“CMV”) promoter.


As described in U.S. provisional application No. 61/553,897, filed Oct. 31, 2011, the contents of which are hereby incorporated in their entireties, promoters that are constitutively active in plant cells (which can derived from a plant genome or the genome of a plant virus) are capable of eliciting high expression levels in filamentous fungi such as Trichoderma reesei. Exemplary promoters are the cauliflower mosaic virus (“CaMV”) 35S promoter or the Commelina yellow mottle virus (“CoYMV”) promoter.


Mammalian, mammalian viral, plant and plant viral promoters can drive particularly high expression when the associated 5′ UTR sequence (i.e., the sequence which begins at the transcription start site and ends one nucleotide (nt) before the start codon), normally associated with the mammalian or mammalian viral promoter is replaced by a fungal 5′ UTR sequence.


The source of the 5′ UTR can vary provided it is operable in the filamentous fungal cell. In various embodiments, the 5′ UTR can be derived from a yeast gene or a filamentous fungal gene. The 5′ UTR can be from the same species, one other component in the expression cassette (e.g., the promoter or the XI coding sequence), or from a different species. The 5′ UTR can be from the same species as the filamentous fungal cell that the expression construct is intended to operate in. In an exemplary embodiment, the 5′ UTR comprises a sequence corresponding to a fragment of a 5′ UTR from a T. reesei glyceraldehyde-3-phosphate dehydrogenase (gpd). In a specific embodiment, the 5′ UTR is not naturally associated with the CMV promoter


Examples of other promoters that can be used include, but are not limited to, a cellulase promoter, a xylanase promoter, the 1818 promoter (previously identified as a highly expressed protein by EST mapping Trichoderma). For example, the promoter can suitably be a cellobiohydrolase, endoglucanase, or β-glucosidase promoter. A particularly suitable promoter can be, for example, a T. reesei cellobiohydrolase, endoglucanase, or β-glucosidase promoter. Non-limiting examples of promoters include a cbh1, cbh2, egl1, egl2, egl3, egl4, egl5, pki1, gpd1, xyn1, or xyn2 promoter.


For recombinant expression in yeast, suitable promoters for S. cerevisiae include the MFα1 promoter, galactose inducible promoters such as the GAL1, GAL7 and GAL10 promoters, glycolytic enzyme promoters including the TPI and PGK promoters, the TDH3 promoter, the TEF1 promoter, the TRP1 promoter, the CYCI promoter, the CUP1 promoter, the PHO5 promoter, the ADH1 promoter, and the HSP promoter. Promoters that are active at different stage of growth or production (e.g., idiopliase or trophophase) can also be used (see, e.g., Puig et al., 1996, Biotechnology Letters 18(8):887-892; Puig and Pérez-Ortin, 2000, Systematic and Applied Microbiology 23(2):300-303; Simon et al., 2001, Cell 106:697-708; Wittenberg and Reed, 2005, Oncogene 24:2746-2755). A suitable promoter in the genus Pichia sp. is the AOXI (methanol utilization) promoter.


The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants, or amplifying the nucleic acid sequence encoding the XI polypeptide. Culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to those skilled in the art. As noted, many references are available for the culture and production of many cells, including cells of bacterial and fungal origin. Cell culture media in general are set forth in Atlas and Parks (eds.), 1993, The Handbook of Microbiological Media, CRC Press, Boca Raton, Fla., which is incorporated herein by reference. For recombinant expression in filamentous fungal cells, the cells are cultured in a standard medium containing physiological salts and nutrients, such as described in Pourquie et al., 1988, Biochemistry and Genetics of Cellulose Degradation, eds. Aubert, et al., Academic Press, pp. 71-86; and Ilmen et al, 1997, Appl. Environ. Microbiol. 63:1298-1306. Culture conditions are also standard, e.g., cultures are incubated at 30° C. in shaker cultures or fermenters until desired levels of XI expression are achieved. Preferred culture conditions for a given filamentous fungus may be found in the scientific literature and/or from the source of the fungi such as the American Type Culture Collection (ATCC). After fungal growth has been established, the cells are exposed to conditions effective to cause or permit the expression of a XI.


In cases where a XI coding sequence is under the control of an inducible promoter, the inducing agent, e.g., a sugar, metal salt or antibiotics, is added to the medium at a concentration effective to induce XI expression.


In addition to recombinant expression of a XI polypeptide, a host cell of the disclosure may further include one or more genetic modifications that increase the cell's ability to utilize xylose as a substrate in a fermentation process. Exemplary additional modifications create one, two, three, four, five or even more of the following phenotypes: (a) increase in xylose transport into the cell; (b) increase in aerobic growth rate on xylose; (c) increase in xylulose kinase activity; (d) increase influx through the pentose phosphate pathway into glycolysis, (e) modulating in aldose reductase activity, (f) decrease in sensitivity to catabolite repression, (g) increase in tolerance to biofuels, e.g., ethanol, (h) increase tolerance to intermediate production (for example xylitol), (i) increase in temperature tolerance, (j) osmolarity of organic acids, and (k) a reduced production of byproducts.


As illustrated below, a modification that results in one or more of the foregoing phenotypes can be a result of increasing or decreasing expression of an endogenoius protein (e.g., by at least a factor of about 1.1, about 1.2, about 1.5, about 2, about 5, about 10 or about 20) or a result of introducing expression of a heterologous polypeptide. For avoidance of doubt, “decreasing” or “reducing” gene expression encompasses eliminating expression. Decreasing (or reducing) the expression of an endogenous protein can be accomplished by inactivating one or more (or all) endogenous copies of a gene in a cell. A gene can be inactivated by deletion of at least part of the gene or by disruption of the gene. This can be achieved by deleting the some or all of a gene coding sequence or regulatory sequence whose deletion results in a reduction of gene expression in the cell. Examples of modifications that increase xylose utilization or yield of fermentation product are described below.


Increasing Xylose Transport:


Xylose transport can be increased directly or indirectly. For example, a recombinant cell may include one or more genetic modifications that result in expression of a xylose transporter. Exemplary transporters include, but are not limited to GXF1, SUT1 and At6g59250 from Candida intermedia, Pichia stipitis (now renamed Scheffersomyces stipitis; the terms are used interchangeably herein) and Arabidopsis thaliana, respectively (Runquist et al., 2010, Biotechnol. Biofuels 3:5), as well as HXT4, HXT5, HXT7, GAL2, AGT1, and GXF2 (see, e.g., Matsushika et al., 2009, Appl. Microbiol. Biotechnol. 84:37-53). Other transporters include PsAraT, SUT2-4 and XUT1-5 from P. stiptis; GXS1 from Candida intermedia; XylHP and DEHAOD02167 from Debaryomyces hansenii; and YALIOC06424 from Yarrowia lipolytica (see, e.g., Young et al., 2011, Appl. Environ. Microbiol. 77:3311-3319). Xylose transport can also be increased by (over-) expression of low-affinity hexose transporters, which are capable of non-selectively transporting sugars, including xylose, into the cell once glucose levels are low (e.g., 0.2-1.0 g/l); and includes CgHXT1-CgHXT5 from Colletotrichum graminicola. The foregoing modifications can be made singly or in combinations of two, three or more modifications.


Increasing Xylulose Kinase Activity:


Xylulose kinase activity can be increased by overexpression of a xylulose kinase, e.g., xylulose kinase (XKS1; Saccharomyces genome database (“SGD”) accession no. YGR194C) of S. cerevisiae, particularly where the recombinant cell is a yeast cell. In one embodiment, a S. cerevisiae cell is engineered to include at least 2 additional copies of xylulose kinase under the control of a strong constitutive promoter such as TDH3, TEF1 or PGK1. In another embodiment, overexpression of an endogenous xylulose kinase was engineered. This xylulose kinase having improved kinetic activities through the use of protein engineering techniques known by those skilled in the art.


Increasing Flux Through the Pentose Phosphate Pathway:


This can be achieved by increasing expression of one or more genes in the pentose phosphate pathway, for example S. cerevisiae transaldolase TAL1 (SGD accession no. YLR354C), transketolase TKL1 (SGD accession no. YPR074C), ribulose 5-phosphate epimerase RPE1 (SGD accession no. YJL121C) and ribose-5-phosphate ketoisomerase RKI1 (SGD accession no. YOR095C) and/or one or more genes to increase glycolytic flux, for example S. cerevisiae pyruvate kinase PYK1/CDC19 (SGD accession no. YAL038W), pyruvate decarboxylase PDC1 (SGD accession no. YLR044C), pyruvate decarboxylase PDC5 (SGD accession no. YLR134W), pyruvate decarboxylase PDC6 (SGD accession no. YGR087C), the alcohol dehydrogenases ADH1-5 (SGD accession nos. YOL086C, YMR303C, YMR083W, YGL256W, and YBR145W, respectively), and hexose kinase HXK1-2 (SGD accession nos. YFR053C and YGL253W, respectively). In one WEST12569846152 embodiment, the yeast cell has one additional copy each of TAL1, TKL1, RPE1 and RKI1 from S. cerevisiae under the control of strong constitutive promoters (e.g., PGK1, TDH3, TEF1); and may also include improvements to glycolytic flux (e.g., increased copies of genes such as PYK1, PDC1, PDC5, PDC6, ADH1-5) and glucose-6-phosphate and hexokinase. The foregoing modifications can be made singly or in combinations of two, three or more modifications.


Modulating Aldose Reductase Activity:


A recombinant cell can include one or more genetic modifications that increase or reduce (unspecific) aldose reductase (sometimes called aldo-keto reductase) activity. Aldose reductase activity can be reduced by one or more genetic modifications that reduce the expression of or inactivate a gene encoding an aldose reductase, for example S. cerevisiae GRE3 (SGD accession no. YHR104W).


In certain embodiments, GRE3 expression is reduced. In one aspect, the recombinant cell is a yeast cell in which the GRE3 gene is deleted. Deletion of GRE3 decreased xylitol yield by 49% and biomass production by 31%, but increased ethanol yield by 19% (Traff-Bjerre et al., 2004, Yeast 21:141-150). In another aspect, the recombinant cell is a yeast cell which has a reduction in expression of GRE3. Reducing GRE3 expression has been shown to result in a two-fold decrease in by-product (i.e., xylitol) formation and an associated improvement in ethanol yield (Traff et al., 2001, Appl. Environ. Microbiol. 67:5668-5674).


In another embodiment, the recombinant cell is a cell (optionally but not necessarily a yeast cell) in which GRE3 is overexpressed. In a study analyzing the effect of GRE3 overexpression in S. cerevisiae to investigate the effect on xylose utilization, an increase of about 30% in xylose consumption and about 120% in ethanol production was noted (Traff-Bjerre et al., 2004, Yeast 21:141-150).


Decreasing Xylose Reductase Activity:


A recombinant cell may include one or more genetic modifications that reduce xylose reductase activity. Xylose reductase activity can be reduced by one or more genetic modifications that reduce the expression of or inactivate a gene encoding a xylose reductase.


Decreasing Sensitivity to Catabolite Repression:


Glucose and other sugars, such as galactose or maltose, are able to cause carbon catabolite repression in Crabtree-positive yeast, such as S. cerevisiae. In one study, xylose was found to decrease the derepression of various enzymes of an engineered S. cerevisiae strain capable of xylose utilization by at least 10-fold in the presence of ethanol. Xylose also impaired the derepression of galactokinase and invertase (Belinchon & Gancedo, 2003, Arch. Microbiol. 180:293-297). In certain embodiments, in order to reduce catabolite sensitivity, yeast can include one or more genetic modifications that reduce expression of one or more of GRR1 (SGD accession no. YJR090C), the gene assigned SGD accession no. YLR042C, GAT1 (SGD accession no. YKR067W) and/or one or more genetic modifications that decrease expression of one or more of SNF1 (SGD accession no. YDR477W), SNF4 (SGD accession no. YGLI 15W), MIG1 (SGD accession no. YGL035C) and CRE1 (SGD accession no. YJL127C). In further embodiments, yeast can include one or more genetic modifications that result in overexpression of the pentose phosphate pathway enzymes. In yet further embodiments, yeast can include one or more genetic modifications that reduce expression of hexo-/glucokinase. In yet a further embodiment, yeast can include one or more genetic modifications that modulate the activity of one or more GATA factors, for example GAT1, DAL80 (SGD accession no. YKR034W), GZF3 (SGD accession no. YJL110C) and GLN3 (SGD accession no. YER040W). The foregoing modifications can be made singly or in combinations of two, three or more modifications.


Increasing Tolerance to Biofuels (e.g., Ethanol), Pathway Intermediates (e.g., Xvlitol), Organic Acids and Temperature:


For efficient bioethanol production from lignocellulosic biomass, it is useful to improve cellular tolerance to toxic compounds released during the pretreatment of biomass. In one study, the gene encoding PHO13 (SGD accession no. YDL236W), a protein with alkaline phosphatase activity, was disrupted. This resulted in improved ethanol production from xylose in the presence of three major inhibitors (i.e., acetic acid, formic acid and furfural). Further, the specific ethanol productivity of the mutant in the presence of 90 mM furfural was four fold higher (Fujitomi et al., 2012, Biores. Tech., 111:161-166). Thus, in one embodiment, yeast has one or more genetic modifications that reduce PHO13 expression. In other embodiments, yeast, bacterial and fungal cells are evolved under selective conditions to identify strains that can withstand higher temperatures, higher levels of intermediates, higher levels of organic acids and/or higher levels of biofuels (e.g., ethanol). In yet other embodiments, yeast are engineered to reduce expression of FPS1 (SGD accession no. YLL043W); overexpress unsaturated lipid and ergosterol biosynthetic pathways; reduce expression of PHO13 and/or SSK2 (SGD accession no. YNR031C); modulate global transcription factor cAMP receptor protein, through increasing or decreasing expression; increase expression of MSN2 (SGD accession no. YMR037C), RCN1 (SGD accession no. YKL159C), RSA3 (SGD accession no. YLR221C), CDC19 and/or ADH1; or increase expression of Rice ASR1. The foregoing modifications can be made singly or in combinations of two, three or more modifications.


Reducing Production of Byproducts:


Glycerol is one of the main byproducts in C6 ethanol production. Reducing glycerol is desirable for increasing xylose utilization by yeast. Production of glycerol can be reduced by deleting the gene encoding the FPS1 channel protein, which mediates glycerol export, and GPD2 (SGD accession no. YOL059W), which encodes glycerol-3-phosphate dehydrogenase; optionally along with overexpression of GLT1 (SGD accession no. YDL171C) and GLN1 (SGD accession no. YPR035W). In one study, FPS1 and GPD2 were knocked-out in one S. cerevisiae strain, and in another were replaced by overexpression of GLT1 and GLN1, which encode glutamate synthase and glutamine synthetase, respectively. When grown under microaerobic conditions, these strains showed ethanol yield improvements of 13.17% and 6.66%, respectively. Conversely, glycerol, acetic acid and pyruvic acid were found to all decrease, with glycerol down 37.4% and 41.7%, respectively (Zhang and Chen, 2008, Chinese J. Chem. Eng. 16:620-625).


Production of glycerol can also be reduced by deleting the NADH-dependent glycerol-3-phosphate dehydrogenase 1 (GPD1; SGD accession no. YDL022W) and/or the NADPH-dependent glutamate dehydrogenase 1 (GDH1; SGD accession no. YOR375C). Sole deletion of GPD1 or GDH1 reduces glycerol production, and double deletion results in a 46.4% reduction of glycerol production as compared to wild-type S. cerevisiae (Kim et al., 2012, Bioproc. Biosys. Eng. 35:49-54). Deleting FPS1 can decrease production of glycerol for osmoregulatory reasons.


Reducing production of acetate can also increase xylose utilization. Deleting ALD6 (SGD accession no. YPL061W) can decrease production of acetate.


ADH2 can also be deleted to reduce or eliminate acetylaldehyde formation from ethanol and thereby increase ethanol yield.


The foregoing modifications to reduce byproduct formation can be made singly or in combinations of two, three or more modifications.


In addition to ethanol production, a recombinant XI-expressing cell of the disclosure can be suitable for the production of non-ethanolic fermentation products. Such non-ethanolic fermentation products include in principle any bulk or fine chemical that is producible by a eukaryotic microorganism such as a yeast or a filamentous fungus. Such fermentation products may be, for example, butanol, lactic acid, 3-hydroxy-propionic acid, acrylic acid, acetic acid, succinic acid, citric acid, malic acid, fumaric acid, itaconic acid, an amino acid, 1,3-propane-diol, ethylene, glycerol, a β-lactam antibiotic or a cephalosporin. A preferred modified host cell of the diclosure for production of non-ethanolic fermentation products is a host cell that contains a genetic modification that results in decreased alcohol dehydrogenase activity.


Cells expressing the XI polypeptides of the disclosure can be grown under batch, fed-batch or continuous fermentations conditions. Classical batch fermentation is a closed system, wherein the compositions of the medium is set at the beginning of the fermentation and is not subject to artificial alternations during the fermentation. A variation of the batch system is a fed-batch fermentation in which the substrate is added in increments as the fermentation progresses. Fed-batch systems are useful when catabolite repression is likely to inhibit the metabolism of the cells and where it is desirable to have limited amounts of substrate in the medium. Batch and fed-batch fermentations are common and well known in the art. Continuous fermentation is an open system where a defined fermentation medium is added continuously to a bioreactor and an equal amount of conditioned medium is removed simultaneously for processing. Continuous fermentation generally maintains the cultures at a constant high density where cells are primarily in log phase growth. Continuous fermentation systems strive to maintain steady state growth conditions. Methods for modulating nutrients and growth factors for continuous fermentation processes as well as techniques for maximizing the rate of product formation are well known in the art of industrial microbiology.


Fermentation Methods

A further aspect the disclosure relates to fermentation processes in which the recombinant XI-expressing cells are used for the fermentation of carbon source comprising a source of xylose. Thus, in certain embodiments, the disclosure provides a process for producing a fermentation product by (a) fermenting a medium containing a source of xylose with a recombinant XI-expressing cell as defined herein above, under conditions in which the cell ferments xylose to the fermentation product, and optionally, (b) recovery of the fermentation product. In some embodiments, the fermentation product is an alcohol (e.g., ethanol, butanol, etc.), a fatty alcohol (e.g., a C8-C20 fatty alcohol), a fatty acid (e.g., a C8-C20 fatty acid), lactic acid, 3-hydroxypropionic acid, acrylic acid, acetic acid, succinic acid, citric acid, malic acid, fumaric acid, an amino acid, 1,3-propanediol, itaconic acid, ethylene, glycerol, and a β-lactam antibiotic such as Penicillin G or Penicillin V and fermentative derivatives thereof and cephalosporins. The fermentation process may be an aerobic or an anaerobic fermentation process.


In addition to a source of xylose the carbon source in the fermentation medium may also comprise a source of glucose. The source of xylose or glucose may be xylose or glucose as such or may be any carbohydrate oligo- or polymer comprising xylose or glucose units, such as e.g., lignocellulose, xylans, cellulose, starch and the like. Most microorganisms possess carbon catabolite repression that results in sequential consumption of mixed sugars derived from the lignocellulose, reducing the efficacy of the overall process. To increase the efficiency of fermentation, microorganisms that are capable of simultaneous consumption of mixed sugars (e.g., glucose and xylose) have been developed, for example by rendering them less sensitive to glucose repression (see, e.g., Kim et al., 2010, Appl. Microbiol. Biotechnol. 88:1077-85 and Ho et al., 1999, Adv. Biochem. Eng. Biotechnol. 65:163-92). Such cells can be used for recombinant XI expression and in the fermentation methods of the disclosure.


The fermentation process is preferably run at a temperature that is optimal for the recombinant XI-expressing cells. Thus, for most yeasts or fungal host cells, the fermentation process is performed at a temperature which is less than 38° C., unless temperature tolerant mutant strains are used, in which case the temperature may be higher. For most yeast or filamentous fungal host cells, the fermentation process is suitably performed at a temperature which is lower than 35° C., 33° C., 30° C. or 28° C. Optionally, the temperature is higher than 20° C., 22° C., or 25° C.


An exemplary process is a process for the production of ethanol, whereby the process comprises the steps of: (a) fermenting a medium containing a source of xylose with a transformed host cell as defined above, whereby the host cell ferments xylose to ethanol; and optionally, (b) recovery of the ethanol. The fermentation medium can also comprise a source of glucose that is also fermented to ethanol. The source of xylose can be sugars produced from biomass or agricultural wastes. Many processes for the production of monomeric sugars such as glucose generated from lignocellulose are well known, and are suitable for use herein. In brief, the cellulolytic material may be enzymatically, chemically, and/or physically hydrolyzed to a glucose and xylose containing, fraction. Alternatively, the recombinant XI-expressing cells of the disclosure can be further transformed with one or more genes encoding for enzymes effective for hydrolysis of complex substrates such as lignocellulose, and include but are not limited to cellulases, hemicellulases, peroxidases, laccases, chitinases, proteases, and pectinases. The recombinant cells of the disclosure can then be fermented under anaerobic in the presence of glucose and xylose. Where the recombinant cell is a yeast cell, the fermentation techniques and conditions described for example, by Wyman (1994, Biores. Technol. 50:3-16) and Olsson and Hahn-Hagerdal (1996, Enzyme Microb. Technol. 18:312-331) can be used. After completion of the fermentation, the ethanol may be recovered and optionally purified or distilled. Solid residue containing lignin may be discarded or burned as a fuel.


The fermentation process may be run under aerobic and anaerobic conditions. In some embodiments, the process is carried out under microaerobic or oxygen limited conditions. Fermentation can be carried out in a batch, fed-batch, or continuous configuration within (bio)reactors.


Example 1
Materials and Methods
Yeast Culture

Unless stated otherwise for a particular example, yeast transformants were grown in SC-ura media with about 2% glucose at 30° C. for about 24 hours. The media contains approx. 20 g agar, approx. 134 g BD Difco™ Yeast Nitrogen Base without amino acids (BD, Franklin Lakes, N.J.), and approx. 2 g SC amino-acid mix containing about 85 mg of the following amino acids unless noted (quantity listed in parentheses): L-Adenine (21.0), L-Alanine, L-Arginine, L-Asparagine, L-Aspartic Acid, L-Cysteine, Glutamine, L-Glutamic Acid, Glycine, L-Histidine, Myo-Inositol, L-Isoleucine, L-Leucine (173.4), L-Lysine, L-Methionine, p-Aminobenzoic Acid (8.6), L-Phenylalanine, L-Proline, L-Serine, L-Threonine, L-Tryptophan, L-Tyrosine, L-Valine).


Xylose Isomerase Activity

XI activity in cell lysates was determined using a method based on that of Kersters-Hilderson et al., 1986, Enzyme Microb. Technol. 9:145-148, in which enzymatic conversion of xylose to xylulose by the XI is coupled with the enzymatic conversion of the product (xylulose) to xylitol via the enzyme sorbitol dehydrogenase (SDH). SDH activity requires the oxidation of NADH to NAD+. The rate of oxidation of NADH is directly proportional to the rate of SDH conversion of D-xylulose to D-xylitol and is measured by the decrease in absorbance at 340 nm. One unit of enzyme activity as measured by this assay is a decrease of 1 μmole of NADH per minute under assay conditions. All reactions, solutions, plates, and spectrophotometer were equilibrated to about 35° C. prior to use. Assays were performed either on fresh lysates immediately after preparation or lysates that had been frozen at −20° C. immediately after preparation. Assays were performed using a BioTek Model: Synergy H1 Hybrid Reader spectrophotometer and 96-well plates (Corning, Model #Costar@#3598). All spectrophotometric readings were performed at 340 nm. A standard curve ofNADH was generated with each assay with concentrations ranging from 0 to about 0.6 mM.


The reaction buffer used for experiments at pH 7.5 was about 100 mM Tris-HCl (pH 7.5). The assay mix was prepared as follows: reaction buffer to which was added about 10 mM MgCl2, 0.15 mM NADH and 0.05 mg/ml SDH (Roche, catalog #50-720-3313). For experiments where activity was also measured at pH 6, the buffer was changed to about 100 mM sodium phosphate, pH 6. The assay mix for the entire experiment was then prepared as follows: about 10 mM MgCl2, 1.2 mM NADH and 0.02 mg/ml SDH.


Any sample dilutions were performed using the reaction buffer as diluent. Reactions were set up by aliquotting about 90 μl of assay mix into each well of the plates. About 10 μl of each XI sample was added to the wells. The reactions were started by the addition of about 100 μl substrate solution (about 1 M D-xylose). Reactions were mixed and read immediately using kinetic assay mode for about 10 minutes. Volumetric activity (VA) units are in milli-absorbance (mA) units per minute per ml of lysate added to the reactions (mA/min/ml). Background VA rates of negative control wells (no enzyme added) were subtracted from VA of samples. Determination of fold improvement over positive control (FIOPC) was obtained by dividing the VA of the XI-samples by the VA observed for a control (Orpinomyces xylose isomerase, NCBI: 169733248 (Op-XI)) expressed using the same host and expression vector. In some characterizations, the slope of an NADH standard curve was used to convert VA (mA/min) to μmole-NADH/min (or Units). If protein quantitation was performed, specific activities (SA) were calculated where the units for SA are (μmole NADH+/min/mg, or U/mg lysate protein). All activities listed (VA or SA) account for any dilutions, volumes of lysate added, and protein concentrations for the lysates assayed.


Example 2
Activity-Based Discovery Screen for Xylose Isomerases

Libraries used for the activity-based discovery (“ABD”) screen were in the format of excised phagemids. These libraries were constructed as described in U.S. Pat. No. 6,280,926. Sources for these libraries were environmental rumen samples collected from the foregut of deceased herbivores.


An Escherichia coli screening strain was constructed to identify genes from the environmental libraries encoding xylose isomerase activity. Specifically, E. coli strain SEL700, a MG1655 derivative that is recA, phage lambda resistant and contains an F′ plasmid, was complemented with plasmid pJC859, a derivative ofpBR322 containing the E. coli recA gene (Kokjohn et al., 1987, J. Bacteriol. 169:1499-1508) to generate a wild-type recA phenotype.


A two-step marker exchange procedure was then used to delete the entire coding sequence of the endogenous xylA xylose isomerase gene. Briefly, pMEV3, a plasmid with apir-dependent replicon (ori6RK) encoding kanamycin-resistance and the sacB levansucrase, was used as a vector for construction of the xylA deletion plasmid. A fragment of DNA containing the flanking regions of the xylA gene (0.7 kb of sequence 5′ and 0.9 kb of sequence 3′ of xylA) and containing BsaI restriction sites was generated by overlap extension PCR using primers, ligated to pMEV3 digested with BbsI, and transformed into E. coli by electroporation. Clones were confirmed by sequencing, resulting in plasmid pMEV3-ΔxylA (FIG. 1A).


The pMEV3-ΔxylA plasmid was then transformed into strain E. coli strain SEL700 (MG1655 Δr, Δ(recA-srl)306, srl-301::Tn10-84(Tets), [F′proAB, lac1q, ZΔM15, Tn10 (Tetr)]pJC859). Single-crossover events were selected for by plating on LB agar plates containing kanamycin (final concentration, about 50 μg/ml). After confirmation of integration of pMEV3-ΔxylA on the chromosome, a second crossover event was selected for by growth on LB agar media containing sucrose (FIG. 2). Colonies displaying resistance to kanamycin and the ability to grow on sucrose were screened both by PCR characterization with primers flanking the xylA gene to confirm gene deletion and by growth on a modified MacConkey media (ABD media), comprised of: MacConkey Agar Base (Difco™ #281810) (approximate formula per liter: Pancreatic Digest of Gelatin (17.0 g) Peptones (meat and casein) (3.0 g), Bile Salts No. 3 (1.5 g), Sodium Chloride (5.0 g), Agar (13.5 g), Neutral Red (0.03 g), Crystal Violet (1.0 g, Xylose (30.0 g) and Kanamycin (50 mg). The ABD media contained neutral red, a pH indicator that turns red at a pH<6.8. Colonies of mutants lacking xylA appeared white on this media while colonies with restored xylose metabolism ability appeared red in color due to the fermentation of xylose to xylulose, which lowered the pH of the media surrounding those colonies.


Following the successful deletion of xylA, the resulting strain was cured of pJC859 by the following method: The xylA deletion strain was grown for about 24 hours in LB media containing tetracycline at a final concentration, about 20 μg/ml, at around 37° C. The next day the cells were sub-cultured (1:100 dilution) into LB tetracycline (at the same concentration) media and incubated at about three different temperatures (30, 37, and 42° C.). Cells were passaged the same way as above for about two more days. Dilutions of the resulting cultures were plated on LB plates to isolate single colonies. Colonies were replica plated onto LB agar plates with and without Carbenicillin (at about 100 μg/ml, final concentration). Carbenicillin resistant colonies were deemed to still contain vector pJC859 whereas carbenicillin sensitive colonies were cured ofpJC859, restoring the recA genotype of strain SEL700. This strain, SEL700 ΔxylA, was used for the ABD screening.


The ABD screening method was verified by creating a positive control strain by PCR amplification of the xylA gene from E. coli K12 and cloning into the PCR-BluntII TOPO vector (Invitrogen, Carlsbad, Calif.) using standard procedures. This vector (PCR-BluntII-TOPO-xylA, FIG. 1B) was then transformed into the screening strain (SEL700 ΔxylA). Complementation of the xylose phenotype was verified by growth of transformants on ABD media and appearance of red halos indicating xylose utilization.


The libraries were screened for XI activity by infecting strain SEL700 ΔxylA with the excised phagemid libraries. Infected cells were plated onto ABD media and only colonies with red “halos” (indicating xylose fermentation), were carried forward. Positives were purified to single colonies, and regrown on ABD media to confirm phenotype.


Example 3
Sequence-Based Discovery for Xylose Isomerases

Libraries used for sequence-based discovery (“SBD”) were in the format of genomic DNA (gDNA) extractions. These libraries were constructed as described in U.S. Pat. No. 6,280,926. Sources for these libraries were samples collected from the guts of deceased herbivores.


XI genes often exist in conserved gene clusters (Dodd et al., 2011, Molecular Microbiol. 79:292-304). In order to obtain full length XI gene sequences from metagenomic samples, primers were designed to both upstream and downstream conserved DNA sequences found in several Bacteroides species, typically xylulose kinase and xylose permease, respectively. These flanking DNA sequences were obtained from public databases. Sample genomic DNA was extracted from eleven different animal rumen samples. Left flanking consensus primer has the sequence 5′-GCIGCICARGARGGNATYGTVTT-3′ (SEQ ID NO:177) (this primer codes for the amino acid motif AAQEGIV(F) (SEQ ID NO:178)). Right flanking consensus primer has the sequence 5′-GCDATYTCNGCRATRTACATSGG-3′ (SEQ ID NO:179) (this primer codes for the amino acid motif PMYIAEIA (SEQ ID NO:180)). PCR reactions were carried out using touchdown cycling conditions, and hot start Platinum® Taq DNA polymerase (Invitrogen, Carlsbad, Calif.). PCR products of expected size were purified and subcloned into pCR4-TOPO vector system (Invitrogen, Carlsbad, Calif.). Positive colonies from the TOPO-based PCR libraries were transformed into TOP10 (Invitrogen, Carlsbad, Calif.) and the transformants grown on LB agar plates with kanamycin (about 25 g/ml final concentration). Resistant colonies were picked and inoculated into 2 columns each of a 96-deep well plate in about 1.2 ml LB kanamycin (25 μg/ml final concentration) media per well. Cultures were grown overnight at about 30° C. The next day plasmids were purified and inserts sequenced. Sequence analysis revealed multiple full length XI genes. Identification of putative ORFs was done by identifying start and stop codons for the longest protein coding region, and subsequent manual curation based on homology to published xylose isomerase DNA sequences.


Example 4
XI Sequence Analysis

Plasmids from both ABD and SBD screens were purified and vector inserts were sequenced using an ABI 3730xl DNA Analyzer and ABI BigDye® v3.1 cycle sequencing chemistry. Identification of putative ORFs was done by identifying start and stop codons for the longest protein coding region, and subsequent manual curation based-on homology to published xylose isomerase DNA sequences. The XI ORF identified are set forth in Table 2 below, which indicates the sequences and source organism classification for each XI determined from either the ABD or SBD libraries as well as their assigned sequence identifiers. The putative catalytic domains (based on sequence alignments with other XIs) are underlined.













TABLE 2







Type
SEQ





of Se-
ID


Clone No.
Class of organism
quence
NO:
Sequence



















1754MI2_001
Bacteroidales
DNA
1
ATGGCAGTTAAAGAATATTTCCCGGAGATAGGCAAGATCGCCTTTGAAGGAAAGGAGTCCAA






GAACCCTATGGCATTCCACTACTACAATCCAGAGCAGGTAGTAGCCGGAAAGAAAATGAAAG






ATTGGTTCAAGTTCGCTATGGCATGGTGGCACACCCTCTGCGCTGAAGGTGGCGACCAGTTC






GGTCCTGGTACCAAGAAATTCCCTTGGAACACAGGTGCAACTGCACTCGAAAGAGCAAAGAA






CAAAATGGACGCAGGTTTCGAGATCATGAGCAAGCTCGGTATCGAGTATTTCTGCTTCCACG






ATGTTGACCTTATCGACGAGGCTGACACTGTTGAAGAGTACGAGGCTAACATGAAGGCTATC






ACAGCTTACGCAAAGGAGAAAATGGCCGCTACTGGCATCAAACTCCTCTGGGGAACAGCCAA






TGTATTCGGCAACAAGAGATATATGAACGGCGCTTCTACCAACCCTGACTTCAACGTGGCTG






CACGCGCTATGCTCCAGATCAAGAACGCTATCGACGCAACTATCGCTCTCGGTGGTGACTGC






TATGTATTCTGGGGCGGCCGTGAGGGTTACATGAGCCTTCTCAACACCGATATGAAGAGAGA






GAAAGAGCACATGGCTACCATGCTTACCATGGCACGCGACTATGCTCGTTCTAAGGGCTTCA






AGGGTACCTTCCTTATCGAGCCTAAGCCAATGGAGCCGATGAAGCACCAGTACGATGTCGAT






ACTGAGACTGTCGTAGGTTTCCTCCGCGCCCATGGTCTTGACAAGGACTTCAAGGTAAACAT






CGAGGTTAACCACGCTACTCTCGCAGGCCACACCTTCGAGCACGAGCTCCAGTGCGCCGTTG






ACGCAGGCATGCTCGGAAGCATCGACGCCAACCGTGGTGACTACCAGAACGGCTGGGATACC






GACCAGTTCCCTATCGACCTCTATGAGCTCGTACAGGCTATGATGGTTATCATCAAGGGCGG






CGGTCTCGTCGGCGGTACCAACTTCGACGCCAAGACCCGTCGTAACTCAACAGACCTCGAGG






ATATCTTCATCGCTCATGTATCCGGCATGGATGTCATGGCACGCGCTCTCCTCATCGCTGCT






GACCTTCTCGAGAAATCTCCTATTCCTGCAATGGTCAAGGAGCGTTACGCTTCCTACGACTC






AGGCATGGGCAAGGACTTCGAGAACGGCAAGCTTACTCTCGAGCAGGTTGTCGATTTCGCAA






GAAAGAACGGCGAGCCTAAGAGCACCAGCGGAAAGCAGGAGCTCTACGAGTCTATCGTCAAT






CTCTACATCTAA





1754MI2_001
Bacteroidales
Amino
2
MAVKEYFPEIGKIAFEGKESKNPMAFHYYNPEQVVAGKKMKDWFKFAMAWWHTLCAEGGDQF




Acid


GPGTKKFPWNTGATALERAKNKMDAGFEIMSKLGIEYFCFHDVDLIDEADTVEEYEANMKAI








TAYAKEKMAATGIKLLWGTANVFGNKRYMNGASTNPDFNVAARAMLQIKNAIDATIALGGDC








YVFWGGREGYMSLLNTDMKREKEHMATMLTMARDYARSKGFKGTFLIEPKPMEPMKHQYDVD








TETVVGFLRAHGLDKDFKVNIEVNHATLAGHTFEHELQCAVDAGMLGSIDANRGDYQNGWDT








DQFPIDLYELVQAMMVIIKGGGLVGGTNFDAKTRRNSTDLEDIFIAHVSGMDVMARALLIAA








DLLEKSPIPAMVKERYASYDSGMGKDFENGKLTLEQVVDFARKNGEPKSTSGKQELYESIVN







LYI





5586MI6_004
Bacteroidales
DNA
3
ATGGCAAACAAAGAGTACTTCCCGGAGATCGGGAAAATCAAATTCGAAGGCAAGGATTCCAA






GAACCCGCTTGCATTCCATTATTACAATCCTGAGCAGGTCGTCTGCGGCAAGCCGATGAAGG






ACTGGCTCAAGTTCGCTATGGCATGGTGGCACACCCTCTGCGCAGAGGGTAGCGACCAGTTC






GGCGGACCCACCAAGTCATTCCCTTGGAACAAAGCTTCGGATCCCATCGCAAAGGCCAAGCA






GAAAGTCGACGCCGGTTTCGAGATCATGCAGAAGCTCGGTATCGGATACTATTGCTTCCACG






ATGTAGACCTCATCGACGAGCCCGCCACCATCGAGGAGTATGAGGCCGATCTCAAGGAGATC






GTCGCTTACCTCAAGGAGAAGCAGGCCCAGACCGGCATCAAGCTCCTTTGGGGCACCGCCAA






CGTCTTCGGTCACAAGCGGTACATGAACGGCGCCTCCACCAACCCTGATTTCGACGTCGCAG






CCCGCGCCATGGTCCAGATCAAGAACGCCATGGACGCCACCATCGAGCTCGGCGGCGAGTGC






TATGTCTTCTGGGGCGGCCGCGAGGGCTACATGAGCCTCCTCAACACCGACATGAAGCGTGA






GAAGCAGCATATGGCCACCATGCTCGGCATGGCCCGCGACTATGCACGCGGCAAGGGCTTCA






AGGGCACCTTCCTCATCGAGCCCAAGCCCATGGAGCCGACCAAGCACCAGTATGACGTCGAC






ACCGAGACCGTCATCGGTTTCCTCCGTGCCAACGGTCTTGACAAGGACTTCAAGGTCAACAT






CGAGGTCAATCACGCCACCCTCGCCGGCCACACCTTCGAGCATGAGCTCCAGTGCGCCGCCG






ATGCCGGTCTCCTCGGATCCATCGACGCCAACCGCGGCGACTATCAGAACGGCTGGGATACC






GACCAGTTCCCGATCGACCTCTATGAGCTCACCCAGGCCATGATGGTCATCCTCAAGAATGG






CGGCCTCGTCGGCGGTACCAACTTCGACGCCAAGACCCGTCGCAACTCCACCGACCTGGACG






ACATCATCATCGCCCACGTCAGCGGTATGGACATCATGGCACGCGCACTCCTCGTCGCTGCC






GACGTCCTCACCAAGTCCGAGCTTCCCAAGATGCTCAAGGAGCGTTACGCTTCCTTCGACTC






CGGCAAGGGCAAGGAGTTCGAAGAGGGCAAGCTCACTCTCGAGCAGGTCGTAGAGTACGCCA






AGACCAAGGGCGAGCCCAAGGCCACCAGCGGCAAGCAGGAGCTCTACGAGACCATCGTCAAC






ATGTACATCTAA





5586MI6_004
Bacteroidales
Amino
4
MANKEYFPEIGKIKFEGKDSKNPLAFHYYNPEQVVCGKPMKDWLKFAMAWWHTLCAEGSDQF




Acid


GGPTKSFPWNKASDPIAKAKQKVDAGFEIMQKLGIGYYCFHDVDLIDEPATIEEYEADLKEI








VAYLKEKQAQTGIKLLWGTANVFGHKRYMNGASTNPDFDVAARAMVQIKNAMDATIELGGEC








YVFWGGREGYMSLLNTDMKREKQHMATMLGMARDYARGKGFKGTFLIEPKPMEPTKHQYDVD








TETVIGFLRANGLDKDFKVNIEVNHATLAGHTFEHELQCAADAGLLGSIDANRGDYQNGWDT








DQFPIDLYELTQAMMVILKNGGLVGGTNFDAKTRRNSTDLDDIIIAHVSGMDIMARALLVAA








DVLTKSELPKMLKERYASFDSGKGKEFEEGKLTLEQVVEYAKTKGEPKATSGKQELYETIVN







MYI





5749MI1_003
Bacteroidales
DNA
5
ATGAATTTTTATAAAGGCGAAAAAGAATTCTTCCCCGGAATAGGAAAGATTCAGTTTGAAGG






ACGCGAGTCAAAGAACCCGATGGCGTTTCATTATTATGACGAAAACAAGGTGGTGATGGGTA






AAACACTGAAGGATCATCTTCGTTTTGCAATGGCTTACTGGCATACGCTTTGTGCCGAAGGG






GGCGACCAGTTTGGCGGTGGTACGAAAACATTCCCCTGGAATGCTGCTGCCGACCCGATCAG






CCGTGCCAAATATAAGATGGATGCAGCGTTCGAGTTTATGACAAAATGCAGCATCCCTTATT






ACTGTTTCCATGATGTGGACGTGGTGGACGAAGCTCCCACGCTGGCTCAGTTTGAAAAAGAC






CTTCATACGATGGTAGGCCATGCCAAAGGGCTTCAGCAGGCAACCGGAAAAAAACTGTTATG






GTCTACTGCCAACGTGTTCAGCAACAAACGCTATATGAACGGGGCTGCCACTAATCCTGACT






TCTCGGCCGTGGCTTGTGCCGGTACGCAGATCAAGAATGCGATCGATGCCTGTATCGCGCTG






GACGGTGAAAACTATGTGTTCTGGGGCGGACGTGAAGGATATATGGGCTTGCTCAATACCGA






TATGAAACGCGAAAAAGACCATCTGGCCATGATGCTGACGATGGCACGCGACTATGGCCGCA






AGAACGGTTTCAAAGGTACTTTCCTGATCGAGCCGAAACCGATGGAACCGACCAAGCATCAA






TATGATGTCGACTCGGAAACTGTAATCGGCTTCCTACGTCATTATGGCCTGGATAAAGACTT






CGCCCTGAATATCGAAGTAAATCATGCAACCCTGGCCGGACATACGTTCGAGCACGAATTGC






AGGCTGCTGTCGATGCCGGTATGCTGTGCAGTATCGATGCCAACCGTGGTGACTACCAGAAT






GGCTGGGATACCGACCAATTCCCGATGGACATCTACGAACTGACTCAGGCTTGGCTGGTCAT






TCTGCAAGGTGGTGGTCTGACAACCGGCGGAACGAACTTCGATGCCAAGACCCGCCGCAACT






CGACCGACCTGGACGATATCTTCCTGGCTCATATAGGTGGTATGGATGCGTTTGCCCGTGCC






CTGATCACGGCTGCTGCCATCCTTGAAAACTCCGATTACACGAAGATGCGTGCCGAACGTTA






CACCAGCTTCGATGGTGGCGAAGGCAAAGCGTTTGAAGACGGTAAACTTTCTCTGGAAGACC






TGCGTACGATCGCTCTCCGCGACGGAGAACCGAAGATGGTCAGCGGCAAACAGGAATTATAT






GAGATGATTCTCAATTTATACATATAA





5749MI1_003
Bacteroidales
Amino
6
MNFYKGEKEFFPGIGKIQFEGRESKNPMAFHYYDENKVVMGKTLKDHLRFAMAYWHTLCAEG




Acid


GDQFGGGTKTFPWNAAADPISRAKYKMDAAFEFMTKCSIPYYCFHDVDVVDEAPTLAQFEKD








LHTMVGHAKGLQQATGKKLLWSTANVFSNKRYMNGAATNPDFSAVACAGTQIKNAIDACIAL








DGENYVFWGGREGYMGLLNTDMKREKDHLAMMLTMARDYGRKNGFKGTFLIEPKPMEPTKHQ








YDVDSETVIGFLRHYGLDKDFALNIEVNHATLAGHTFEHELQAAVDAGMLCSIDANRGDYQN








GWDTDQFPMDIYELTQAWLVILQGGGLTTGGTNFDAKTRRNSTDLDDIFLAHIGGMDAFARA








LITAAAILENSDYTKMRAERYTSFDGGEGKAFEDGKLSLEDLRTIALRDGEPKMVSGKQELY







EMILNLYI





5750MI1_003
Bacteroidales
DNA
7
ATGAATTACTTTAAAGGTGAGAAAGAGTTCTTCCCGGGAATCGGGAAAATAGAGTTTGAAGG






ACGTGAATCGAAGAATCCGATGGCTTTTCATTACTATGACGAGAACAAGGTTGTCATGGGGA






AGACCTTGAAGGACCATCTGCGTTTTGCGATGGCTTATTGGCATACGCTGTGTGCGGAAGGC






GCCGACCAGTTCGGCGGCGGGACGAAGGCATTTCCCTGGAATACCGGGGCGGATCGTATTTC






CCGTGCCAAGTATAAGATGGATGCTGCTTTTGAGTTTATGACGAAATGTAACATCCCGTACT






ATTGTTTCCATGATGTGGATGTGGTGGATGAAGCTCCGACACTGGCCGAATTTGAAAAAGAC






TTGCATACGATGGTCGAATATGCCAAGCAGCATCAGGAGGCAACCGGGAAAAAACTGTTGTG






GTCTACCGCCAATGTGTTCAGCAATAAACGTTATATGAACGGGGCTGCCACAAATCCGTATT






TCCCTGCTGTCGCTTGTGCGGGTACGCAGATCAAGAATGCTATCGACGCTTGTATTGCCCTG






GGCGGCGAAAACTATGTGTTCTGGGGCGGTCGTGAAGGGTATATGAGCTTGTTGAACACCAA






TATGAAACGCGAAAAGGAACATCTCGCCATGATGTTGACGATGGCTCGCGATTATGCGCGTA






AGAACGGCTTCAAAGGTACTTTCCTGGTAGAGCCTAAACCGATGGAACCGACCAAACATCAG






TATGATGTGGACACAGAAACTGTTATCGGCTTCCTGCGTCATTACGGCCTTGACAAGGACTT






TGCCATCAACATCGAAGTGAATCATGCTACATTGGCTGGACATACATTCGAACATGAGCTTC






AGGCGGCTGCCGATGCCGGTATGCTGTGCAGCATCGACGCCAACCGCGGCGATTACCAGAAT






GGTTGGGACACGGATCAGTTCCCGGTCGACATCTACGAACTGACACAGGCGTGGCTGGTTAT






CCTCGAAGCGGGTGGCCTGACTACCGGTGGTACGAACTTCGACGCCAAGACGCGCCGCAACT






CGACTGACCTGGACGATATCTTCCTGGCACACATCGGTGGTATGGATTCGTTTGCCCGTGCT






TTGATGGCGGCTGCCGATATATTGGAACACTCCGATTACAAAAAGATGCGTGCCGAACGTTA






TGCCAGCTTCGATCAAGGCGACGGCAAGAAGTTCGAAGATGGTAAACTCCTTCTCGAGGACC






TCCGCACCATCGCTCTTGCCTCCGGCGAACCGAAGCAAATCAGCGGGAAACAGGAATTGTAT






GAAATGATTATCAACCAGTACATTTAA





5750MI1_003
Bacteroidales
Amino
8
MNYFKGEKEFFPGIGKIEFEGRESKNPMAFHYYDENKVVMGKTLKDHLRFAMAYWHTLCAEG




Acid


ADQFGGGTKAFPWNTGADRISRAKYKMDAAFEFMTKCNIPYYCFHDVDVVDEAPTLAEFEKD








LHTMVEYAKQHQEATGKKLLWSTANVFSNKRYMNGAATNPYFPAVACAGTQIKNAIDACIAL








GGENYVFWGGREGYMSLLNTNMKREKEHLAMMLTMARDYARKNGFKGTFLVEPKPMEPTKHQ








YDVDTETVIGFLRHYGLDKDFAINIEVNHATLAGHTFEHELQAAADAGMLCSIDANRGDYQN








GWDTDQFPVDIYELTQAWLVILEAGGLTTGGTNFDAKTRRNSTDLDDIFLAHIGGMDSFARA








LMAAADILEHSDYKKMRAERYASFDQGDGKKFEDGKLLLEDLRTIALASGEPKQISGKQELY







EMIINQYI





5750MI2_003
Bacteroidales
DNA
9
ATGAATTATTTTAAAGGTGAAAAAGAGTTTTTCCCTGGAATCGGGAAAATAGAGTTTGAAGG






ACGTGAGTCGAAGAATCCGATGGCTTTTCATTATTATGATGAAAACAAGGTCGTAATGGGCA






AGACCTTGAAAGATCACCTCCGCTTTGCAATGGCTTACTGGCATACGTTGTGCGCGGAAGGC






GCAGACCAGTTTGGCGGTGGCACAAAATCATTCCCCTGGAATACCGCAGCGGATCGTATTTC






CCGCGCTAAATATAAAATGGATGCTGCTTTCGAGTTTATGACCAAGTGCAGTATCCCGTACT






ATTGTTTCCATGATGTGGACGTGGTGGACGAAGCTCCGGCACTGGCCGAATTTGAAAAGGAC






CTGCATACGATGGTGGGATTCGCCAAACAACACCAGGAAGCAACCGGAAAGAAACTGTTGTG






GTCTACAGCCAATGTATTCGGGCATAAACGTTATATGAACGGAGCGGCTACCAATCCTTATT






TCCCGGCTGTCGCTTGTGCCGGTACGCAGATCAAGAATGCAATCGACGCCTGTATCGAGCTG






GGTGGAGAGAACTATGTATTCTGGGGCGGACGCGAAGGCTACATGAGCCTGCTGAACACCAA






TATGAAACGTGAAAAGGATCATTTGGCCATGATGCTGACAATGGCACGCGATTATGCCCGCA






AGAATGGTTTCAAGGGTACTTTCCTGGTGGAATCTAAGCCGATGGAACCGACCAAACATCAG






TATGACGCAGATACGGAAACCGTGATCGGCTTCCTGCGCCACTATGGCCTCGACAAGGATTT






CGCTATCAACATTGAAGTGAACCATGCTACATTGGCCGGCCATACATTCGAACATGAACTTC






AGGCTGCTGCCGATGCCGGTATGCTGTGCAGCATCGATGCAAATAGAGGCGACTATCAGAAT






GGTTGGGATACGGATCAGTTCCCCGTAGACATTTACGAACTGACACAGGCCTGGCTGGTTAT






CCTGGAAGCGGGCGGACTGACAACCGGAGGTACGAACTTCGATGCGAAGACCCGTCGTAACT






CGACTGACCTCGACGATATCTTCCTGGCCCATATCGGCGGTATGGATTCGTTTGCACGTGCC






TTGATGGCAGCTGCCGATATCCTGGAACATTCTGATTACAAGAAGATGCGTGCCGAACGTTA






CGCCAGCTTCGACCAGGGCGACGGCAAGAAGTTCGAAGACGGCAAACTCCTTCTCGAAGACC






TGCGCACAATTGCCCTTGCCGGCGACGAACCGAAGCAGATCAGCGGCAAGCAGGAGTTGTAT






GAGATGATTATCAATCAGTATATTTAA





5750MI2_003
Bacteroidales
Amino
10
MNYFKGEKEFFPGIGKIEFEGRESKNPMAFHYYDENKVVMGKTLKDHLRFAMAYWHTLCAEG




Acid


ADQFGGGTKSFPWNTAADRISRAKYKMDAAFEFMTKCSIPYYCFHDVDVVDEAPALAEFEKD








LHTMVGFAKQHQEATGKKLLWSTANVFGHKRYMNGAATNPYFPAVACAGTQIKNAIDACIEL








GGENYVFWGGREGYMSLLNTNMKREKDHLAMMLTMARDYARKNGFKGTFLVESKPMEPTKHQ








YDADTETVIGFLRHYGLDKDFAINIEVNHATLAGHTFEHELQAAADAGMLCSIDANRGDYQN








GWDTDQFPVDIYELTQAWLVILEAGGLTTGGTNFDAKTRRNSTDLDDIFLAHIGGMDSFARA








LMAAADILEHSDYKKMRAERYASFDQGDGKKFEDGKLLLEDLRTIALAGDEPKQISGKQELY







EMIINQYI





5586MI5_004
Bacteroides
DNA
11
ATGAAACAGTATTTCCCGAACATCTCCGCCATCAAGTTTGAGGGCGTCGAGAGCAAGAATCC






CCTGGCTTACCGCTACTACGACCGCGACCGCGTCGTCATGGGTAAGAAGATGAGCGAATGGT






TTAAGTTCGCTATGTGCTGGTGGCACACCCTCTGCGCCGAGGGCTCCGATCAGTTCGGTCCC






GGCACAAAGACCTTCCCCTGGAACGCCGCCGCCGACCCCGTGCAGGCTGCCAAGGACAAGGC






CGACGCTGGCTTCGAGATCATGCAGAAACTCGGCATCGAGTACTACTGCTTCCACGACGTTG






ACCTCGTGGCCGAGGCTCCCGACGTGGAGACCTACGAGAAGAACCTCAAGGAGATCGTGGCT






TATCTCAAGCAGAAACAGGCTGAGACGGGCATCAAGCTGCTCTGGGGCACTGCCAACGTCTT






CGGACACAAGCGCTACATGAACGGAGCCTCCACGAACCCCGACTTCGATGTCGTGGCACGCG






CTATCGTGCAGATCAAGAACGCCATCGATGCTACCATCGAGCTGGGCGGCACCAACTACGTC






TTCTGGGGCGGTCGCGAAGGCTACATGAGCCTGCTCAACACCGATATGAAGCGCGAGAAGGA






GCACATGGCTACGATGTTGACGATGGCACGCGACTATGCCCGTTCTAAGGGATTCAAGGGCA






CGTTCCTCATCGAACCCAAACCCATGGAACCCACGAAGCATCAGTACGATGCGGACACCGAG






ACGGTCATCGGATTCCTCCGTGCTCATGGTCTCGACAAGGATTTCAAGGTCAACATCGAGGT






CAACCACGCCACGCTGGCCGGACACACGTTCGAGCATGAGCTGGCCTGCGCCGTAGACGCCG






ATATGCTCGGCAGCATCGATGCCAATCGCGGCGACTATCAGAACGGATGGGACACCGACCAG






TTCCCCATCGACCACTACGAACTCACGCAGGCTATGCTGCAGATCATCCGCAACGGAGGTTT






CAAGGACGGTGGCACCAATTTTGACGCTAAGACGCGCCGCAACAGCACCGACCTCGAGGATA






TCTTCATCGCTCACGTAGCAGCCATGGACGCCATGGCCCACGCCCTGTTGTCGGCTGCCGAT






ATCATCGAGAAGTCGCCCATCTGCACGATGGTCAAGGAGCGTTACGCCAGCTTCGATGCCGG






CGAAGGCAAGCGCTTCGAAGAAGGCAAGATGACCCTCGAGGAAGCCTACGAGTATGGCAAGA






AGGTCGGGGAGCCCAAGCAGACCAGCGGAAAGCAGGAGCTCTACGAAGCCATTGTCAATATG






TATTGA





5586MI5_004
Bacteroides
Amino
12
MKQYFPNISAIKFEGVESKNPLAYRYYDRDRVVMGKKMSEWFKFAMCWWHTLCAEGSDQFGP




Acid


GTKTFPWNAAADPVQAAKDKADAGFEIMQKLGIEYYCFHDVDLVAEAPDVETYEKNLKEIVA








YLKQKQAETGIKLLWGTANVFGHKRYMNGASTNPDFDVVARAIVQIKNAIDATIELGGTNYV








FWGGREGYMSLLNTDMKREKEHMATMLTMARDYARSKGFKGTFLIEPKPMEPTKHQYDADTE








TVIGFLRAHGLDKDFKVNIEVNHATLAGHTFEHELACAVDADMLGSIDANRGDYQNGWDTDQ








FPIDHYELTQAMLQIIRNGGFKDGGTNFDAKTRRNSTDLEDIFIAHVAAMDAMAHALLSAAD








IIEKSPICTMVKERYASFDAGEGKRFEEGKMTLEEAYEYGKKVGEPKQTSGKQELYEAIVNM







Y





5586MI202_004
Bacteroides
DNA
13
ATGGCAACAAAAGAGTATTTTCCCGGAATAGGAAAGATTAAATTCGAAGGTAAAGAGAGTAT






GAACCCGATGGCATATCGTTACTACGATGCTGAGAAGGTAATCATGGGTAAGAAGATGAAAG






ATTGGTTGAAGTTTGCTATGGCTTGGTGGCACACTCTCTGCGCAGAAGGTGGTGACCAATTC






GGTGGCGGAACGAAACAATTCCCTTGGAATGGTGACTCTGACGCTTTGCAAGCAGCTAAAAA






TAAATTGGATGCAGGTTTCGAATTCATGCAGAAGATGGGTATCGAATACTATTGCTTCCACG






ATGTAGACCTGATTTCTGAAGGTGCAAGCATCGAAGAATACGAAGCTAACTTGAAAGCTATC






GTAGCTTATGCAAAAGAAAAACAGGCTGAAACTGGTATCAAGCTGTTGTGGGGTACTGCTAA






CGTATTCGGTCATGCACGTTATATGAACGGTGCTGCTACCAATCCTGATTTCGACGTTGTAG






CACGCGCTGCTGTTCAGATCAAGAACGCTATTGACGCTACTATCGAACTGGGTGGTTCAAAC






TATGTATTCTGGGGCGGTCGCGAAGGTTACATGTCTTTGCTGAACACTGACCAGAAACGTGA






AAAAGAACACCTTGCAAAGATGTTGACTATCGCTCGTGACTATGCACGTGCTCGTGGCTTCA






AAGGTACTTTCCTGATTGAGCCGAAACCGATGGAACCGACAAAACATCAGTATGATGTAGAT






ACTGAAACAGTTATCGGCTTCCTGAAAGCTCACGGTTTGGATAAGGATTTCAAAGTAAACAT






CGAGGTTAATCACGCAACTTTGGCTGGCCATACTTTCGAACACGAACTGGCTGTAGCTGTTG






ACAACGGCATGTTAGGTTCTATCGACGCTAACCGTGGTGACTACCAGAACGGTTGGGATACT






GACCAATTCCCTATCGATAACTACGAACTGACTCAAGCTATGATGCAGATCATCCGCAACGG






TGGTTTGGGTAATGGCGGTACTAACTTCGACGCTAAGACCCGTCGTAACTCTACCGACCTGG






AAGATATCTTCATCGCTCACATTGCAGGTATGGATGCTATGGCACGTGCTCTGGAAAGTGCA






GCTAAATTACTGGAAGAATCTCCTTATAAGAAAATGTTGGCTGATCGTTACGCATCATTCGA






CGGTGGCAAGGGTAAGGAATTCGAAGAAGGCAAATTGTCTTTGGAAGATGTTGTAGCTTATG






CGAAAGCTAACGGCGAACCGAAGCAAACCAGCGGCAAGCAAGAATTGTATGAAGCAATCGTG






AATATGTATTGCTAA





5586MI202_004
Bacteroides
Amino
14
MATKEYFPGIGKIKFEGKESMNPMAYRYYDAEKVIMGKKMKDWLKFAMAWWHTLCAEGGDQF




Acid


GGGTKQFPWNGDSDALQAAKNKLDAGFEFMQKMGIEYYCFHDVDLISEGASIEEYEANLKAI








VAYAKEKQAETGIKLLWGTANVFGHARYMNGAATNPDFDVVARAAVQIKNAIDATIELGGSN








YVFWGGREGYMSLLNTDQKREKEHLAKMLTIARDYARARGFKGTFLIEPKPMEPTKHQYDVD








TETVIGFLKAHGLDKDFKVNIEVNHATLAGHTFEHELAVAVDNGMLGSIDANRGDYQNGWDT








DQFPIDNYELTQAMMQIIRNGGLGNGGTNFDAKTRRNSTDLEDIFIAHIAGMDAMARALESA








AKLLEESPYKKMLADRYASFDGGKGKEFEEGKLSLEDVVAYAKANGEPKQTSGKQELYEAIV







NMYC





5586MI211_003
Bacteroides
DNA
15
ATGGCAAAAGAGTATTTTCCTGGCGTGAAAAAAATCCAGTTCGAGGGTAAGGACAGTAAGAA






TCCAATGGCTTACCGTTATTATGATGCAGAGAAGGTCATCATGGGTAAGAAGATGAAGGATT






GGTTGAAGTTCGCTATGGCTTGGTGGCACACTTTGTGCGCTGAGGGCGCAGACCAGTTCGGT






GGCGGTACTAAGACTTTCCCTTGGAACGAAGGTGCAAACGCTTTGGAAGTTGCTAAGAATAA






GGCTGATGCTGGTTTCGAGATTATGGAGAAGCTTGGCATCGAGTACTACTGTTTCCACGATG






TAGACCTCGTTGAGGAGGCTGCAACTATCGAGGAGTATGAGGCTAACATGAAGGCTATCGTT






GCTTATCTTAAGGAGAAGCAGGCTGCTACTGGCAAGAAGCTTCTTTGGGGTACTGCTAACGT






ATTCGGCAACAAGCGCTATATGAACGGTGCTTCTACAAACCCTGACTTCGACGTTGTTGCTC






GCGCTTGTGTTCAGATTAAGAACGCTATCGACGCTACTATCGAACTTGGTGGTACAAACTAC






GTATTCTGGGGTGGCCGCGAGGGTTATATGAGCCTTCTTAACACAGATATGAAGCGTGAGAA






GGAGCACATGGCAACTATGCTTACTAAGGCTCGCGACTACGCTCGTTCAAAGGGCTTTACTG






GTACATTCCTTATCGAGCCAAAGCCAATGGAACCATCAAAGCATCAGTATGATGTTGATACT






GAGACTGTTTGTGGTTTCTTGAGGGCTCACGGTCTTGACAAGGACTTCAAGGTAAACATCGA






GGTTAACCACGCTACTTTGGCTGGTCACACATTCGAGCACGAGTTGGCTGCTGCTGTTGATA






ACGGTATGCTTGGCTCTATCGACGCTAACCGCGGTGACTACCAGAACGGTTGGGATACTGAC






CAGTTCCCTATCGACAACTTCGAGCTTATTCAGGCTATGATGCAGATTATCCGCAACGGTGG






TCTTGGCAACGGTGGTACAAACTTCGACGCTAAGACTCGTCGTAACTCAACTGACCTTGAGG






ATATCTTCATCGCACACATCGCTGGTATGGATGCAATGGCTCGCGCTCTTGAGAACGCAGCA






GACCTTTTGGAGAACTCTCCAATCAAGAAGATGGTTGCTGAGCGTTACGCTTCATTCGACAG






CGGCAAGGGTAAGGAGTTCGAGGAAGGCAAGTTGAGCCTTGGGGACATCGTTGCTTATGCTA






AGCAGAACGGTGAGCCTAAGCAGACAAGCGGTAAGCAGGAGCTTTACGAGGCTATCGTAAAC






ATGTACTGCTAA





5586MI211_003
Bacteroides
Amino
16
MAKEYFPGVKKIQFEGKDSKNPMAYRYYDAEKVIMGKKMKDWLKFAMAWWHTLCAEGADQFG




Acid


GGTKTFPWNEGANALEVAKNKADAGFEIMEKLGIEYYCFHDVDLVEEAATIEEYEANMKAIV








AYLKEKQAATGKKLLWGTANVFGNKRYMNGASTNPDFDVVARACVQIKNAIDATIELGGTNY








VFWGGREGYMSLLNTDMKREKEHMATMLTKARDYARSKGFTGTFLIEPKPMEPSKHQYDVDT








ETVCGFLRAHGLDKDFKVNIEVNHATLAGHTFEHELAAAVDNGMLGSIDANRGDYQNGWDTD








QFPIDNFELIQAMMQIIRNGGLGNGGTNFDAKTRRNSTDLEDIFIAHIAGMDAMARALENAA








DLLENSPIKKMVAERYASFDSGKGKEFEEGKLSLGDIVAYAKQNGEPKQTSGKQELYEAIVN







MYC





5606MI1_005
Bacteroides
DNA
17
ATGGCGACAAAAGAATACTTTCCCGGAATAGGGAAAATCAAGTTTGAGGGTGTGAATAGCTA






TAATCCGCTGGCATACAGATATTACGATGCCGAGCGCATAGTCCTTGGCAAGCCGATGAAGG






AGTGGCTCAAGTTTGCCATGGCATGGTGGCACACACTCTGCGCAGAGGGTGGCGACCAGTTT






GGCGGCGGTACGAAGAATTTTCCCTGGAATGGAGATCCCGATCCGGTACAGGCCGCAAAAAA






CAAAGTAGACGCCGGCTTCGAATTCATGACCAAGATGGGAATAGAGTATTTCTGTTTCCACG






ACGTGGATCTCGTCAGCGAGGCAGCAACCATCGAGGAGTATGAGGCCAACCTGAAGGAAGTG






GTGGGCTACATCAAGGAAAAGCAGGCCGAGACGGGGATCAAAAACCTCTGGGGCACTGCCAA






CGTGTTCAGCCACGCGCGCTACATGAACGGAGCCGCCACCAACCCCGACTTCGATGTAGTGG






CCCGCGCAGCCGTGCAGATCAAGAATGCTATCGACGCCACGATAGCCTTAGGTGGCACCAAC






TACGTGTTCTGGGGTGGCCGTGAAGGTTACATGAGCCTGCTCAACACCGACCAGAAGCGCGA






GAAGGAGCATCTGGCAATGATGCTCCGCATGGCCCGCGACTATGCGCGTGCAAAAGGCTTCA






CCGGCACCTTCCTTATCGAGCCCAAGCCGATGGAGCCCACCAAGCACCAGTATGATGTAGAC






ACCGAGACTGTGATAGGCTTCCTCCGTGCCCACGGCCTCGACAAGGACTTCAAGGTCAACAT






AGAGGTGAACCACGCCACCCTGGCCGGCCATACCTTCGAGCATGAGCTGGCAGTGGCCGTGG






ACAACGGTATGCTCGGCAGCATCGACGCCAACCGCGGTGACTACCAGAACGGCTGGGATACC






GACCAGTTCCCCATCGACAACTACGAGCTGACCCAGGCCATGATGCAGATAATACGCAACGG






CGGCTTCGGCAACGGCGGATGCAACTTCGACGCCAAGACACGCCGCAACTCCACCGACCTGG






AGGATATCTTCATAGCCCACATAGCAGGCATGGACGCCATGGCCCGCGCCCTGCTCAGCGCA






GCAGAAGTGCTGGAGAAATCGCCCTACAGGAAGATGCTCGCCGAGCGCTACGCACCGTTTGA






TGCCGGCCAGGGAAAGGCATTTGAAGAGGGCGCAATGTCGCTCACCGACCTTGTGGAGTATG






CCAAGGAGCATGGCGAGCCCACACAGACTTCCGGCAAGCAGGAACTCTATGAGGCAATCGTC






AATATGTATTGCTAA





5606MI1_005
Bacteroides
Amino
18
MATKEYFPGIGKIKFEGVNSYNPLAYRYYDAERIVLGKPMKEWLKFAMAWWHTLCAEGGDQF




Acid


GGGTKNFPWNGDPDPVQAAKNKVDAGFEFMTKMGIEYFCFHDVDLVSEAATIEEYEANLKEV








VGYIKEKQAETGIKNLWGTANVFSHARYMNGAATNPDFDVVARAAVQIKNAIDATIALGGTN








YVFWGGREGYMSLLNTDQKREKEHLAMMLRMARDYARAKGFTGTFLIEPKPMEPTKHQYDVD








TETVIGFLRAHGLDKDFKVNIEVNHATLAGHTFEHELAVAVDNGMLGSIDANRGDYQNGWDT








DQFPIDNYELTQAMMQIIRNGGFGNGGCNFDAKTRRNSTDLEDIFIAHIAGMDAMARALLSA








AEVLEKSPYRKMLAERYAPFDAGQGKAFEEGAMSLTDLVEYAKEHGEPTQTSGKQELYEAIV







NMYC





5606MI2_003
Bacteroides
DNA
19
ATGGCAACAAAGGAATATTTTCCCCATATAGGGAAGATCCAGTTCAAAGGCACGGAATCGTA






CGATCCGATGTCGTATCGTTACTATGACGCCGAGCGCGTAGTTCTGGGCAAGCCCATGAAGG






AATGGCTGAAATTCGCCATGGCATGGTGGCACACATTGTGCGCCGAGGGCGGCGACCAGTTC






GGCGGCGGAACGAAGAAGTTCCCCTGGAACGAGGGCGAGGACGCCATGACCATCGCCAAGCA






GAAGGCTGACGCCGGCTTCGAGATCATGCAGAAGCTCGGCATCGAGTATTTCTGCTTCCACG






ACATCGACCTGATCGGCGACCTGGGCGACGACATCGAGGACTATGAGAACCGTATGCACGAA






ATCACCGCACACCTGAAGGAGAAGATGGCCGCCACGGGCATCAAGAACCTGTGGGGCACTGC






CAACGTGTTCGGCCACGCACGCTATATGAACGGCGCCGCCACCAACCCCGACTTCGACGTTG






TGGCACGCGCATGTGTGCAGATCAAGAACGCCATCGACGCCACCATCGCTCTAGGCGGTACA






AACTATGTATTCTGGGGCGGCCGCGAGGGCTACATGAGCCTGCTGAACACCGACCAGAAGCG






CGAGAAAGAGCACTTGGCTACCATGCTGACCATGGCACGCGACTATGCCCGCGCCAATGGCT






TCACCGGAACGTTCCTGATCGAGCCCAAACCCATGGAGCCCAGCAAGCATCAGTATGATGTG






GATACCGAGACCGTAATCGGCTTCCTGAAGGCCCACAACCTGGACAAGGACTTCAAGGTGAA






CATCGAGGTGAACCATGCCACTCTGGCCGGCCACACATTCGAGCATGAGCTGGCAGTAGCCG






TGGACAACGGCATGCTGGGCAGCATCGACGCCAACCGCGGCGACTATCAGAACGGCTGGGAC






ACCGACCAGTTCCCCATCGACAACTATGAGCTGACCCAGGCCATGATGCAGATAATCCGCAA






CGGTGGCCTCGGCAACGGCGGTACCAACTTCGACGCCAAGACACGTCGCAACTCCACCGACC






TGGACGACATCTTCATCGCTCACATCGCCGGTATGGACGCTATGGCCCGCGCTCCGCTCAGC






GCAGCCGACGTGCTTGAGAAGTCGCCTTACAAGAAGATGCTGGCCGACCGCTACGCTTCATT






CGACAGCGGCGAGGGCAAGAAGTTCGAGGAAGGCAAGATGACTCTGGAGGATGTCGTGGCCT






ACGCCAAGAAGAATCCCGAACCCGCTCAGACCAGCGGCAAGCAGGAACTCTACGAGGCCATC






ATCAACATGTACGCCTGA





5606MI2_003
Bacteroides
Amino
20
MATKEYFPHIGKIQFKGTESYDPMSYRYYDAERVVLGKPMKEWLKFAMAWWHTLCAEGGDQF




Acid


GGGTKKFPWNEGEDANTIAKQKADAGFEIMQKLGIEYFCFHDIDLIGDLGDDIEDYENRMHE








ITAHLKEKMAATGIKNLWGTANVFGHARYMNGAATNPDFDVVARACVQIKNAIDATIALGGT








NYVFWGGREGYMSLLNTDQKREKEHLATMLTMARDYARANGFTGTFLIEPKPMEPSKHQYDV








DTETVIGFLKAHNLDKDFKVNIEVNHATLAGHTFEHELAVAVDNGMLGSIDANRGDYQNGWD








TDQFPIDNYELTQAMMQIIRNGGLGNGGTNFDAKTRRNSTDLDDIFIAHIAGMDAMARAPLS








AADVLEKSPYKKMLADRYASFDSGEGKKFEEGKMTLEDVVAYAKKNPEPAQTSGKQELYEAI







INMYA





5610MI3_003
Bacteroides
DNA
21
ATGGCAACAAAAGAATTTTTTCCCGAGATTGGTAAAATCAAGTTTGAGGGCCGCGAAAGCCG






CAATCCCCTCGCATTCCGCTACTACGGCCCCGAGAAAGTCGTTCTTGGCAAGAAGATGAAAG






ACTGGTTCAAGTTTGCGATGGCTTGGTGGCACACACTGTGCGCCCAGGGCACCGACCAGTTT






GGTGGCGACACCAAGCAGTTTCCGTGGAACACTGCCAGTGACCCCATGCAGGCCGCCAAGGA






TAAGGTGGATGCCGGATTTGAATTCATGACCAAGATGGGCATTGAGTACTTCTGCTTCCACG






ATGTGGATCTCGTCGCCGAGGCCGCCACTGTCGAGGAGTATGAGGCTAACCTCAAGACCATC






GTCGCCTACATCAAAGAGAAACAAGCCGAGACCGGCATCAAGAACCTGTGGGGCACAGCCAA






CGTATTCGGACACAAACGCTACATGAACGGTGCCGCCACCAACCCCGACTTTGATGTCGTGG






CACGCGCCATCGTGCAAATCAAGAACGCCATCGACGCCACCATCGAGTTGGGCGGCACGAGT






TACGTCTTTTGGGGCGGCCGCGAGGGCCACATGAGCCTGCTCAACACCGACCAGAAGCGCGA






GAAGGAGCACCTTGCACGCATGCTGACCATGGCACGCGACTATGCCCGCGCACGTGGTTTCA






ACGGCACCTTCCTCATCGAGCCCAAGCCCATGGAGCCGACCAAGCACCAATATGATGTGGAC






ACCGAGACCGTCATCGGTTTCCTGCGTGCCCATGGTCTGGACAAGGACTTCAAGGTCAACAT






CGAGGTGAACCACGCTACACTGGCCGGACACACCTTCGAGCGCGAACTGGCAGTGGCCGTCG






ACAACGGTCTACTCGGCTCAATCGACGCCAACCGTGGTGACTATCAGAATGGTTGGGACACC






GATCAGTTCCCCATCGACCACTATGAGTTGGTTCAGGGCATGTTGCAGATTATCCGCAATGG






TGGTTTCACCGACGGTGGCACCAACTTCGATGCCAAGACCCGCCGCAACTCGACCGACCTCG






AGGACATCTTCATCGCCCACATCGCCGCGATGGATGCCATGGCTCATGCGCTGGAGAGTGCT






GCCTCCATCATCGAGGAGTCGCCCTACTGCCAGATGGTCAAGGATCGCTATGCCTCATTTGA






CTCCGGCATCGGCAAGGACTTTGAGGACGGCAAGTTGACACTGGAACAAGCCTACGAGTACG






GTAAGCAAGTGGGCGAACCCAAGCAGACCAGTGGCAAGCAAGAACTGTACGAGTCAATCATC






AATATGTATTCCATTTAA





5610MI3_003
Bacteroides
Amino
22
MATKEFFPEIGKIKFEGRESRNPLAFRYYGPEKVVLGKKMKDWFKFAMAWWHTLCAQGTDQF




Acid


GGDTKQFPWNTASDPMQAAKDKVDAGFEFMTKMGIEYFCFHDVDLVAEAATVEEYEANLKTI








VAYIKEKQAETGIKNLWGTANVFGHKRYMNGAATNPDFDVVARAIVQIKNAIDATIELGGTS








YVFWGGREGHMSLLNTDQKREKEHLARMLTMARDYARARGFNGTFLIEPKPMEPTKHQYDVD








TETVIGFLRAHGLDKDFKVNIEVNHATLAGHTFERELAVAVDNGLLGSIDANRGDYQNGWDT








DQFPIDHYELVQGMLQIIRNGGFTDGGTNFDAKTRRNSTDLEDIFIAHIAAMDAMAHALESA








ASIIEESPYCQMVKDRYASFDSGIGKDFEDGKLTLEQAYEYGKQVGEPKQTSGKQELYESII







NMYSI





5749MI2_004
Bacteroides
DNA
23
ATGGCAACAAAAGAGTATTTTCCTGGTATAGGAAAGATTAAATTTGAAGGTAAAGAGAGTAA






GAATCCGATGGCATTCCGCTATTATGATGCCAATAAAGTAATCATGGGCAAGAAGATGAGCG






AGTGGCTGAAGTTTGCCATGGCTTGGTGGCACACATTGTGCGCCGAAGGTGGTGACCAGTTT






GGTGGTGGAACAAAGACTTTCCCGTGGAACGATTCGGACAACGCCGTAGAAGCAGCCAACCA






TAAAGTAGATGCCGGTTTTGAATTTATGCAGAAAATGGGCATCGAATACTATTGCTTCCATG






ATGTAGACCTCTGCACTGAAGCTGCTACCATTGAAGAATATGAAGCCAATCTGAAGGAAATA






GTAGCCTATCCGAAACAGAAACAGGCTGAAACAGGTATCAAACTTCTGTGGGGTACGGCAAA






TGTATTTGGTCACAAACGCTATATGAATGGTGCTGCTACCAATCCGGATTTTGATGTAGTGG






CTCGTGCTGCTGTACAGATTAAGAATGCGATAGACGCTACAATTGAACTCGGTGGTAGCAAC






TACGTGTTCTGGGGCGGCCGTGAAGGTTATATGAGCTTGCTCAATACAGACCAGAAACGTGA






GAAAGAGCATTTGGCACAAATGTTGACCATGGCTCGTGACTATGCTCGTGCCAAAGGATTCA






AGGGTACCTTCCTGGTTGAACCCAAACCGATGGAACCAACTAAACACCAGTATGATGTAGAT






ACGGAAACTGTAATCGGCTTCCTCAAGGCTCATAATTTGGATAAGGATTTCAAGGTAAATAT






TGAAGTAAACCATGCTACATTGGCCGGTCATACTTTTGAACACGAATTGGCTGTTGCCGTAG






ACAACGATATGCTTGGCTCTATCGATGCCAACCGCGGTGACTATCAGAACGGTTGGGATACT






GACCAGTTCCCCATTGACAACTTCGAGCTTATCCAAGCCATGATGCAGATTATTCGCGGTGG






TGGCTTCAAAGATGGTGGTACAAACTTCGACGCTAAGACTCGTCGTAACTCTACCGACCTGG






AAGATATTTTCATTGCACACATCGCTGGTATGGATGCTATGGCACGTGCTTTGGAAAGTGCA






GCCAAGTTGCTTGAGGAATCTCCTTATAAGAAAATGTTGGCTGACCGCTATGCATCGTTCGA






TAGTGGCAAAGGTAAGGAGTTTGAAGAAGGCAAGCTGACATTGGAAGACGTTGTAGTTTATG






CCAAGCAGAATGGCGAGCCTAAACAGACCAGCGGTAAGCAGGAATTGTATGAGGCAATTGTA






AATATGTATGCCTGA





5749MI2_004
Bacteroides
Amino
24
MATKEYFPGIGKIKFEGKESKNPMAFRYYDANKVIMGKKMSEWLKFAMAWWHTLCAEGGDQF




Acid


GGGTKTFPWNDSDNAVEAANHKVDAGFEFMQKMGIEYYCFHDVDLCTEAATIEEYEANLKEI








VAYPKQKQAETGIKLLWGTANVFGHKRYMNGAATNPDFDVVARAAVQIKNAIDATIELGGSN








YVFWGGREGYMSLLNTDQKREKEHLAQMLTMARDYARAKGFKGTFLVEPKPMEPTKHQYDVD








TETVIGFLKAHNLDKDFKVNIEVNHATLAGHTFEHELAVAVDNDMLGSIDANRGDYQNGWDT








DQFPIDNFELIQAMMQIIRGGGFKDGGTNFDAKTRRNSTDLEDIFIAHIAGMDAMARALESA








AKLLEESPYKKMLADRYASFDSGKGKEFEEGKLTLEDVVVYAKQNGEPKQTSGKQELYEAIV







NMYA





5750MI3_003
Bacteroides
DNA
25
ATGGCAACAAAAGAGTATTTTCCTGGAATAGGAAAGATTAAATTTGAAGGAAAAGAGAGTAA






GAACCCGATGGCATTCCGTTGCTACGATGCAGAAAAAGTTATCATGGGTAAGAGAATGAAAG






ATTGGTTGAAGTTTGCAATGGCGTGGTGGCATACACTTTGTGCAGAAGGCGGTGACCAATTC






GGTGGCGGTACAAAGAGTTTCCCCCGGAACGACTATACTGATAAAATTCAGGCTGCTAAAAA






CAAGATGGATGCCGGTTTTGAGTTTATGCAGAAGATGGGGATCGAATACTATTGTTTTCACG






ATGTAGACCTCTGCACGGAAGCTGATACCATTGAAGAATACGAAGCTAATTTGAAAGAAATC






GTAGTTTACGCAAAGCAAAAGCAGGTAGAAACAGGTATCAAATTATTGTGGGGTACTGCCAA






TGTATTCGGTCATGAACGCTATATGAATGGTGCGGCTACCAACCCAGATTTTGATGTTGTAG






CCCGTGCTGCTGTTCAGATTAAGAATGCAATTGATGCTACCATTGAACTAGGTGGCTTAAAC






TATGTGTTCTGGGGTGGACGCGAAGGTTATATGTCTTTGCTGAACACTGATCAGAAACGTGA






GAAAGAACATCTTGCACAAATGCTGACCATTGCCCGTGACTATGCCCGTGCCCGTGGCTTCA






AAGGTACATTCTTGGTTGAACCGAAACCGATGGAACCAACCAAACATCAATATGACGTAGAT






ACAGAAACAGTTATCGGTTTTTTGAAAGCTCATGCTTTGGATAAAGACTTTAAAGTAAATAT






TGAAGTAAATCATGCAACATTAGCCGGTCATACATTTGAACACGAACTGGCAGTGGCTGTCG






ACAACGGTATGCTGGGTTCTATTGACGCTAATCGTGGTGATTGTCAAAACGGTTGGGATACA






GACCAATTTCCCATTGATAACTATGAACTGACTCAAGCCATGATGCAGATTATTCGTAACGG






TGGTTTGGGCAATGGTGGTACGAATTTTGACGCTAAAACTCGCCGTAATTCTACTGATCTTG






GAGATATCTTCATTGCTCACATCGCAGGTATGGATGCTATGGCACGTGCATTGGAAAGTGCG






GCCAAGTTGTTGGAAGAATCTCCCTATAAGAAGATGCTGGCAGAACGTTATGCATCCTTTGA






CAGCGGTAAGGGTAAAGAGTTTGAAGAGGGTAAGTTGACCTTGGAGGATCTTGTTGCTTATG






CAAAAGTCAATGGCGAACCGAAACAAATCAGTGGTAAACAAGAATTGTATGAGGCAATTGTG






AATATGTATTGCTAA





5750MI3_003
Bacteroides
Amino
26
MATKEYFPGIGKIKFEGKESKNPMAFRCYDAEKVIMGKRMKDWLKFAMAWWHTLCAEGGDQF




Acid


GGGTKSFPRNDYTDKIQAAKNKMDAGFEFMQKMGIEYYCFHDVDLCTEADTIEEYEANLKEI








VVYAKQKQVETGIKLLWGTANVEGHERYMNGAATNPDFDVVARAAVQIKNAIDATIELGGLN








YVFWGGREGYMSLLNTDQKREKEHLAQMLTIARDYARARGFKGTFLVEPKPMEPTKHQYDVD








TETVIGFLKAHALDKDFKVNIEVNHATLAGHTFEHELAVAVDNGMLGSIDANRGDCQNGWDT








DQFPIDNYELTQAMMQIIRNGGLGNGGTNFDAKTRRNSTDLGDIFIAHIAGMDAMARALESA








AKLLEESPYKKMLAERYASFDSGKGKEFEEGKLTLEDLVAYAKVNGEPKQISGKQELYEAIV







NMYC





5750MI4_003
Bacteroides
DNA
27
ATGGCAACAAAAGAGTATTTTCCCGGAATAGGAAAGATTAAATTCGAAGGTAAAGAGAGCAA






GAACCCGATGGCATTCCGTTATTACGATGCCGATAAAGTAATCATGGGTAAGAAAATGAGCG






AATGGCTGAAGTTCGCCATGGCATGGTGGCACACTCTTTGCGCAGAAGGTGGTGACCAGTTC






GGTGGCGGAACAAAGAAATTCCCCTGGAACGGTGAGGCTGACAAGGTTCAGGCTGCCAAGAA






CAAAATGGACGCCGGCTTTGAATTCATGCAGAAAATGGGTATCGAATACTACTGCTTCCACG






ATGTAGACCTCTGCGAAGAAGCCGAGACCATTGAAGAATACGAAGCCAACTTGAAGGAAATC






GTAGCGTATGCCAAGCAGAAACAAGCAGAAACCGGCATCAAGCTGTTGTGGGGTACTGCCAA






CGTATTCGGCCATGCCCGCTACATGAATGGTGCAGCCACCAACCCCGATTTCGATGTTGTGG






CACGTGCAGCCGTCCAAATCAAAAGCGCCATCGACGCTACTATCGAGCTGGGAGGTTCGAAC






TATGTGTTCTGGGGCGGTCGCGAAGGCTACATGTCATTGCTGAATACAGACCAGAAGCGTGA






GAAAGAGCACCTCGCACAGATGTTGACCATCGCCCGCGACTATGCCCGTGCCCGTGGCTTCA






AAGGTACCTTCCTGATTGAACCGAAACCGATGGAACCTACAAAACACCAGTATGATGTAGAC






ACCGAAACCGTTATCGGCTTCTTGAAGGCCCACAATCTGGACAAAGATTTCAAGGTAAACAT






CGAAGTGAACCACGCTACTTTGGCGGGCCACACCTTCGAGCACGAACTCGCAGTAGCCGTAG






ACAACGGTATGCTCGGCTCCATCGATGCCAACCGTGGTGACTACCAGAACGGCTGGGATACA






GACCAGTTCCCCATTGACAACTTCGAACTGACCCAGGCAATGATGCAAATCATCCGTAACGG






CGGCTTTGGCAATGGCGGTACAAACTTCGATGCCAAGACCCGTCGTAACTCCACCGACCTGG






AAGACATCTTGATTGCCCACATCGCCGGTATGGACGTGATGGCACGTGCACTGGAAAGTGCA






GCCAAATTGCTTGAAGAGTCTCCTTACAAGAAGATGCTTGCCGACCGCTATGCTTCCTTCGA






CAGTGGTAAAGGCAAGGAATTCGAAGACGGCAAGCTGACACTGGAGGATTTGGCAGCTTACG






CAAAAGCCAACGGTGAGCCGAAACAGACCAGCGGCAAGCAGGGATTGTATGAGGCAATCGTA






AATATGTACTGCTGA





5750MI4_003
Bacteroides
Amino
28
MATKEYFPGIGKIKFEGKESKNPMAFRYYDADKVIMGKKMSEWLKFAMAWWHTLCAEGGDQF




Acid


GGGTKKFPWNGEADKVQAAKNKMDAGFEFMQKMGIEYYCFHDVDLCEEAETIEEYEANLKEI








VAYAKQKQAETGIKLLWGTANVFGHARYMNGAATNPDFDVVARAAVQIKSAIDATIELGGSN








YVFWGGREGYMSLLNTDQKREKEHLAQMLTIARDYARARGFKGTFLIEPKPMEPTKHQYDVD








TETVIGFLKAHNLDKDFKVNIEVNHATLAGHTFEHELAVAVDNGMLGSIDANRGDYQNGWDT








DQFPIDNFELTQAMMQIIRNGGFGNGGTNFDAKTRRNSTDLEDIFIAHIAGMDVMARALESA








AKLLEESPYKKMLADRYASFDSGKGKEFEDGKLTLEDLAAYAKANGEPKQTSGKQGLYEAIV







NMYC





5751MI4_002
Bacteroides
DNA
29
ATGACAAAAGAGTATTTTCCAACCATTGGTAAAATTCAGTTTGAAGGTAAAGAGAGTAAGAA






TCCATTAGCATATCGTTATTACGATGCTAACAAAGTAATAATGGGTAAAAAGATGAGCGAAT






GGCTCAAGTTTGCAATGGCATGGTGGCACACTTTGTGTGCTGAGGGTAGCGACCAGTTTGGT






CCTGGCACCAAGTCATTCCCATGGAACGCATCAACCGACCGTATGCAGGCTGCAAAAGATAA






GGCTGACGCAGGCTTCGAAATCATGCAAAAACTGGGCATCGAATACTACTGTTTCCATGATG






TTGACCTCATCGACCCAGCAGACGATATTCCAACATACGAAAAGAATCTCAAGGAAATCGTT






GCATACCTCAAGCAAAAACAGGCCGAGACAGGTATCAAATTGCTATGGGGTACAGCTAACGT






ATTTGGCCACAAGCGTTATATGAACGGTGCATCTACCAATCCTGACTTTGACGTTGTTGCAC






GAGCTATCGTGCAAATCAAGAATGCTATCGATGCAACAATCGAACTGGGCGGCACGAACTAC






GTATTCTGGGGTGGTCGCGAAGGTTACATGTCACTGCTCAACACCGACCAAAAGCGCGAGAA






AGAGCACATGGCTACCATGTTAGGAATGGCACGTGACTATGCACGTTCTAAAGGCTTTACTG






GTACTCTCCTTATCGAGCCAAAGCCTATGGAACCAACTAAGCATCAATACGACGTCGATACA






GAAACTGTTATTGGTTTCCTCAAAGCTCACGGATTAGACAAGGACTTCAAGGTAAATATCGA






AGTGAACCACGCTACATTGGCTGGCCATACCTTCGAACATGAATTAGCATGTGCTGTTGATG






CAGGTATGCTTGGTTCCATCGATGCTAACCGTGGTGATATGCAGAATGGCTGGGATACAGAT






CAGTTCCCTATCAACAATTACGAGCTCGTTCAGGCCATGATGCAGATTATCCGCAATGGTGG






TTTCGGTAACGGTGGTACAAACTTCGACGCTAAGACACGTCGTAATTCAACCGATTTGGAAG






ACATCATCATTGCTCACGTTTCAGCTATGGATGCTATGGCACGTGCTCTTGAATGTGCTGCA






GACATTCTTCAAAACTCACCTATTCCACAGATGGTGGCCAACCGTTATGCAAGTTTTGACAA






GGGTATAGGTAAAGATTTCGAAGACGGCAAGCTCACCCTCGAGCAAGTATACGAATATGGTA






AGACCGTCGGCGAACCAGCTATTACAAGCGGCAAACAGGAGCTCTACGAAGCTATCGTTAAT






ATGTATTGCTGA





5751MI4_002
Bacteroides
Amino
30
MTKEYFPTIGKIQFEGKESKNPLAYRYYDANKVIMGKKMSEWLKFAMAWWHTLCAEGSDQFG




Acid


PGTKSFPWNASTDRMQAAKDKADAGFEIMQKLGIEYYCFHDVDLIDPADDIPTYEKNLKEIV








AYLKQKQAETGIKLLWGTANVFGHKRYMNGASTNPDFDVVARAIVQIKNAIDATIELGGTNY








VFWGGREGYMSLLNTDQKREKEHMATMLGMARDYARSKGFTGTLLIEPKPMEPTKHQYDVDT








ETVIGFLKAHGLDKDFKVNIEVNHATLAGHTFEHELACAVDAGMLGSIDANRGDMQNGWDTD








QFPINNYELVQAMMQIIRNGGFGNGGTNFDAKTRRNSTDLEDIIIAHVSAMDAMARALECAA








DILQNSPIPQMVANRYASFDKGIGKDFEDGKLTLEQVYEYGKTVGEPAITSGKQELYEAIVN







MYC





5751MI5_003
Bacteroides
DNA
31
ATGGCTAACAAAGAATTTTTCCCCGGTATTGGTAAAATCAAATTCGAAGGTAAAGAGAGCAA






GAACCCCATGGCATATCGTTACTACGATGCTGAGAAGGTAGTCCTTGGCAAGAATATGAAAG






ACTGGTTCAAGTTTGCGATGGCTTGGTGGCACACATTGTGCGCCGAGGGTAGCGACCAGTTT






GGTCCCGGCACTAAGTCTTTCCCCTGGAACACCGCAGAGTGCCCCATGCAGGCAGCTAAGGA






CAAGGTTGACGCTGGCTTCGAGTTCATGACCAAGATGGGTATTGAATACTTCTGCTTCCACG






ATGTAGACCTCGTTGCCGAGGCCGACACTGTTGAGGAGTACGAGGCTCGCATGAAGGAAATC






GTTGCTTACATCAAGGAGAAGGTGGCCGAGACTGGCATCAAGAACCTGTGGGGTACAGCTAA






CGTATTTGGCAACAAGCGCTACATGAACGGTGCTGCTACTAACCCCGACTTTGACGTTGTGG






CTCGCGCTATCGTTCAAATCAAGAACGCTATCGACGCTACTATCGAGCTCGGTGGTACGTCA






TACGTATTCTGGGGCGGCCGCGAGGGTTACATGAGCCTCTTGAACACCGACCAGAAGCGTGA






GAAAGAGCACCTGGCTACTATGCTCACTATGGCACGCGACTACGCTCGCGCTAAGGGTTTCA






AGGGTACATTCCTCATCGAGCCCAAGCCCATGGAGCCCACAAAGCACCAGTACGATGTTGAC






ACTGAGACTGTAATCGGCTTCCTTAAGGCACACAACCTTGACAAGGACTTCAAGGTTAACAT






TGAGGTTAACCACGCAACTCTCGCTGGTCACACATTTGAGCACGAGCTCGCTTGTGCTGTTG






ACGCTGGCATGCTTGGCAGCATCGACGCTAACCGCGGTGACTACCAGAACGGCTGGGATACT






GACCAATTCCCCATCGACAACTTCGACCTCACTCAAGCTATGCTCGAGATCATCCGCAACGA






TGGTTTCAAGGATGGTGGTACAAACTTCGACGCTAAGACTCGCCGCAACAGCACCGACCTCG






AGGATATCTTCATCGCACACATCGCTGCTATGGACGCTATGGCACGTGCTCTCGAGAGCGCT






GCTGCAGTACTCGAGGAGTCAGCTCTGCCCCAAATGAAGAAGGACCGCTATGCATCGTTCGA






CGCTGGCATGGGTAAGGACTTCGAGGACGGCAAGCTCACCCTGGAGCAAGTTTACGAGTATG






GTAAGAAGGTGGGCGAGCCCAAGCAGACTAGCGGCAAGCAAGAGCTGTATGAGGCTATCCTC






AACATGTACGTATAA





5751MI5_003
Bacteroides
Amino
32
MANKEFFPGIGKIKFEGKESKNPMAYRYYDAEKVVLGKNMKDWFKFAMAWWHTLCAEGSDQF




Acid


GPGTKSFPWNTAECPMQAAKDKVDAGFEFMTKMGIEYFCFHDVDLVAEADTVEEYEARMKEI








VAYIKEKVAETGIKNLWGTANVFGNKRYMNGAATNPDFDVVARAIVQIKNAIDATIELGGTS








YVFWGGREGYMSLLNTDQKREKEHLATMLTMARDYARAKGFKGTFLIEPKPMEPTKHQYDVD








TETVIGFLKAHNLDKDFKVNIEVNHATLAGHTFEHELACAVDAGMLGSIDANRGDYQNGWDT








DQFPIDNFDLTQAMLEIIRNDGFKDGGTNFDAKTRRNSTDLEDIFIAHIAAMDAMARALESA








AAVLEESALPQMKKDRYASFDAGMGKDFEDGKLTLEQVYEYGKKVGEPKQTSGKQELYEAIL







NMYV





5751MI6_004
Bacteroides
DNA
33
ATGGCTAACAAAGAATTTTTCCCAGGTATTGGTAAAATCAAATTCGAAGGCAAAGAAAGCAA






GAACCCCATGGCATATCGTCACTACGATGCCGAGAAGGTAGTCCTTGGTAAGAAGATGAAGG






ACTGGTTCAAGTTTGCGATGGCTTGGTGGCACACTCTGTGCGCCGAGGGTAGCGACCAGTTC






GGCCCCGTGACCAAGTCTTTCCCCTGGAACCAGGCCGAGTGCCCCATGCAGGCTGCTAAGGA






CAAGGTTGACGCCGGCTTCGAGTTCATGACCAAGATGGGTATCGAATACTTCTGTTTCCACG






ATGTAGACCTCGTTGCCGAGGCCGACACCGTTGAGGAGTACGAAGCTCGCATGAAGGAAATC






GTGGCTTACATCAAGGAGAAGATGGCCGAGACCGGCATCAAGAACCTGTGGGGTACAGCCAA






CGTATTCGGCAACAAGCGCTACATGAACGGTGCTGCCACCAACCCCGACTTTGACGTTGTGG






CTCGCGCAATCGTTCAGATCAAGAACGCCATCGACGCTACTATCGAGCTCGGCGGTACCTCT






TACGTGTTCTGGGGCGGCCGCGAGGGTTACATGACTCTCTTGAACACCGACCAGAAGCGCGA






GAAGGAGCACCTGGCTACCATGCTCACCATGGCTCGCGACTATGCTCGCGCTAAGGGCTTCA






AGGGTACATTCCTTATCGAGCCCAAGCCCATGGAGCCCACCAAGCACCAGTATGACGTGGAT






ACCGAGACCGTTATCGGCTTCCTCAAGGCTCACGGCCTGGACAAGGACTTCAAGGTGAACAT






CGAGGTTAACCATGCAACTCTCGCCGGCCACACATTCGAGCACGAACTCGCTTGCGCTGTTG






ACGCTGGCATGCTGGGCAGCATCGACGCTAACCGCGGCGACTACCAGAACGGCTGGGATACC






GACCAGTTCCCCATCGACAACTTCGACCTCACTCAGGCTATGCTCGAGATCATCCGCAACGG






TGGTTTCAAGGACGGTGGTACAAACTTCGACGCTAAGACCCGTCGCAACAGCACCGATCTTG






AGGACATCTTCATCGCTCACATCGCTGCTATGGACGCAATGGCACGCGCGCTCGAGAGCGCT






GCCGCTGTGCTCGAGCAGAGCCCCCTTCCCCAGATGAAGAAAGACCGCTACGCATCGTTCGA






TGCCGGCATGGGCAAGGACTTCGAGGACGGCAAGCTCACTCTGGAGCAGGTTTACGAGTATG






GTAAGAAGGTAGGCGAGCCCAAGCAGACCAGCGGCAAGCAGGAACTGTACGAGGCTATCCTC






AACATGTATGTATAA





5751MI6_004
Bacteroides
Amino
34
MANKEFFPGIGKIKFEGKESKNPMAYRHYDAEKVVLGKKMKDWFKFAMAWWHTLCAEGSDQF




Acid


GPVTKSFPWNQAECPMQAAKDKVDAGFEFMTKMGIEYFCFHDVDLVAEADTVEEYEARMKEI








VAYIKEKMAETGIKNLWGTANVFGNKRYMNGAATNPDFDVVARAIVQIKNAIDATIELGGTS








YVFWGGREGYMTLLNTDQKREKEHLATMLTMARDYARAKGFKGTFLIEPKPMEPTKHQYDVD








TETVIGFLKAHGLDKDFKVNIEVNHATLAGHTFEHELACAVDAGMLGSIDANRGDYQNGWDT








DQFPIDNFDLTQAMLEIIRNGGFKDGGTNFDAKTRRNSTDLEDIFIAHIAAMDAMARALESA








AAVLEQSPLPQMKKDRYASFDAGMGKDFEDGKLTLEQVYEYGKKVGEPKQTSGKQELYEAIL







NMYV





5586MI22_003
Clostridiales
DNA
35
ATGAAAGAATATTTTCCTATGACAAAAAAAGTTGAATATGAGGGCGCAGCATCTAAAAATCC






ATTTGCGTTTAAATACTATGATGCCGAAAGAATTATAGCAGGCAAGCCTATGAAAGAACATC






TTAAATTTGCTATGAGTTGGTGGCATACACTTTGTGCGGGCGGTGCAGACCCATTTGGCACA






ACAACTATGGACAGAACATACGGCGGACTTACCGACCCAATGGAAATTGCAAAGGCAAAAGT






AGATGCAGGCTTTGAGTTTATGCAAAAACTCGGTATAGAGTATTTTTGTTTTCACGATGCGG






ATATTGCACCGGAAGGAAGCAGTTTTGTTGAAACAAAGAAAAACTTTTGGGAAATAGTAGAT






TATATACAGCAAAAGATGAATGAAACAGGCATAAAGTTGCTTTGGGGTACTGCAAACTGCTT






TAATGCTCCACGTTATATGCACGGTGCAGGAACATCATGCAATGCGCACAGTTTTGCATATG






CAGCCGCACAGATAAAAAATGCAATTGAAGCTACCGTTAAACTGGGTGGAAAAGGCTATGTT






TTCTGGGGCGGAAGAGAGGGTTATGAAACACTTCTCAATACGGATATGGCACTTGAACTTGA






CAATATGGCAAGACTTATGCATATGGCAGTTGATTATGGCAGAAGCATTGGTTTTGACGGTG






ATTTTTATATCGAACCAAAGCCAAAGGAACCAACAAAACATCAATATGACTTTGACTCGGCA






ACTGTTTTGGGATTTTTGAGAAAGTACGGTTTAGATAAGGATTTTAAACTTAATATAGAGGC






AAATCATGCGACACTTGCAGGTCATACATTTGAACATGAATTGACTGTAGCGCGTATAAACG






GTGCATTTGGCAGCATAGATGCAAATAGCGGCGATCCCAATCTTGGCTGGGATACCGACCAA






TTCCCAACAGATGTTTATTCGGCAACCCTTTGTATGCTTGAAGTGATAAGAGCAGGCGGCTT






TACAAACGGAGGTCTTAATTTTGATGCAAAGGTCAGAAGAGGCTCATTTACGTTTGATGACA






TTGTTTATGCATATATCAGCGGTATGGACACTTTTGCGCTGGGTTTTATAAAGGCATATGAA






ATAATTGAGGACGGCAGAATAGATGAATTTGTAAAAGAAAGATACGCAAGCTATAATACAGG






CATAGGCAAAGATATTATAGATGGAAAGGCAAGCCTTGAAAGTTTGGAAGAATATATTCTTT






CAAATGATAATGTTGTAATGCAAAGCGGCAGACAGGAATATCTTGAAACAGTTTTGAATAAT






ATTTTGTTTAAAGCATAA





5586MI22_003
Clostridiales
Amino
36
MKEYFPMTKKVEYEGAASKNPFAFKYYDAERIIAGKPMKEHLKFAMSWWHTLCAGGADPFGT




Acid


TTMDRTYGGLTDPMEIAKAKVDAGFEFMQKLGIEYFCFHDADIAPEGSSFVETKKNFWEIVD








YIQQKMNETGIKLLWGTANCFNAPRYMHGAGTSCNAHSFAYAAAQIKNAIEATVKLGGKGYV








FWGGREGYETLLNTDMALELDNMARLMHMAVDYGRSIGEDGDFYIEPKPKEPTKHQYDFDSA








TVLGELRKYGLDKDFKLNIEANHATLAGHTFEHELTVARINGAFGSIDANSGDPNLGWDTDQ








FPTDVYSATLCMLEVIRAGGFTNGGLNFDAKVRRGSFTFDDIVYAYISGMDTFALGFIKAYE








IIEDGRIDEFVKERYASYNTGIGKDIIDGKASLESLEEYILSNDNVVMQSGRQEYLETVLNN







ILFKA





1753MI4_001
Firmicutes
DNA
37
ATGAAAGAAATTTTCCCAAATATTCCTGAGATTAAATTCGAAGGAAAAGACAGCAAAAATCC






TTTTGCTTTCCATTACTACAACCCAGACCAAATCATCTTAGGCAAACCAATGAAAGAACACC






TCCCATTCGCTATGGCTTGGTGGCACAATCTTGGTGCAACAGGTGTTGATATGTTTGGCGCT






GGCCCAGCTGATAAGAGTTTCGGTGCTAAAGTTGGCACAATGGAACACGCTAAGGCCAAAGT






CGATGCCGGTTTCGAATTCATGAAGAAACTCGGTATCAGATATTTCTGCTTCCATGATGTTG






ACTTAGTTCCAGAATGTGCAGATATCAAAGATACAAACAAAGAATTAGATGAAATCAGTGAC






TACATCTTAGAAAAGATGAAAGGCACAGATATTAAGTGTTTATGGGGCACCGCCAATATGTT






CTCTAACCCACGCTTCTGCAATGGTGCGGGTTCCACAAACAGTGCGGATGTCTTCGCTTTCG






CCGCTGCTCAAGTTAAGAAAGCCTTAGATATCACCGTTAAATTAGGTGGTAGGGGTTACGTC






TTCTGGGGTGGTCGTGAAGGTTACGAAACATTACTCAATACAGACGTTAAATTCGAACAAGA






AAACATTGCTCGTTTAATGAAGATGGCTGTTGAATATGGCCGTTCCATCGGTTTCAAAGGCG






ATTTCTATATCGAACCAAAACCAAAAGAACCAATGAAACACCAATATGACTTCGACGCCGCT






ACAGCTATTGGCTTCTTAAGAGCCCACGGCTTAGACAAAGACTTCAAGTTGAACATCGAAGC






TAACCACGCTACATTAGCGGGTCATACATTCCAACACGATTTAAGAATCTCCGCCATTAATG






GTATGTTAGGTTCTATCGATGCTAACCAAGGCGATATGCTCTTAGGTTGGGATACAGACGAA






TTCCCATTTGATGTCTACAGTGCGACACAATGTATGTACGAAGTCTTAAAGAATGGTGGTCT






TACAGGTGGTTTCAACTTTGACTCCAAAACACGTCGTCCATCCTACACAATGGAAGATATGT






TCTTAGCCTATATCTTAGGTATGGATACATTCGCTTTAGGTTTAATCAAAGCTGCTCAAATC






ATCGAAGATGGCCGTATTGATCAATTCATCGAAAAGAAATATTCTTCCTTCCGTGAAACAGA






AATCGGTCAAAAGATCTTAAACAACAAGACAAGCTTAAAAGAATTATCCGATTACGCTTGCA






AGATGGGTGCTCCAGAACTTCCAGGTAGTGGTCGTCAAGAAATGCTCGAAGCCATCGTTAAC






GATGTCTTATTCGGCAAGTAA





1753MI4_001
Firmicutes
Amino
38
MKEIFPNIPEIKFEGKDSKNPFAFHYYNPDQIILGKPMKEHLPFAMAWWHNLGATGVDMFGA




Acid


GPADKSFGAKVGTMEHAKAKVDAGFEFMKKLGIRYFCFHDVDLVPECADIKDTNKELDETSD








YILEKMKGTDIKCLWGTANMESNPRECNGAGSTNSADVFAFAAAQVKKALDITVKLGGRGYV








FWGGREGYETLLNTDVKFEQENIARLMKMAVEYGRSIGFKGDFYIEPKPKEPMKHQYDFDAA








TAIGFLRAHGLDKDFKLNIEANHATLAGHTFQHDLRISAINGMLGSIDANQGDMLLGWDTDE








FPFDVYSATQCMYEVLKNGGLTGGFNFDSKTRRPSYTMEDMFLAYILGMDTFALGLIKAAQI








IEDGRIDQFIEKKYSSFRETEIGQKILNNKTSLKELSDYACKMGAPELPGSGRQEMLEAIVN







DVLFGK





1753MI6_001
Firmicutes
DNA
39
ATGAAAGAAATTTTCCCAAATATTCCTGAGATTAAATTCGAAGGAAAAGACAGCAAAAATCC






TTTTGCTTTCCATTACTACAACCCAGACCAAATCATCTTAGGTAAACCAATGAAAGAACACC






TCCCATTCGCTATGGCTTGGTGGCACAATCTTGGTGCAACAGGTGTTGATATGTTTGGCGCT






GGCCCAGCTGATAAGAGTTTCGGTGCTAAAGTTGGCACAATGGAACACGCTAAGGCCAAAGT






CGATGCCGGTTTCGAATTCATGAAGAAACTTGGTATCAGATATTTCTGCTTCCATGATGTTG






ACTTAGTTCCAGAATGTGCAGATATCAAAGATACAAACAAAGAATTAGATGAAATCAGTGAC






TACATCTTAGAAAAGATGAAAGGCACAGATATCAAGTGTTTATGGGGCACCGCCAATATGTT






CTCTAACCCACGTTTCTGCAATGGTGCGGGTTCCACAAACAGTGCGGATGTCTTCGCTTTCG






CCGCTGCTCAAGTTAAGAAAGCCTTAGATATCACCGTTAAATTAGGTGGTAGGGGTTACGTC






TTCTGGGGTGGTCGTGAAGGTTACGAAACATTACTCAATACAGACGTTAAATTCGAACAAGA






AAACATTGCTCGTTTAATGAAGATGGCTGTTGAATATGGCCGTTCCATCGGTTTCAAAGGCG






ATTTCTATATCGAACCAAAACCAAAAGAACCAATGAAACACCAATATGACTTCGACGCCGCT






ACAGCTATTGGCTTCTTAAGAGCCCACGGCTTAGACAAAGACTTCAAGTTGAACATCGAAGC






TAACCACGCTACATTAGCGGGTCATACATTCCAACACGATTTAAGAATCTCCGCCATTAATG






GTATGTTAGGTTCTATCGATGCTAACCAAGGCGATATGCTCTTAGGTTGGGATACAGACGAA






TTCCCATTTGATGTCTACAGTGCGACACAATGTATGTACGAAGTCTTAAAGAATGGTGGTCT






TACAGGTGGTTTCAACTTTGACTCCAAAACACGTCGTCCATCCTACACAATGGAAGATATGT






TCTTAGCCTATATCTTAGGTATGGATACATTCGCTTTAGGTTTAATCAAAGCTGCTCAAATC






ATCGAAGATGGCCGTATTGATCAATTCATCGAAAAGAAATATTCTTCCTTCCGTGAAACAGA






AATCGGTCAAAAGATCTTAAACAACAAGACAAGCTTAAAAGAATTATCCGATTACGCTTGCA






AGATGGGTGCTCCAGAACTTCCAGGTAGTGGTCGTCAAGAAATGCTCGAAGCCATCGTTAAC






GATGTCTTATTCGGCAAGTAA





1753MI6_001
Firmicutes
Amino
40
MKEIFPNIPEIKFEGKDSKNPFAFHYYNPDQIILGKPMKEHLPFAMAWWHNLGATGVDMFGA




Acid


GPADKSFGAKVGTMEHAKAKVDAGFEFMKKLGIRYFCFHDVDLVPECADIKDTNKELDEISD








YILEKMKGTDIKCLWGTANMFSNPRFCNGAGSTNSADVFAFAAAQVKKALDITVKLGGRGYV








FWGGREGYETLLNTDVKFEQENIARLMKMAVEYGRSIGFKGDFYIEPKPKEPMKHQYDFDAA








TAIGFLRAHGLDKDFKLNIEANHATLAGHTFQHDLRISAINGMLGSIDANQGDMLLGWDTDE








FPFDVYSATQCMYEVLKNGGLTGGFNFDSKTRRPSYTMEDMFLAYILGMDTFALGLIKAAQI








IEDGRIDQFIEKKYSSFRETEIGQKILNNKTSLKELSDYACKMGAPELPGSGRQEMLEAIVN







DVLFGK





1753MI35_004
Firmicutes
DNA
41
ATGGAATATTTCCCTTTCGTCAAATCGGTCCAATACAAGGGACCAACCTCAACTGAACCATT






CGCTTTCAAGTACTACGATGCCAACCGTGTCGTTCTTGGAAAACCAATGAAAGAATGGATGC






CATTCGCTATGGCTTGGTGGCACAACCTCGGCGCTGCCGGTACCGACATGTTCGGCGGCAAC






ACCATGGACAAGTCCTGGGGAGTCGATAAAGAAAAAGACCCAATGGGCTATGCCAAAGCCAA






AGTTGATGCCGGCTTCGAATTCATGCAGAAGATGGGCATCGAATACTACTGCTTCCACGATG






TCGACCTCGTCCCAGAGTGCGACGACATCACCGTTATGTACCAGAGACTCGATGAGATCGGT






GATTACCTTCTCAAGAAACAGAAGGAAACCGGTATCAAGCTTCTTTGGTCAACCGCCAATGC






CTTCGGACACCGCCGTTTCATGAACGGTGCTGGTTCCAGCAACTCCGCCGAAGTCTATTGCT






TCGCCGCCGCCCAGATCAAGAAAGCTCTTGAGCTCTGCGTCAAACTCGGTGGCAAAGGCTAT






GTCTTCTGGGGTGGACGTGAAGGCTACGAAACCCTTCTCAACACCGACATGAAGTTCGAACA






AGAGAACATCGCCAACCTTATGAGATGCGCCCGTGACTACGGCCGCAAGATCGGTTTCAAAG






GCGACTTCTACATCGAACCAAAACCAAAAGAGCCAACAAAGCATCAGTATGACTTCGACGCC






GCTACCGCCATCGGATTCCTCCGTCAGTACGGTCTCGACAAAGACTTCAAGATGAACATCGA






AGCCAACCACGCTACCTTAGCTGGCCACACCTTCGAACACGAACTCCGCGTCTCCGCCATGA






ACGGCATGCTCGGTTCCATCGACGCCAACGAAGGCGATATGCTCCTCGGATGGGATGTCGAC






CGTTTCCCAGCCAACGTCTATAGCGCCACCTTCGCCATGCTCGAAGTCATCAAAGCCGGTGG






ACTTACCGGTGGCTTCAACTTCGACGCCAAGACCCGCCGCGCTTCCAACACCTATGAAGATA






TGTTCAAGGCTTTCGTCCTTGGTATGGATACCTTCGCTTTAGGTCTTCTCAATGCCGAAGCC






ATCATCAAAGACGGCCGCATCGACAAGTTCGTCGAGGATAGATATGCCAGCTTCAAGACCGG






CATCGGTGCTAAGGTCCGCGATCACTCCGCTACCCTTGAGGATTTAGCTGCCCACGCCCTTG






AGACCAAGGTTTGCCCAGATCCAGGCAGCGGCGACGAGGAAGAACTCCAGGAAATCCTCAAC






CAGTTAATGTTCGGTAAGAAATAA





1753MI35_004
Firmicutes
Amino
42
MEYFPEVESVQYKGPTSTEPFAFKYYDANRVVLGKPMKEWMPFAMAWWHNLGAAGTDMFGGN




Acid


TMDKSWGVDKEKDPMGYAKAKVDAGFEFMQKMGIEYYCFHDVDLVPECDDITVMYQRLDEIG








DYLLKKQKETGIKLLWSTANAFGHRRFMNGAGSSNSAEVYCFAAAQIKKALELCVKLGGKGY








VFWGGREGYETLLNTDMKFEQENIANLMRCARDYGRKIGFKGDFYIEPKPKEPTKHQYDFDA








ATAIGFLRQYGLDKDFKMNIEANHATLAGHTFEHELRVSAMNGMLGSIDANEGDMLLGWDVD








RFPANVYSATFAMLEVIKAGGLTGGFNFDAKTRRASNTYEDMFKAFVLGMDTFALGLLNAEA








IIKDGRIDKFVEDRYASFKTGIGAKVRDHSATLEDLAAHALETKVCPDPGSGDEEELQEILN







QLMFGKK





1754MI9_004
Firmicutes
DNA
43
ATGAGCGAATTTTTTAAGAATATTCCAGAGATTAAATTCGAAGGAAAAGATAGTAAAAATCC






ATGGGCATTCAAGTATTACAATCCTGAATTGACCATTATGGGTAAAAAAATGTCTGAACATC






TTCCTTTTGCAATGGCCTGGTGGCATAACCTTGGCGCAAATGGAGTTGATATGTTCGGTTCG






GGAACCGCCGATAAATCTTTCGGTCAGGCTCCGGGAACTATGGAGCACGCAAAGGCTAAGGT






AGATGCAGGTATCGAGTTTATGAAGAAACTCGGAATCAAGTACTACTGCTGGCATGATGTAG






ACCTTGTTCCTGAAGATCCAAACGATATCAACGTAACAAACAAGCGCCTTGATGAGATTTCA






GATTATATCCTTGAAAAAACAAAGGGAACTGACATCAAGTGTCTCTGGGGAACTGCTAACAT






GTTCAGTAATCCCCGCTTTATGAACGGGGCAGGCTCAACAAACTCTGCTGACGTTTACTGCT






TTGCAGCTGCCCAGGTTAAAAAGGCTCTTGAGATTACCGTAAAGCTTGGTGGCCGCGGTTAT






GTATTCTGGGGTGGACGCGAAGGTTATGAAACTCTTCTTAATACAGATGTAAAGCTTGAACA






GGAAAATATTGCAAACCTTATGCACATGGCAGTTGATTATGGCCGTTCAATCGGTTTCAAGG






GAGACTTCTACATCGAGCCTAAGCCAAAGGAGCCGATGAGTCATCAGTATGATTTTGATGCC






GCAACTGCAATCGGCTTCCTCCGCCAGTATGGCCTCGACAAAGACTTTAAGATGAACATTGA






GGCTAACCACGCTTCTCTTGCAAATCATACCTTCCAGCATGAGCTTTATATCAGCCGCATTA






ACGGAATGCTTGGTTCTGTAGATGCTAACCAGGGAAATCCAATTCTCGGCTGGGATACAGAT






AACTTCCCTTGGAATGTCTACGACGCAACTCTTGCAATGTACGAAGTACTCAAGGCTGGTGG






ACTTACAGGTGGCTTCAACTTTGACTCAAAGAACCGCCGCCCATCAAATACATTTGAAGATA






TGTTCCACGCTTACATCATGGGAATGGACACTTTTGCTCTTGGTCTTATTAAGGCTGCAGAA






ATTATTGAAGACGGAAGAATCGATGGCTTCATTAAAGAAAAGTATTCAAGCTACGAAAGTGG






AATTGGTAAGAAGATCCGCGACAAGCAGACAACTTTGGAAGAGCTTGCTGCCCGTGCCGCAG






AAATGAAAAAGCCATCTGATCCAGGTTCAGGCCGCGAGGAATATCTGGAAGGAGTTGTTAAC






AATATCCTCTTTCGCGGATAA





1754MI9_004
Firmicutes
Amino
44
MSEFFKNIPEIKFEGKDSKNPWAFKYYNPELTIMGKKMSEHLPFAMAWWHNLGANGVDMFGS




Acid


GTADKSFGQAPGTMEHAKAKVDAGIEFMKKLGIKYYCWHDVDLVPEDPNDINVTNKRLDEIS








DYILEKTKGTDIKCLWGTANMFSNPRFMNGAGSTNSADVYCFAAAQVKKALEITVKLGGRGY








VFWGGREGYETLLNTDVKLEQENIANLMHMAVDYGRSIGFKGDFYIEPKPKEPMSHQYDFDA








ATAIGFLRQYGLDKDFKMNIEANHASLANHTFQHELYISRINGMLGSVDANQGNPILGWDTD








NFPWNVYDATLAMYEVLKAGGLTGGFNFDSKNRRPSNTFEDMFHAYIMGMDTFALGLIKAAE








IIEDGRIDGFIKEKYSSYESGIGKKIRDKQTTLEELAARAAEMKKPSDPGSGREEYLEGVVN







NILFRG





1754MI22_004
Firmicutes
DNA
45
ATGAGCGAGTTTTTTAAGAATATTCCTCAAATAAAATACGAAGGAAAAGATAGCAAAAATCC






CTGGGCATTCAAGTATTACAATCCTGAATTGACAATCATGGGTAAAAAGATGAGCGAACATC






TTCCATTCGCAATGGCATGGTGGCATAACCTTGGCGCAAACGGCGTTGATATGTTTGGTCAG






GGAACAGCAGACAAGTCTTTCGGACAGATTCCTGGAACTATGGAGCATGCAAAGGCTAAGGT






TGATGCTGGTATAGAGTTTATGAAGAAGCTCGGAATCAAATATTACTGCTGGCACGATGTTG






ACCTTGTTCCTGAGGATCCAAACGATATCAACGTAACTAACAAACGTCTGGACGAAATTTCA






GATTACATCCTTGAAAAGACAAAAGGAACAGACATTAAGTGTCTCTGGGGAACTGCAAACAT






GTTCGGTAACCCTCGCTTTATGAACGGTGCAGGCTCTACAAACTCTGCTGACGTTTACTGTT






TTGCTGCCGCTCAGGTAAAAAAGGCTCTTGAGATTACTGTAAAGCTTGGTGGCCGAGGTTAT






GTTTTCTGGGGTGGCCGCGAAGGTTACGAAACTCTTCTCAATACAGACGTAAAACTTGAACA






GGAAAATATCGCAAACCTCATGCATATGGCTGTTGATTATGGCCGCTCAATCGGTTTCAAGG






GAGACTTCTACATCGAGCCTAAGCCAAAGGAGCCAATGAGCCATCAGTATGATTTTGATGCT






GCAACAGCAATCGGCTTCCTCCGCCAGTATGGCCTCGACAAAGATTTTAAGATGAACATCGA






AGCTAACCATGCCTCACTTGCAAATCACACCTTCCAGCACGAGCTTTGTATCAGCCGCATAA






ACGGAATGCTTGGTTCTGTAGATGCAAATCAGGGAAATCCAATTCTTGGCTGGGATACAGAT






AACTTCCCATGGAATGTTTACGATGCAACTCTGGCAATGTACGAAGTTCTCAAGGCTGGCGG






TCTAACAGGTGGCTTCAACTTTGACTCAAAGAACCGTCGCCCATCAAATACTTTTGAAGATA






TGTTCCACGCTTATATCATGGGTATGGATACTTTTGCCCTTGGCCTTATTAAGGCTGCAGAA






ATTATTGAAGACGGCAGAATTGACGGCTTCATCAAAGAAAAGTATTCAAGCTTTGAAAGTGG






AATTGGTAAGAAGATTCGTGACAAGCAGACAAGTTTGGAAGAGCTTGCAGCTCGTGCCGCTG






AAATGAAAAAGCCATCTGATCCAGGTTCAGGCCGCGAGGAATACCTCGAAGGAGTTGTTAAC






AACATCCTCTTTCGCGGATAA





1754MI22_004
Firmicutes
Amino
46
MSEFFKNIPQIKYEGKDSKNPWAFKYYNPELTIMGKKMSEHLPFAMAWWHNLGANGVDMFGQ




Acid


GTADKSFGQIPGTMEHAKAKVDAGIEFMKKLGIKYYCWHDVDLVPEDPNDINVTNKRLDEIS








DYILEKTKGTDIKCLWGTANMEGNPRFMNGAGSTNSADVYCFAAAQVKKALEITVKLGGRGY








VFWGGREGYETLLNTDVKLEQENIANLMHMAVDYGRSIGFKGDFYIEPKPKEPMSHQYDFDA








ATAIGFLRQYGLDKDFKMNIEANHASLANHTFQHELCISRINGMLGSVDANQGNPILGWDTD








NFPWNVYDATLAMYEVLKAGGLTGGENFDSKNRRPSNTFEDMFHAYIMGMDTFALGLIKAAE








IIEDGRIDGFIKEKYSSFESGIGKKIRDKQTSLEELAARAAEMKKPSDPGSGREEYLEGVVN







NILFRG





727MI1_002
Firmicutes
DNA
47
ATGATATTTGAAAATATTCCCGCAATTCCTTATGAGGGTCCGAAGAGCACAAATCCGCTGGC






GTTTAAATTCTATGATCCGGACAAGATCGTTATGGGAAAGCCCATGAAGGAGCATCTGCCCT






TTGCAATGGCCTGGTGGCACAACCTTGGCGCGGCCGGAACCGATATGTTCGGGCGCGATACC






GCCGACAAATCCTTCGGTGCGGTAAAAGGCACAATGGAGCATGCCAAAGCGAAAGTCGATGC






CGGCTTTGAGTTCATGCAGAAGCTGGGGATCCGCTATTTCTGCTTCCATGATGTGGATCTTG






TTCCGGAGGCGGATGATATAAAGGAGACCAACCGCCGTCTGGACGAGATCAGCGATTACATC






CTTGAAAAGATGAAGGGCACCGATATCAAGTGCCTTTGGGGCACGGCCAATATGTTCTCAAA






TCCGCGCTTTATGAACGGCGCAGGCTCCTCCAATTCTGCCGATGTATTCGCTTTTGCGGCAG






CACAGGCCAAGAAGGCCTTGGATCTGACCGTCAAACTCGGCGGGCGCGGCTATGTCTTCTGG






GGCGGACGTGAGGGCTATGAGACACTTCTCAATACCGACATGAAGTTCGAGCAGGAGAATAT






CGCGAAGCTCATGCATATGGCTGTCGATTACGGCCGCAGCATAGGCTTTACCGGTGATTTCT






ATATCGAGCCCAAACCGAAAGAGCCGATGAAACACCAGTATGATTTCGATGCAGCCACTGCG






ATAGGCTTCCTCCGCCAGTACGGACTCGATAAGGACTTCAAGCTCAACATCGAGGCAAACCA






CGCCACACTGGCAGGTCACACTTTCCAGCACGATCTGCGTGTTTCCGCAATAAACGGAATGC






TGGGCAGCATTGACGCCAACCAGGGCGATATGCTCCTCGGCTGGGATACCGACGAGTTCCCG






TTCAATGTATATGATGCGACCATGTGCATGTATGAGGTGCTCAAGTCAGACGGGCTCACCGG






CGGCTTTAACTTCGACTCCAAATCACGCCGCCCGAGCTATACGGTCGAGGATATGTTTACAA






GCTATATCCTCGGCATGGACACTTTTGCCCTCGGCCTTCTGAAAGCGGCCGAGCTTATCGAA






GACGGAAGGCTTGACGCCTTCGTCAAAGAACGCTATTCAAGCTATGAGAGCGGCATCGGCGC






AAAGATCCGCAGCGGAGAAACCGATTTGAAGGAATTGGCGGAATATGCGGACTCCCTCGGAG






CCCCCGAACTTCCGGGCAGCGGAAAACAGGAACAGCTCGAGAGCATAGTAAATCAGATACTT






TTCGGATAA





727MI1_002
Firmicutes
Amino
48
MIFENIPAIPYEGPKSTNPLAFKFYDPDKIVMGKPMKEHLPFAMAWWHNLGAAGTDMFGRDT




Acid


ADKSFGAVKGTMEHAKAKVDAGFEFMQKLGIRYFCFHDVDLVPEADDIKETNRRLDEISDYI








LEKMKGTDIKCLWGTANMFSNPRFMNGAGSSNSADVFAFAAAQAKKALDLTVKLGGRGYVFW








GGREGYETLLNTDMKFEQENIAKLMHMAVDYGRSIGFTGDFYIEPKPKEPMKHQYDFDAATA








IGFLRQYGLDKDFKLNIEANHATLAGHTFQHDLRVSAINGMLGSIDANQGDMLLGWDTDEFP








FNVYDATMCMYEVLKSDGLTGGFNFDSKSRRPSYTVEDMFTSYILGMDTFALGLLKAAELIE







DGRLDAFVKERYSSYESGIGAKIRSGETDLKELAEYADSLGAPELPGSGKQEQLESIVNQIL






FG





727MI9_005
Firmicutes
DNA
49
ATGAGCGAGTTTTTTGCCAGCATTCCCAAAATTCCCTTTGAAGGCAAGGACAGCGCCAATCC






CCTGGCGTTCAAATACTACGACGCCGACAGGATGATACTGGGCAAGCCCATGAAGGAGCACC






TTCCCTTCGCCATGGCCTGGTGGCACAACCTGTGCGCCGCGGGCACCGATATGTTTGGCCGG






GACACCGCCGACAAGTCCTTCGGCCAGGTCAAGGGCACCATGGAACACGCCAAGGCCAAGGT






GGACGCGGGCTTTGAGTTCATGAAGAAGCTGGGCATCCGCTACTTCTGCTTCCACGACGTGG






ACATCGTGCCCGAAGCCGACGACATCAAGGAAACCAACCGCCGTCTGGACGAGATCTCCGAC






TATATCCTGGAGAAAATGAAAGGCACCGACATCCAGTGCCTGTGGGGCACCGCCAACATGTT






CGGCAACCCCCGCTATATGAACGGCGCGGGCAGCTCCAACTCCGCCGACGTATACTGCTTCG






CCGCGGCCCAGATCAAAAAGGCCCTGGACATCACCGTGAAGCTGGGCGGCAAGGGCTACGTG






TTCTGGGGCGGCCGCGAGGGCTACGAGACCCTGCTGAACACCGATATGAAGTTCGAGCAGGA






GAACATCGCCCGCCTGATGCACATGGCCGTGGACTACGGCCGCAGCATCGGCTTCACCGGCG






ATTTCTACATCGAGCCCAAGCCCAAGGAGCCCATGAAGCACCAGTACGACTTCGACGCCGCC






ACCGCCATAGGCTTTTTGCGCCAGTACGGCCTGGACAAGGATTTCAAGCTGAACATCGAGTC






CAACCACGCCACCCTGGCGGGCCATACCTTCCAGCACGACCTGCGCGTTTCCGCCATCAACG






GCATGCTGGGCTCCATCGACGCCAACCAGGGCGACTACCTGCTGGGCTGGGATACCGACGAG






TTCCCCTACAGCGTATACGAGACCACCATGTGCATGTACGAGGTGCTCAAGGCCGGAGGTCT






CACCGGCGGCTTCAATTTCGACGCCAAGAACCGCCGTCCCAGCTACACCCCCGAGGATATGT






TCCACGCCTACATCCTTGGGATGGACAGCTTCGCCCTGGGCCTGATCAAGGCCGCCGAGCTC






ATCGAGGACGGTCGCCTGGACGCCTTCGTCCGGGACCGCTACCAGAGCTGGGAGACCGGCAT






CGGCGATAAGATCCGCAAGGGCGAGACCACACTGGCCGAGCTGGCCGAGTACGCCGCCCGGA






TGGGCGCGCCCGCGCTGCCCGGCAGCGGCCGCCAGGAATACCTGGAGGGCGTGGTCAACAAT






ATCCTGTTCAAATAA





727MI9_005
Firmicutes
Amino
50
MSEFFASIPKIPFEGKDSANPLAFKYYDADRMILGKPMKEHLPFAMAWWHNLCAAGTDMFGR




Acid


DTADKSFGQVKGTMEHAKAKVDAGFEFMKKLGIRYFCFHDVDIVPEADDIKETNRRLDEISD








YILEKMKGTDIQCLWGTANMFGNPRYMNGAGSSNSADVYCFAAAQIKKALDITVKLGGKGYV








FWGGREGYETLLNTDMKFEQENIARLMHMAVDYGRSIGFTGDFYIEPKPKEPMKHQYDFDAA








TAIGFLRQYGLDKDFKLNIESNHATLAGHTFQHDLRVSAINGMLGSIDANQGDYLLGWDTDE








FPYSVYETTMCMYEVLKAGGLTGGFNFDAKNRRPSYTPEDMFHAYILGMDSFALGLIKAAEL








IEDGRLDAFVRDRYQSWETGIGDKIRKGETTLAELAEYAARMGAPALPGSGRQEYLEGVVNN







ILFK





727MI27_002
Firmicutes
DNA
51
ATGAAGACCTATTTCAAAAAAATCCCCGTGATCCCCTACGAGGGACCGAAGTCCCAGAATCC






GCTGTCGTTCAAATTCTATGACGCGGACCGCATCGTTCTCGGCAAGCCCATGAAGGAGCATC






TGCCCTTCGCCATGGCCTGGTGGCACAATCTGGGTGCTGCCGGAACGGACATGTTCGGCCGC






GATACCGCCGACAAGTCCTTCGGAGCGGAGAAGGGCACCATGGAGCATGCCAAGGCCAAGGT






GGACGCTGGCTTCGAGTTTATGAAGAAGGTGGGCATCCGGTATTTCTGCTTCCATGACGTGG






ATCTGGTCCCGGAAGCGGACGACATCAAGGAGACCAACCGCCGTCTCGATGAGATCAGCGAC






TACATCCTCAAGAAGATGAAGGGCACGGATATCAAGTGCCTCTGGGGCACCGCCAACATGTT






CGGCAATCCCCGGTTCATGAACGGCGCGGGCAGCTCCAACAGCGCGGACGTGTTCTGCTTTG






CCGCGGCCCAGGTGAAGAAGGCCTTGGACATCACCGTCAAGCTGGGCGGCCGGGGCTATGTG






TTCTGGGGCGGCCGTGAGGGGTATGAGTCCCTGCTGAACACGGACGTGAAGTTTGAGCAGGA






GAACATCGCCAAGCTCATGCACCTTGCCGTGGACTACGGCCGCAGCATCGGCTTCACCGGCG






ATTTCTACATCGAGCCCAAGCCCAAGGAGCCCATGAAGCACCAGTACGACTTCGATGCCGCC






ACCGCCATCGGCTTCCTCAGGCAGTACGGCCTCGATAAGGACTTCAAGATGAACATTGAAGC






CAACCACGCGACCCTGGCCGGCCACACCTTCCAGCACGACCTCAGGATCAGCGCCATCAACG






GGATGCTGGGCTCCATCGACGCCAACCAGGGCGACCTCCTGCTGGGATGGGACACCGACGAA






TTCCCCTTCAACGTCTATGAGGCCACCATGTGCATGTACGAGGTCCTCAAGGCCGGCGGCCT






CACCGGCGGCTTCAACTTCGACTCAAAGAACCGCCGTCCCTCCTACACCATGGAGGATATGT






TCCACGCCTACATCCTGGGCATGGACACCTTCGCCCTGGGTCTTCTCAAGGCCGCGGAGCTC






ATCGAGGACGGTCGGATCGACAAATTCGTGGAGGAGCGCTACGCCAGCTACAAGACCGGCAT






CGGCGCCAAGATCCGTTCCGGCGAGACCACGCTTCAGGAGCTGGCCGCCTATGCCGACAAGT






TGGGCGCGCCTGCCCTTCCCGGCAGCGGCCGTCAGGAGTACCTGGAGAGCATCGTCAACCAG






GTGCTCTTCGGGATGTGA





727MI27_002
Firmicutes
Amino
52
MKTYFKKIPVIPYEGPKSQNPLSFKFYDADRIVLGKPMKEHLPFAMAWWHNLGAAGTDMFGR




Acid


DTADKSFGAEKGTMEHAKAKVDAGFEFMKKVGIRYFCFHDVDLVPEADDIKETNRRLDEISD








YILKKMKGTDIKCLWGTANMFGNPRFMNGAGSSNSADVFCFAAAQVKKALDITVKLGGRGYV








FWGGREGYESLLNTDVKFEQENIAKLMHLAVDYGRSIGFTGDFYIEPKPKEPMKHQYDFDAA








TAIGFLRQYGLDKDFKMNIEANHATLAGHTFQHDLRISAINGMLGSIDANQGDLLLGWDTDE








FPFNVYEATMCMYEVLKAGGLTGGFNFDSKNRRPSYTMEDMFHAYILGMDTFALGLLKAAEL








IEDGRIDKFVEERYASYKTGIGAKIRSGETTLQELAAYADKLGAPALPGSGRQEYLESIVNQ







VLFGM





1753MI2_006
Neocallimastigales
DNA
53
ATGGCTAAAGAGTATTTTCCAGAGATTGGCAAAATCAAGTTTGAAGGCAAGGACAGCAAAAA






CCCAATGGCTTTCCACTACTATGACCCCGAGAAGGTGATCATGGGCAAGCCTATGAAAGACT






GGCTCCGCTTCGCTATGGCATGGTGGCACACCCTCTGCGCAGAAGGTGGCGACCAGTTCGGT






GGCGGCACTAAGAAGTTCCCTTGGAACAACGGCGCTGACGCTGTAGAAATCGCAAAACAGAA






GGCTGACGCAGGTTTCGAAATCATGCAGAAGCTCGGCATCCCATATTTCTGCTTCCACGACG






TGGACCTCGTGTCTGAGGGCGCATCTGTAGAAGAGTATGAGGCTAACCTCAAGGCTATCACA






GACTACCTCGCTGTGAAGATGAAGGAAACAGGCATCAAGCTCCTGTGGTCTACTGCCAACGT






ATTCGGCAACGGCCGCTACATGAACGGTGCTTCTACCAACCCTGACTTCGACGTCGTTGCTC






GCGCTATCGTGCAGATTAAGAACGCTATCGACGCTGGTATCAAGCTCGGCGCTGAGAACTAC






GTGTTCTGGGGCGGACGCGAAGGCTACATGAGCCTCCTCAACACCGACCAGAAGCGTGAGAA






GGAGCACATGGCCACTATGCTCACTATGGCTCGCGACTACGCTCGCGCTAAGGGCTTCAAGG






GCACATTCCTCATCGAGCCTAAGCCAATGGAGCCTTCTAAGCACCAGTATGACGTTGACACT






GAGACTGTCATCGGCTTCCTCAAGGCACACAACCTCGACAAGGACTTCAAGGTGAACATCGA






GGTGAACCACGCAACTCTCGCTGGCCACACCTTCGAGCACGAGCTCGCAGTGGCAGTGGACA






ACAACATGCTCGGCTCTATCGACGCTAACCGTGGTGACTACCAGAATGGCTGGGATACTGAC






CAGTTCCCAATCGACCAGTACGAACTCGTTCAGGCTTGGATGGAAATCATCCGTGGCGGCGG






TCTCGGCACTGGCGGCACGAACTTCGACGCTAAGACTCGTCGTAACTCTACCGACCTCGAAG






ACATCTTCATCGCACACATCGCAGGCATGGACGCTATGGCACGCGCACTCGAATCAGCTGCT






AAGCTCCTCGAAGAGTCTCCATACAAGGCAATGAAGGCAGCTCGCTACGCTTCATTCGACAA






CGGTATCGGTAAGGACTTCGAAGATGGCAAGCTCACTCTCGAGCAGGCTTACGAATACGGTA






AGAAGGTTGGTGAGCCTAAGCAGACTTCTGGCAAGCAGGAGCTCTACGAAGCCATCGTTGCA






ATGTACGCTTAA





1753MI2_006
Neocallimastigales
Amino
54
MAKEYFPEIGKIKFEGKDSKNPMAFHYYDPEKVIMGKPMKDWLRFAMAWWHTLCAEGGDQFG




Acid


GGTKKFPWNNGADAVEIAKQKADAGFEIMQKLGIPYFCFHDVDLVSEGASVEEYEANLKATT








DYLAVKMKETGIKLLWSTANVFGNGRYMNGASTNPDFDVVARAIVQIKNAIDAGIKLGAENY








VFWGGREGYMSLLNTDQKREKEHMATMLTMARDYARAKGFKGTFLIEPKPMEPSKHQYDVDT








ETVIGFLKAHNLDKDFKVNIEVNHATLAGHTFEHELAVAVDNNMLGSIDANRGDYQNGWDTD








QFPIDQYELVQAWMEIIRGGGLGTGGTNFDAKTRRNSTDLEDIFIAHIAGMDAMARALESAA








KLLEESPYKAMKAARYASFDNGIGKDFEDGKLTLEQAYEYGKKVGEPKQTSGKQELYEAIVA







MYA





5586MI3_005
Neocallimastigales
DNA
55
ATGGCTAAAGAATTTTTCCCAGAGATTGGTAAAATCAAGTTCGAAGGCAAGGATTCAAAGAA






TCCAATGGCTTTCCATTACTATGATGCAGAGAAGGTAATCATGGGCAAACCCATGAAGGACT






GGCTCCGTTTCGCTATGGCATGGTGGCACACACTCTGTGCAGAGGGCGGCGACCAGTTCGGT






GGCGGTACGAAGAAGTTCCCTTGGAACGAGGGTGCTAATGCTGTCGAGATTGCTAAGCAGAA






GGCTGACGCTGGTTTCGAAATCATGCAGAAGCTTGGCATTCCTTACTTCTGCTTCCACGATG






TTGACCTCGTTTCTGAAGGCGCATCTGTTGAGGAGTATGAGGCCAACCTCAAGGCTATCACT






GACTATCTCGCGGTGAAGATGAAGGAGACTGGCATTAAGCTCCTGTGGTCTACTGCCAACGT






GTTCGGCAATGGCCGTTACATGAATGGTGCTTCCACCAACCCTGACTTCGACGTTGTTGCTC






GCGCCATCGTTCAGATTAAGAACGCTATCGATGCAGGTATCAAGCTCGGTGCTGAGAACTAT






GTGTTCTGGGGCGGTCGTGAAGGTTACATGAGCCTCCTGAACACAGACCAGAAGCGTGAGAA






GGAGCACATGGCTACTATGCTCACTATGGCTCGCGACTACGCTCGCAGCAAGGGCTTCAAGG






GTACTTTCCTCATCGAGCCTAAGCCAATGGAGCCATCTAAGCACCAGTACGACGTTGACACA






GAGACTGTTATCGGCTTCCTGAAGGCACACAACCTTGACAAGGACTTCAAGGTGAACATCGA






GGTGAACCACGCAACACTCGCTGGTCACACCTTCGAGCACGAGCTCGCTGTGGCTGTCGACA






ACAATATGCTTGGTTCTATCGATGCTAACCGCGGTGACTACCAGAATGGTTGGGATACGGAC






CAGTTCCCAATTGACCAGTACGAGCTCGTTCAGGCTTGGATGGAGATCATCCGTGGTGGCGG






TCTCGGCACAGGTGGTACAAACTTCGACGCTAAGACTCGTCGTAACTCTACCGACCTCGAGG






ACATTTTCATTGCTCACATCGCTGGTATGGACGCTATGGCTCGCGCTCTTGAGTCAGCAGCT






AAGCTCCTTGAGGAGTCTCCATACAAGAAGATGAAGGCTGCCCGTTATGCTTCTTTCGACAG






CGGCATGGGTAAGGACTTTGAGAACGGCAAGCTCACACTCGAACAGGTTTATGAGTATGGTA






AGAAGGTAGGTGAGCCCAAGCAGACTTCTGGCAAGCAGGAGCTCTTCGAGGCAATCGTGGCC






ATGTACGCATAA





5586MI3_005
Neocallimastigales
Amino
56
MAKEFFPEIGKIKFEGKDSKNPMAFHYYDAEKVIMGKPMKDWLRFAMAWWHTLCAEGGDQFG




Acid


GGTKKFPWNEGANAVEIAKQKADAGFEIMQKLGIPYFCFHDVDLVSEGASVEEYEANLKAIT








DYLAVKMKETGIKLLWSTANVFGNGRYMNGASTNPDFDVVARAIVQIKNAIDAGIKLGAENY








VFWGGREGYMSLLNTDQKREKEHMATMLTMARDYARSKGFKGTFLIEPKPMEPSKHQYDVDT








ETVIGFLKAHNLDKDFKVNIEVNHATLAGHTFEHELAVAVDNNMLGSIDANRGDYQNGWDTD








QFPIDQYELVQAWMEIIRGGGLGTGGTNFDAKTRRNSTDLEDIFIAHIAGMDAMARALESAA








KLLEESPYKKMKAARYASFDSGMGKDFENGKLTLEQVYEYGKKVGEPKQTSGKQELFEAIVA







MYA





5586MI91_002
Neocallimastigales
DNA
57
ATGGCTAAAGAGTATTTTCCAGAGATTGGTAAAATCAAGTTTGAAGGCAAGGATTCCAAGAA






TCCAATGGCATTCCACTATTATGATGCAGAGAAAGTGATTATGGGTAAGCCTATGAAGGAGT






GGCTCCGCTTTGCAATGGCATGGTGGCACACACTCTGTGCAGAGGGTGGCGACCAGTTTGGT






GGTGGCACTAAGAAATTCCCATGGAACGAGGGCACTGACGCTGTGACGATTGCTAAGCAGAA






GGCTGATGCAGGTTTCGAAATCATGCAGAAACTCGGTTTCCCATATTTTTGCTTCCACGACA






TTGACCTCGTTTCCGAAGGCAACAGCATTGAAGAGTATGAGGCTAACCTCCAGGCAATCACT






GATTATCTGAAAGTGAAGATGGAAGAGACAGGCATCAAACTCTTGTGGTCAACTGCCAACGT






ATTCGGCAATGGTCGCTACATGAATGGTGCTTCCACAAACCCAGACTTTGACGTGGTGGCTC






GTGCCATCGTTCAGATTAAGAACGCAATTGACGCTGGTATCAAACTCGGTGCTGAGAACTAT






GTATTCTGGGGCGGTCGCGAAGGCTACATGAGCCTTCTGAACACTGACCAGAAGCGTGAGAA






GGAGCACATGGCAACCATGCTCACTATGGCTCGCGACTACGCTCGCAGCAAGGGTTTCAAGG






GCACTTTCCTCATTGAGCCAAAGCCAATGGAGCCATCTAAGCACCAGTATGACGTTGACACG






GAGACTGTCATCGGCTTCCTCAAGGCACACAACCTCGACAAGGATTTCAAGGTGAACATCGA






AGTGAACCACGCTACACTTGCAGGTCATACTTTCGAGCACGAACTTGCTGTGGCTGTTGACA






ATGGCATGCTCGGTTCTATCGACGCTAACCGTGGTGACTATCAGAACGGTTGGGACACTGAC






CAGTTCCCAATCGACCAGTACGAACTCGTTCAGGCTTGGATGGAAATCATCCGTGGTGGTGG






TCTCGGCACAGGTGGTACTAACTTCGATGCTAAGACTCGTCGTAACTCAACTGACCTCGAGG






ACATCTTCATCGCACACATCTCTGGTATGGATGCAATGGCACGTGCTCTCGAATCGGCGGCT






AAACTTCTTGAGGAGTCTCCATACTGCGCTATGAAGAAGGCTCGTTACGCTTCCTTCGACAG






CGGCATCGGTAAGGACTTCGAGGACGGCAAACTCACGCTCGAGCAGGCTTACGAGTACGGCA






AGAAAGTCGGCGAACCCAAGCAGACTTCTGGCAAGCAGGAACTCTACGAGGCAATCGTTGCC






ATGTACGCATAA





5586MI91_002
Neocallimastigales
Amino
58
MAKEYFPEIGKIKFEGKDSKNEMAFHYYDAEKVIMGKPMKEWLRFAMAWWHTLCAEGGDQFG




Acid


GGTKKFPWNEGTDAVTIAKQKADAGFEIMQKLGFPYFCFHDIDLVSEGNSIEEYEANLQAIT








DYLKVKMEETGIKLLWSTANVFGNGRYMNGASTNPDFDVVARAIVQIKNAIDAGIKLGAENY








VFWGGREGYMSLLNTDQKREKEHMATMLTMARDYARSKGFKGTFLIEPKPMEPSKHQYDVDT








ETVIGFLKAHNLDKDFKVNIEVNHATLAGHTFEHELAVAVDNGMLGSIDANRGDYQNGWDTD








QFPIDQYELVQAWMEIIRGGGLGTGGTNFDAKTRRNSTDLEDIFIAHISGMDAMARALESAA








KLLEESPYCAMKKARYASFDSGIGKDFEDGKLTLEQAYEYGKKVGEPKQTSGKQELYEAIVA







MYA





5586MI194_003
Neocallimastigales
DNA
59
ATGGCAAAAGAGTATTTCCCTACGATCGGTAAGATCGTTTATGAAGGACCGGAGTCCAAGAA






CCCTATGGCATTTCATTACTATGACGCAGAGCGCGTAGTAGCTGGTAAAAAAATGAAAGATT






GGATGCGTTTCGCTATGGCATGGTGGCACACCCTCTGTGCAGAAGGTGCAGACCAGTTCGGT






GGAGGCACCAAACACTTCCCGTGGAGTGAAGGTCCCGATGCCGTAACCATCGCCAAGCAGAA






AGCAGACGCAGGTTTTGAGATCATGCAGAAACTCGGCTTCCCGTATTTCTGTTTCCATGACG






TGGATCTGGTCAGCGAAGGCAGCAGCGTAGAAGAGTACGAGGCGAACCTCGCAGCCATCACC






GATTATCTCAAGCAGAAAATGGACGAGTCGGGTATCAAACTCCTTTGGTCCACTGCTAACGT






ATTCGGTCACGCCCGTTACATGAACGGTGCCAGCACCAATCCTGACTTTGATGTCGTTGCCC






GTGCGATTGTGCAGATCAAGAATGCTATCGACGCAGGTATCAAACTCGGCGCAGAGAACTAC






GTCTTCTGGGGCGGTCGTGAAGGTTATATGAGCCTGCTCAATACCGACCAGAAACGCGAGAA






AGAGCATACGGCAATGATGCTGCGTATGGCGCGTGACTATGCCCGCAGCAAAGGTTTCAAAG






GTACCTTCCTCATCGAACCCAAACCCATGGAGCCGTCCAAGCACCAGTATGACGTAGATACC






GAGACGGTGATAGGTTTCCTCAAAGCACACGGTTTGGAGAAAGACTTTAAGGTAAACATCGA






AGTGAACCACGCTACCCTCGCCGGTCACACTTTCGAGCACGAACTGGCAGTAGCCGTAGATA






ACGGCATGCTCGGTTCGATCGATGCCAACCGCGGTGACTATCAGAACGGATGGGATACCGAC






CAGTTCCCCATCGATAACTTCGAACTGACCCAAGCATGGATGCAGATCGTACGTAACGGTGG






TCTCGGCACAGGCGGAACGAACTTCGACTCCAAGACCCGTCGTAACTCCACCGATCTCGAGG






ATATCTTCATCGCTCACATCAGTGGTATGGACGCTTGTGCCCGTGCCCTATTGAATGCCGTA






GAGATCATGGAGAAATCACCGATCCCTGCTATGCTCAAAGAGCGTTACGCTTCCTTCGATAG






CGGTCTGGGTAAAGATTTCGAGGACGGCAAACTGACCCTTGAGCAAGTCTATGAGTACGGTA






AGAAAGTAGGCGAACCCAAACAAACCAGCGGCAAACAAGAACTCTATGAGGCTATCGTTGCC






CTCTACGCTAAATAA





5586MI194_003
Neocallimastigales
Amino
60
MAKEYFPTIGKIVYEGPESKNPMAFHYYDAERVVAGKKMKDWMRFAMAWWHTLCAEGADQFG




Acid


GGTKHFPWSEGPDAVTIAKQKADAGFEIMQKLGFPYFCFHDVDLVSEGSSVEEYEANLAAIT








DYLKQKMDESGIKLLWSTANVFGHARYMNGASTNPDFDVVARAIVQIKNAIDAGIKLGAENY








VFWGGREGYMSLLNTDQKREKEHTAMMLRMARDYARSKGFKGTFLIEPKPMEPSKHQYDVDT








ETVIGFLKAHGLEKDFKVNIEVNHATLAGHTFEHELAVAVDNGMLGSIDANRGDYQNGWDTD








QFPIDNFELTQAWMQIVRNGGLGTGGTNFDSKTRRNSTDLEDIFIAHISGMDACARALLNAV








EIMEKSPIPAMLKERYASFDSGLGKDFEDGKLTLEQVYEYGKKVGEPKQTSGKQELYEAIVA







LYAK





5586MI198_003
Neocallimastigales
DNA
61
ATGAAAGAGTATTTCCCTGAGATCGGTAAGATCCAATTTGAAGGCCCGGAGTCCAAGAACCC






GATGGCATTTCACTACTATGACGCAGAGCGCGTCGTAGCCGGTAAAACAATGAAAGAGTGGA






TGCGTTTCGCTATGGCTTGGTGGCACACCCTCTGTGCGGAAGGCGGCGACCAGTTCGGAGGC






GGAACGAAGAAGTTCCCCTGGAACGAAGGCGCTAACGCTTTGGAGATCGCCAAGCACAAAGC






CGATGCGGGATTTGAGATCATGCAGAAACTCGGCATCCCTTATTTCTGTTTCCATGACGTGG






ATCTCATCGCCGAGGGCGGTTCGGTAGAAGAGTACGAAGCCAACCTCGCTGCCATCACCGAT






TACCTCAAACAGAAAATGGACGAGACTGGCATCAAACTGCTGTGGTCCACGGCGAACGTCTT






CAGCAACCCCCGTTATATGAACGGCGCCAGCACGAACCCCGATTTCGATGTAGTAGCGCGTG






CCATCGTCCAGATCAAGAACGCTATCGACGCCGGTATCAAACTCGGAGCAGAGAACTATGTC






TTCTGGGGTGGTCGCGAGGGCTATATGAGCCTCCTCAACACTGACCAGCGCCGAGAGAAAGA






GCATATGGCTACCATGCTCCGTATGGCGCGTGACTACGCGCGTGCCAAAGGATTCAAGGGCA






CCTTCCTCATCGAACCCAAACCATGTGAGCCGTCCAAACATCAGTATGATGTCGATACCGAG






ACCGTCATCGGTTTCCTCAAAGCGCATGGACTCGACAAGGATTTCAAAGTCAATATCGAGGT






CAACCACGCCACCCTCGCAGGCCACACGTTCGAACACGAACTGGCTTGCGCTGTAGATGCCG






GCATGCTCGGTTCGATTGACGCCAACCGCGGTGACGCCCAGAACGGATGGGACACCGACCAG






TTCCCTATTGATAACTTCGAACTCACACAGGCTTTCATGCAGATCGTCCGCAACGGCGGTTT






CGGAACAGGCGGTACGAACTTCGACGCCAAGACACGCCGTAACTCCACCGACTTGGAGGACA






TCTTCATCGCCCATATCAGCGGCATGGACGCTTGCGCACGTGCGTTACTCAATGCTGTCGAA






ATCCTCGAGAAGAGCCCGATTCCGGCGATGCTCAAAGAGCGTTATGCTTCCTTTGACGGCGG






CATCGGAAAGGACTTCGAGGAGGGAAAACTGACTTTCGAGCAGGTCTATGAGTACGGCAAGA






AAGTCGGCGAACCCAAACAGACCAGCGGCAAACAGGAGCTCTACGAAACCATCGTCGCCCTC






TATGCCAAATAG





5586MI198_003
Neocallimastigales
Amino
62
MKEYFPEIGKIQFEGPESKNPMAFHYYDAERVVAGKTMKEWMRFAMAWWHTLCAEGGDQFGG




Acid


GTKKFPWNEGANALEIAKHKADAGFEIMQKLGIPYFCFHDVDLIAEGGSVEEYEANLAAITD








YLKQKMDETGIKLLWSTANVFSNPRYMNGASTNPDFDVVARAIVQIKNAIDAGIKLGAENYV








FWGGREGYMSLLNTDQRREKEHMATMLRMARDYARAKGFKGTFLIEPKPCEPSKHQYDVDTE








TVIGFLKAHGLDKDFKVNIEVNHATLAGHTFEHELACAVDAGMLGSIDANRGDAQNGWDTDQ








FPIDNFELTQAFMQIVRNGGEGTGGTNEDAKTRRNSTDLEDIFIAHISGMDACARALLNAVE








ILEKSPIPAMLKERYASFDGGIGKDFEEGKLTFEQVYEYGKKVGEPKQTSGKQELYETIVAL







YAK





5586MI201_003
Neocallimastigales
DNA
63
ATGGCAAAAGAGTATTTCCCTACGATCGGTAAGATCGTTTATGAAGGACCGGAATCCAAGAA






CCCTATGGCATTTCATTACTATGACGCAGAGCGCGTAGTAGCTGGTAAAAAAATGAAAGATT






GGATGCGTTTCGCTATGGCATGGTGGCACACCCTCTGTGCAGAAGGTGCAGACCAGTTCGGT






GGAGGCACCAAACACTTCCCGTGGAATGAAGGTCCCGATGCCGTAACCATCGCCAAGCAGAA






AGCAGACGCAGGTTTTGAGATCATGCAGAAACTCGGCTTCCCGTATTTCTGTTTCCATGACG






TGGATCTGGTCGGCGAAGGCAGCAGCGTAGAAGAGTACGAGGCGAACCTCGCAGCCATCACC






GATTATCTCAAGCAGAAAATGGACGAGTCGGGTATCAAACTCCTTTGGTCCACTGCTAACGT






ATTCGGTCACGCCCGTTACATGAACGGTGCCAGCACCAATCCTGACTTTGATGTCGTTGCCC






GTGCGATTGTGCAGATCAAGAATGCTATCGACGCAGGTATCAAACTCGGCGCAGAGAACTAC






GTCTTCTGGGGCGGTCGTGAAGGTTATATGAGCCTGCTCAACACCGACCAGAAACGCGAGAA






AGAGCATACGGCAATGATGCTGCGTATGGCGCGTGACTATGCCCGCAGCAAAGGTTTCAAAG






GTACCTTCCTCATCGAACCCAAACCCATGGAGCCGTCCAAGCACCAGTATGACGTAGATACC






GAGACGGTGATAGGTTTCCTCAAAGCACACGGTTTGGAGAAAGACTTTAAGGTAAACATCGA






AGTGAACCACGCTACCCTCGCCGGTCACACTTTCGAGCACGAACTGGCAGTAGCCGTAGATA






ACGGCATGCTCGGTTCGATCGATGCCAACCGCGGTGACTATCAGAACGGATGGGATACCGAC






CAGTTCCCCATCGATAACTTCGAACTGACCCAAGCATGGATGCAGATCGTACGTAACGGTGG






TCTCGGCACAGGCGGAACGAACTTCGACTCCAAGACCCGTCGTAACTCCACCGATCTCGAGG






ATATCTTCATCGCTCACATCAGTGGTATGGACGCTTGTGCCCGTGCCCTATTGAATGCCGTA






GAGATCATGGAGAAATCACCGATCCCTGCTATGCTCAAAGAGCGTTACGCTTCCTTCGATAG






CGGTCTGGGTAAAGATTTCGAGGACGGCAAACTGACCCTTGAGCAAGTCTATGAGTACGGTA






AGAAAGTAGGCGAACCCAAACAAACCAGCGGCAAACAAGAACTCTATGAGGCTATCGTTGCC






CTCTACGCTAAATAA





5586MI201_003
Neocallimastigales
Amino
64
MAKEYFPTIGKIVYEGPESKNPMAFHYYDAERVVAGKKMKDWMRFAMAWWHTLCAEGADQFG




Acid


GGTKHFPWNEGPDAVTIAKQKADAGFEIMQKLGFPYFCFHDVDLVGEGSSVEEYEANLAAIT








DYLKQKMDESGIKLLWSTANVFGHARYMNGASTNPDFDVVARAIVQIKNAIDAGIKLGAENY








VFWGGREGYMSLLNTDQKREKEHTAMMLRMARDYARSKGFKGTFLIEPKPMEPSKHQYDVDT








ETVIGFLKAHGLEKDFKVNIEVNHATLAGHTFEHELAVAVDNGMLGSIDANRGDYQNGWDTD








QFPIDNFELTQAWMQIVRNGGLGTGGTNFDSKTRRNSTDLEDIFIAHISGMDACARALLNAV








EIMEKSPIPAMLKERYASFDSGLGKDFEDGKLTLEQVYEYGKKVGEPKQTSGKQELYEAIVA







LYAK





5586MI204_002
Neocallimastigales
DNA
65
ATGAAAGAGTATTTCCCTGAGGTCGGTAAGATCCAATTTGAAGGCCCGGAGTCTAAGAACCC






GATGGCATTTCACTACTATGACGCAGAGCGCGTCGTAGCCGGTAAAACAATGAAAGAGTGGA






TGCGTTTCGCTATGGCTTGGTGGCACACCCTCTGTGCAGAAGGCGGCGACCAGTTCGGAGGC






GGAACGAAGCATTTCCCGTGGAATGAAGGCGCTAACGCTTTGGAGATCGCCAAACACAAAGC






CGATGCGGGATTCGAGATCATGCAGAAACTCGGCATCCCCTATTTCTGTTTCCATGACGTGG






ATCTCATCGCCGAGGGCGGTTCGGTAGAAGAGTACGAAACCAACCTCGCTGCTATCACCGAC






TACCTCAAGCAGAAAATGGACGAGACCGGCATCAAACTGCTGTGGTCCACGGCGAACGTGTT






CAGCAACCCCCGTTATATGAACGGCGCGAGCACGAACCCCGATTTCGATGTAGTAGCGCGTG






CCATCGTGCAGATCAAGAATGCCATCGACGCCGGCATCAAACTGGGCGCAGAGAACTATGTC






TTCTGGGGCGGTCGCGAGGGCTACATGAGCCTGCTCAACACCGACCAGCGCCGCGAGAAAGA






GCATATGGCTACTATGCTCCGTATGGCGCGTGACTACGCGCGTGCCAAAGGATTCAAGGGCA






CCTTTCTCATCGAACCCAAACCGTGTGAGCCGTCCAAACATCAGTATGATGTCGATACCGAG






ACCGTCATCGGTTTCCTCAAAGCGCATGGACTCGACAAGGATTTCAAGGTTAATATCGAGGT






CAACCACGCCACCCTCGCAGGCCACACGTTCGAACACGAACTGGCTTGCGCTGTAGATGCCG






GCATGCTCGGTTCGATTGACGCCAACCGCGGTGACGCCCAGAACGGATGGGACACCGACCAG






TTCCCTATTGATAACTTCGAACTCACACAGGCTTTCATGCAGATCGTCCGCAACGGCGGTTT






CGGAACAGGCGGTACGAACTTCGACGCCAAGACACGCCGTAACTCCACCGACTTGGAGGACA






TCTTCATCGCCCATATCAGCGGCATGGACGCTTGCGCACGTGCGTTGCTCAACGCCATCGAA






ATCCTCGAGAAGAGCCCGATCCCGGCTATGCTCAAAGACCGTTATGCCTCCTTTGATGGCGG






CATCGGAAAGGACTTTGAGGAGGGCAAACTGACTTTCGAGCAGGTCTATGAGTACGGCAAGA






AGGTCGGAGAACCCAAACAGACCAGCGGCAAACAGGAGCTCTACGAAACCATCGTCGCCCTC






TATGCCAAATAG





5586MI204_002
Neocallimastigales
Amino
66
MKEYFPEVGKIQFEGPESKNPMAFHYYDAERVVAGKTMKEWMRFAMAWWHTLCAEGGDQFGG




Acid


GTKHFPWNEGANALEIAKHKADAGFEIMQKLGIPYFCFHDVDLIAEGGSVEEYETNLAAITD








YLKQKMDETGIKLLWSTANVFSNPRYMNGASTNPDFDVVARAIVQIKNAIDAGIKLGAENYV








FWGGREGYMSLLNTDQRREKEHMATMLRMARDYARAKGFKGTFLIEPKPCEPSKHQYDVDTE








TVIGFLKAHGLDKDFKVNIEVNHATLAGHTFEHELACAVDAGMLGSIDANRGDAQNGWDTDQ








FPIDNFELTQAFMQIVRNGGFGTGGTNFDAKTRRNSTDLEDIFIAHISGMDACARALLNAIE








ILEKSPIPAMLKDRYASFDGGIGKDFEEGKLTFEQVYEYGKKVGEPKQTSGKQELYETIVAL







YAK





5586MI207_002
Neocallimastigales
DNA
67
ATGAAAGAGTATTTCCCTGAGATCGGTAAGATGCAATTTGAAGGCCCGGAGTCCAAGAACCC






GATGGCGTTTCACTACTATGACGCTGAGCGCGTCGTAGCCGGTAAAACAATGAAAGAGTGGA






TGCGTTTCGCTATGGCTTGGTGGCACACCCTCTGTGCGGAAGGCGGCGACCAGTTCGGAGGA






GGAACGAAGAAATTCCCCTGGAACGAAGGGGCAAACGCTTTGGAGATCGCCAAGCACAAAGC






CGATGCGGGATTCGAGATCATGCAGAAACTCGGCATCCCTTATTTCTGTTTCCATGACGTGG






ATCTCATCGCCGAGGGCGAATCGGTAGAAGAGTACGAAGCCAACCTCGCTGCCATCACCGAT






TACCTCAAACAGAAAATGGACGAGACCGGCATCAAACTGCTGTGGTCCACGGCGAACGTGTT






CAGCAACCCCCGTTATATGAACGGCGCCAGCACGAACCCCGATTTCGATGTAGTGGCACGCG






CTATCGTACAAATCAAGAACGCTATCGACGCCGGTATCAAACTCGGAGCAGAGAACTATGTC






TTCTGGGGCGGTCGCGAGGGCTATATGTCGCTCCTCAACACCGACCAGCGCCGAGAGAAAGA






GCATATGGCTACTATGCTCCGTATGGCGCGTGACTACGCGCGTTCCAAAGGATTCAAGGGCA






CCTTCCTCATCGAACCCAAACCGTGTGAGCCGTCCAAACATCAGTACGATGTGGACACAGAG






ACCGTCATCGGTTTCCTTAAAGCGCATGGACTCGACAAGGATTTCAAAGTCAATATCGAGGT






CAACCACGCCACCCTCGCAGGCCACACGTTCGAACACGAACTGGCTTGCGCTGTAGATGCCG






GCATGCTCGGTTCGATTGACGCCAACCGCGGTGACGCCCAGAACGGATGGGACACCGACCAA






TTCCCTATTGATAACTTCGAACTCACTCAGGCTTTCATGCAGATCGTCCGCAACGGCGGTTT






CGGAACAGGCGGTACGAACTTCGACGCCAAGACACGCCGTAACTCCACCGACTTGGAGGACA






TCTTCATCGCCCATATCAGCGGCATGGACGCTTGCGCTCGTGCGTTGCTCAATGCTGTCGAA






ATCCTCGAGAAGAGCCCGATCCCGGCTATGCTCAAAGAGCGTTATGCTTCCTTTGACGGCGG






CATCGGAAAGGACTTTGAGGAGGGCAAACTGACTTTCGAGCAGGTCTATGAGTACGGCAAGA






AGGTCGGAGAACCCAAACAGACCAGCGGCAAACAGGAGCTCTACGAAACCATCGTCGCCCTC






TATGCCAAATGA





5586MI207_002
Neocallimastigales
Amino
68
MKEYFPEIGKIQFEGPESKNPMAFHYYDAERVVAGKTMKEWMRFAMAWWHTLCAEGGDQFGG




Acid


GTKKFPWNEGANALEIAKHKADAGFEIMQKLGIPYFCFHDVDLIAEGESVEEYEANLAAITD








YLKQKMDETGIKLLWSTANVFSNPRYMNGASTNPDFDVVARAIVQIKNAIDAGIKLGAENYV








FWGGREGYMSLLNTDQRREKEHMATMLRMARDYARSKGFKGTFLIEPKPCEPSKHQYDVDTE








TVIGFLKAHGLDKDFKVNIEVNHATLAGHTFEHELACAVDAGMLGSIDANRGDAQNGWDTDQ








FPIDNFELTQAFMQIVRNGGFGTGGTNFDAKTRRNSTDLEDIFIAHISGMDACARALLNAVE








ILEKSPIPAMLKERYASFDGGIGKDFEEGKLTFEQVYEYGKKVGEPKQTSGKQELYETIVAL







YAK





5586MI209_003
Neocallimastigales
DNA
69
ATGAAAGAGTATTTCCCTGAGATCGGTAAGATCCAATTTGAAGGCCCGGAGTCCAAGAACCC






GATGGCGTTTCACTACTATGACGCAGAGCGCGTAGTAGCCGGTAAAACAATGAAAGAATGGA






TGCGTTTCGCCATGGCATGGTGGCACACCCTCTGTGCAGAAGGCGGCGACCAGTTCGGAGGA






GGAACGAAGCATTTCCCGTGGAATGAAGGCGCTAACGCTTTGGAGATCGCCAAACACAAAGC






CGATGCGGGATTCGAGATCATGCAGAAACTCGGCATCCCCTATTTCTGTTTCCATGACGTGG






ATCTCATCGCCGAGGGCGATTCGGTGGAGGAGTACGAAGCTAACCCCGCTGCCATCACCGAT






TACCTCAAACAGAAAATGGACGAGACCGGCATCAAACTGCTGTGGTCCACGGCGAACGTCTT






CAGCAACCCCCGTTACATGAACGGTGCGAGCACGAACCCGGATTTCGATGTAGTGGCACGCG






CTATCGTACAAATCAAGAACGCTATCGACGCCGGTATCAAACTCGGAGCAGAGAACTATGTC






TTCTGGGGCGGTCGCGAGGGCTATATGTCGCTCCTCAACACCGACCAGCGTCGCGAGAAAGA






GCATATGGCTACTATGCTCCGTATGGCGCGTGACTACGCGCGTGCCAAAGGATTCAAGGGCA






CCTTCCTCATCGAACCCAAACCATGTGAGCCGTCCAAACATCAGTACGATGTGGACACAGAG






ACTGTCATCGGTTTCCTCAAAGCGCATGGACTCGACAAGGATTTCAAAGTCAACATCGAGGT






CAACCACGCCACCCTCGCAGGTCACACGTTCGAACACGAACTGGCTTGCGCTGTAGATGCCG






GCATGCTCGGTTCGATTGACGCCAACCGCGGTGACGCCCAGAACGGATGGGACACTGACCAG






TTCCCTATTGATAACTTCGAACTCACACAGGCTTTCATGCAGATCGTCCGCAACGGCGGTTT






CGGAACAGGCGGTACGAACTTCGACGCCAAGACACGCCGTAACTCCACCGACTTGGAGGACA






TCTTCATCGCCCATATCAGCGGCATGGACGCTTGTGTCCGTGCGTTGCTCAACGCCATCGAA






ATCCTCGAGAAGAGCCCGATCCCGGCTATGCTCAAAGAGCGTTACGCTTCCTTTGACGGCGG






CATCGGAAAGGACTTTGAGGATGGTAAACTGACTTTCGAGCAGGTCTATGAGTACGGCAAGA






AGGTCGGAGAACCCAAACAGACCAGCGGCAAACAGGAGCTCTACGAAACCATCGTCGCCCTC






TATGCCAAGTAA





5586MI209_003
Neocallimastigales
Amino
70
MKEYFPEIGKIQFEGPESKNPMAFHYYDAERVVAGKTMKEWMRFAMAWWHTLCAEGGDQFGG




Acid


GTKHFPWNEGANALEIAKHKADAGFEIMQKLGIPYFCFHDVDLIAEGDSVEEYEANPAAITD








YLKQKMDETGIKLLWSTANVFSNPRYMNGASTNPDFDVVARAIVQIKNAIDAGIKLGAENYV








FWGGREGYMSLLNTDQRREKEHMATMLRMARDYARAKGFKGTFLIEPKPCEPSKHQYDVDTE








TVIGFLKAHGLDKDFKVNIEVNHATLAGHTFEHELACAVDAGMLGSIDANRGDAQNGWDTDQ








FPIDNFELTQAFMQIVRNGGFGTGGTNFDAKTRRNSTDLEDIFIAHISGMDACVRALLNAIE








ILEKSPIPAMLKERYASFDGGIGKDFEDGKLTFEQVYEYGKKVGEPKQTSGKQELYETIVAL







YAK





5586MI214_002
Neocallimastigales
DNA
71
ATGAAAGAGTATTTCCCTGAGATCGGAAAGATCCAATTCGAAGGCCCGGAGTCCAAGAATCC






TATGGCATTTCACTACTATGACGCAGAGCGTGTAGTAGCCGGTAAAACAATGAAAGAGTGGA






TGCGTTTCGCTTTGGCATGGTGGCACACGCTCTGCGCAGAAGGCGGCGACCAGTTCGGAGGC






GGCACGAAGCATTTCCCTTGGAATGAAGGTGCAAACGCTTTGGAGATCGCCAAGCACAAAGC






CGATGCAGGCTTCGAGATCATGCAGAAACTCGGCATCCCCTATTTCTGTTTCCATGACGTGG






ATCTGATCGCCGAGGGCGGTTCGGTAGAAGAGTATGAAGCTAATTTAACGGCTATCACCGAT






TACCTCAAACAGAAAATGGACGAGACCGGCATCAAACTGCTGTGGTCCACTGCGAACGTGTT






CGGTAACGCACGTTATATGAACGGCGCGAGCACGAACCCCGATTTCGATGTAGTGGCACGCG






CTATCGTGCAGATCAAGAACGCTATCGACGCCGGCATCAAACTGGGCGCAGAGAACTACGTC






TTCTGGGGCGGTCGCGAGGGATATATGTCGCTCCTGAACACCGACCAGAAGCGTGAGAAAGA






GCATATGGCTACCATGCTCCGTATGGCGCGTGACTACGCGCGTTCCAAAGGATTCAAAGGTA






CGTTCCTCATCGAGCCCAAACCGTGTGAGCCGTCCAAACATCAGTACGACGTGGACACTGAG






ACCGTCATCGGTTTCCTCAAAGCCCATGGTCTCGGCAAGGATTTCAAAGTGAACATCGAGGT






GAATCACGCCACCCTCGCAGGGCACACGTTCGAACACGAACTGGCTTGCGCCGTAGATGCCG






GCATGCTCGGTTCGATCGACGCCAACCGCGGTGACGCACAAAACGGATGGGACACCGACCAG






TTCCCTATTGATAATTTCGAACTCACCCAGGCATTCATGCAGATCGTCCGCAACGGCGGTTT






CGGAACAGGCGGTACGAACTTCGACGCCAAGACACGCCGTAATTCCACCGACTTGGAGGACA






TCTTCATCGCCCATATCAGCGGCATGGACGCTTGTGCCCGTGCGTTGCTCAATGCTGTCGAA






ATCCTTGAAAAGAGCCCGATCCCGGCGATGCTCAAAGAGCGTTACGCCTCCTTTGACAGCGG






TATGGGTAAGGACTTTGAGGAGGGCAAGCTGACCTTCGAGCAGGTCTATGAGTACGGCAAAC






AGGTCGGCGAACCCAAACAGACCAGCGGCAAGCAGGAGCTCTACGAAACCATCGTCGCCCTC






TATGCCAAATAG





5586MI214_002
Neocallimastigales
Amino
72
MKEYFPEIGKIQFEGPESKNPMAFHYYDAERVVAGKTMKEWMRFALAWWHTLCAEGGDQFGG




Acid


GTKHFPWNEGANALEIAKHKADAGFEIMQKLGIPYFCFHDVDLIAEGGSVEEYEANLTAITD








YLKQKMDETGIKLLWSTANVFGNARYMNGASTNPDFDVVARAIVQIKNAIDAGIKLGAENYV








FWGGREGYMSLLNTDQKREKEHMATMLRMARDYARSKGFKGTFLIEPKPCEPSKHQYDVDTE








TVIGFLKAHGLGKDFKVNIEVNHATLAGHTFEHELACAVDAGMLGSIDANRGDAQNGWDTDQ








FPIDNFELTQAFMQIVRNGGFGTGGTNFDAKTRRNSTDLEDIFIAHISGMDACARALLNAVE








ILEKSPIPAMLKERYASFDSGMGKDFEEGKLTFEQVYEYGKQVGEPKQTSGKQELYETIVAL







YAK





5751MI3_001
Neocallimastigales
DNA
73
ATGAAAGAGTATTTTCCACAAATCGGCAAGATCCCATTTGAGGGACCAGAGTCAAAGAACCC






AATGGCATTCCACTACTATGACGCAGAGCGCGTAGTTGCCGGTAAGACAATGAAGGAATGGA






TGCGTTTCGCTATGGCCTGGTGGCACACTCTCTGTGCTGAGGGTAGCGATCAGTTCGGCCCT






GGTACAAAGAAGTTCCCTTGGAACGAGGGCGAGACAGCCCTTGAGCGCGCTAAGCACAAGGC






AGATGCTGGCTTCGAGGTTATGCAGAAGCTCGGCATCCCATATTTCTGCTTCCACGATGTAG






ACCTTATCGACGAGGGTGCTAACGTGGCTGAGTATGAGGCAAACCTCGCTGCTATCACTGAC






TACCTGAAGGAGAAGATGGAGGAGACTGGCGTAAAGCTCCTCTGGTCTACAGCCAACGTGTT






CGGTAACGCTCGCTATATGAACGGTGCTTCTACAAATCCTGACTTCGACGTTGTGGCTCGTG






CCATCGTACAGATTAAGAACGCTATCGACGCTGGTATCAAGCTTGGTGCTGAGAACTACGTG






TTCTGGGGCGGCCGCGAGGGCTACATGAGCCTTCTGAACACTGACCAGAAGCGCGAGAAGGA






GCACATGGCAACTATGCTCGGCATGGCTCGCGACTATGCCCGCGCTAAGGGATTCACCGGTA






CCTTCCTCATTGAGCCAAAGCCAATGGAGCCAACAAAGCATCAGTATGATGTTGACACAGAG






ACCGTTATCGGTTTCCTCAAGGCTCACGGTCTGGACAAGGACTTCAAGGTGAACATCGAGGT






GAACCACGCTACTCTCGCCGGTCACACCTTCGAGCACGAGCTCGCTTGCGCTGTTGACGCTG






GTATGCTCGGTTCTATCGACGCTAACCGCGGTGACGCTCAGAACGGATGGGATACCGACCAG






TTCCCAATCGACAACTTCGAGCTGACACAGGCTTGGATGCAGATTGTTCGCAATGGCGGTCT






TGGCACAGGTGGTACCAACTTCGACGCAAAGACCCGTCGTAACTCTACCGACCTCGAGGACA






TCTTCATCGCTCACATCTCCGGTATGGACGCTTGTGCACGCGCTCTCCTCAACGCAGTAGAG






ATACTCGAGAACTCTCCAATCCCAACAATGCTGAAGGACCGCTATGCAAGCTTCGACTCAGG






TATGGGTAAGGACTTCGAGGACGGCAAGCTCACACTTGAGCAGGTTTATGAGTATGGTAAGA






AGGTCGACGAGCCAAAGCAGACCTCTGGTAAGCAGGAACTCTATGAGACCATCGTTGCTCTC






TATGCAAAATAA





5751MI3_001
Neocallimastigales
Amino
74
MKEYFPQIGKIPFEGPESKNPMAFHYYDAERVVAGKTMKEWMRFAMAWWHTLCAEGSDQFGP




Acid


GTKKFPWNEGETALERAKHKADAGFEVMQKLGIPYFCFHDVDLIDEGANVAEYEANLAAITD








YLKEKMEETGVKLLWSTANVFGNARYMNGASTNPDFDVVARAIVQIKNAIDAGIKLGAENYV








FWGGREGYMSLLNTDQKREKEHMATMLGMARDYARAKGFTGTFLIEPKPMEPTKHQYDVDTE








TVIGFLKAHGLDKDFKVNIEVNHATLAGHTFEHELACAVDAGMLGSIDANRGDAQNGWDTDQ








FPIDNFELTQAWMQIVRNGGLGTGGTNFDAKTRRNSTDLEDIFIAHISGMDACARALLNAVE








ILENSPIPTMLKDRYASFDSGMGKDFEDGKLTLEQVYEYGKKVDEPKQTSGKQELYETIVAL







YAK





5753MI3_002
Prevotella
DNA
75
ATGCCTAAAGAATACTTCCCCTCCATCGGCAAAATCCCTTTTGAAGGAGGCGACAGCAAAAA






TCCCCTCGCTTTCCATTATTATGACGCCGGACGCGTGGTTATGGGCAAGCCCATGAAGGAAT






GGCTTAAATTCGCCATGGCCTGGTGGCACACGCTGGGCCAGGCCTCCGGAGACCCCTTCGGC






GGCCAGACCCGCAGCTACGAATGGGACAAGGGCGAATGCCCCTACTGCCGCGCCAAAGCCAA






GGCCGACGCCGGTTTTGAAATCATGCAAAAGCTGGGTATCGAATACTTCTGCTTCCACGATG






TGGACCTTATCGAGGATTGCGATGACATTGCCGAATACGAAGCCCGCATGAAGGACATCACG






GACTACCTGCTGGAAAAGATGAAGGAGACCGGCATCAAGAACCTCTGGGGCACCGCCAATGT






CTTCGGCCACAAGCGCTACATGAACGGCGCCGGCACCAATCCGCAGTTCGATGTGGTGGCCC






GTGCCGCCGTCCAGATCAAGAACGCCCTGGACGCCACCATCAAGCTGGGCGGCTCCAACTAT






GTGTTCTGGGGCGGCCGCGAAGGCTATTACACCCTCCTCAACACCCAGATGCAGCGGGAAAA






AGACCACCTGGCCAAGTTGCTGACGGCCGCCCGCGACTATGCCCGCGCCAAGGGCTTCAAGG






GCACCTTCCTCATTGAGCCCAAACCCATGGAACCCACCAAGCACCAGTACGACGTGGATACG






GAGACGGTCATCGGCTTCCTCCGTGCCAACGGCCTGGACAAGGACTTCAAGGTGAACATCGA






GGTGAACCACGCCACCCTGGCCGGCCACACCTTCGAGCATGAGCTCACCGTGGCCCGCGAGA






ACGGTTTCCTGGGCTCCATCGGTGCCAACCGCGGCGACGCCCAGAACGGCTGGGACACGGAC






CAGTTCCCTGTGGACCCGTACGATCTTACCCAGGCCATGATGCAGGTGCTGCTGAACGGCGG






CTTCGGCAACGGCGGCACCAACTTCGACGCCAAACTCCGCCGCTCCTCCACCGACCCTGAGG






ACATCTTCATCGCCCATATTTCCGCCATGGATGCCATGGCCCACGCTTTGCTTAACGCAGCT






GCCGTGCTGGAAGAGAGCCCCCTGTGCCAGATGGTCAAGGAGCGTTATGCCAGCTTCGACGG






CGGCCTCGGCAAACAGTTCGAGGAAGGCAAGGCTACCCTGGAAGACCTGTACGAATACGCCA






AGGTCCAGGGTGAACCCGTTGTCGCCTCCGGCAAGCAGGAGCTTTACGAGACTCTCCTGAAC






CTGTATGCCGTCAAGTAA





5753MI3_002
Prevotella
Amino
76
MAKEYFPSIGKIPFEGGDSKNPLAFHYYDAGRVVMGKPMKEWLKFAMAWWHTLGQASGDPFG




Acid


GQTRSYEWDKGECPYCRAKAKADAGFEIMQKLGIEYFCFHDVDLIEDCDDIAEYEARMKDIT








DYLLEKMKETGIKNLWGTANVFGHKRYMNGAGTNPQFDVVARAAVQIKNALDATIKLGGSNY








VFWGGREGYYTLLNTQMQREKDHLAKLLTAARDYARAKGFKGTFLIEPKPMEPTKHQYDVDT








ETVIGFLRANGLDKDFKVNIEVNHATLAGHTFEHELTVARENGFLGSIGANRGDAQNGWDTD








QFPVDPYDLTQAMMQVLLNGGFGNGGTNFDAKLRRSSTDPEDIFIAHISAMDAMAHALLNAA








AVLEESPLCQMVKERYASFDGGLGKQFEEGKATLEDLYEYAKVQGEPVVASGKQELYETLLN







LYAVK





1754MI1_001
Prevotella
DNA
77
ATGGCAAAAGAGTATTTTCCGTTTACCGGTAAGATTCCTTTCGAAGGAAAGGACAGTAAGAA






TGTAATGGCTTTCCACTACTACGAGCCTGAGAAGGTCGTGATGGGAAAGAAGATGAAGGACT






GGCTGAAGTTCGCTATGGCTTGGTGGCATACACTGGGTGGCGCTTCTGCTGACCAGTTTGGT






GGTCAGACTCGTTCATACGAGTGGGACAAGGCTGGTGACGCTGTTCAGCGCGCTAAGGATAA






GATGGACGCTGGCTTCGAGATCATGGACAAGCTGGGCATCGAGTACTTCTGCTTCCACGATG






TTGACCTCGTTGAAGAGGGTGACACCATCGAGGAGTATGAGGCTCGCATGAAGGCCATCACC






GACTACGCTCAGGAGAAGATGAAGCAGTTCCCCAACATCAAGCTGCTCTGGGGTACCGCAAA






CGTATTCGGTAACAAGCGCTATGCTAACGGTGCTTCTACCAACCCCGACTTCGACGTAGTGG






CTCGCGCCATCGTTCAGATCAAGAACGCTATTGATGCTACCATCAAGCTGGGTGGTACCAAC






TATGTGTTCTGGGGTGGTCGTGAGGGCTATATGAGTCTGCTGAACACCGACCAGAAGCGTGA






GAAGGAGCACATGGCTACTATGCTGACCATGGCTCGCGACTATGCTCGCGCCAAGGGATTCA






AGGGTACATTCCTCATTGAGCCGAAGCCCATGGAGCCCAGCAAGCACCAGTATGATGTGGAT






ACAGAGACCGTTATCGGCTTCCTGAAGGCACACAACCTGGACAAGGACTTCAAGGTGAACAT






CGAGGTGAACCACGCTACACTCGCTGGTCATACCTTCGAGCACGAGCTGGCTTGCGCTGTTG






ACGCTGGTATGCTTGGTTCTATCGACGCTAACCGTGGTGATGCTCAGAACGGTTGGGATACC






GACCAGTTCCCCATCGACAACTACGAGCTGACACAGGCTATGCTCGAGATCATCCGCAATGG






TGGTCTGGGCAATGGTGGTACCAACTTCGATGCTAAGATCCGTCGTAACAGCACCGACCTCG






AGGATCTCTTCATCGCTCACATCAGTGGTATGGATGCTATGGCACGCGCTCTGATGAACGCT






GCTGACATCCTTGAGAACTCTGAGCTGCCCGCAATGAAGAAGGCTCGCTACGCAAGCTTCGA






CCAGGGTGTTGGTAAGGACTTCGAAGATGGCAAGCTGACCCTTGAGCAGGTTTACGAGTATG






GTAAGAAGGTGGGTGAGCCCAAGCAGACTTCTGGTAAGCAGGAGAAGTACGAGACCATCGTT






GCTCTCTATGCAAAATAA





1754MI1_001
Prevotella
Amino
78
MAKEYFPFTGKIPFEGKDSKNVMAFHYYEPEKVVMGKKMKDWLKFAMAWWHTLGGASADQFG




Acid


GQTRSYEWDKAGDAVQRAKDKMDAGFEIMDKLGIEYFCFHDVDLVEEGDTIEEYEARMKAIT








DYAQEKMKQFPNIKLLWGTANVFGNKRYANGASTNPDFDVVARAIVQIKNAIDATIKLGGTN








YVFWGGREGYMSLLNTDQKREKEHMATMLTMARDYARAKGFKGTFLIEPKPMEPSKHQYDVD








TETVIGFLKAHNLDKDFKVNIEVNHATLAGHTFEHELACAVDAGMLGSIDANRGDAQNGWDT








DQFPIDNYELTQAMLEIIRNGGLGNGGTNFDAKIRRNSTDLEDLFIAHISGMDAMARALMNA








ADILENSELPAMKKARYASFDQGVGKDFEDGKLTLEQVYEYGKKVGEPKQTSGKQEKYETIV







ALYAK





1754MI3_007
Prevotella
DNA
79
ATGGCAAAAGAGTATTTTCCGTTTACCGGTAAGATTCCTTTCGAAGGAAAAGAGAGCAAGAA






CGTAATGGCTTTCCATTACTATGAGCCTGAAAAGGTGGTCATGGGCAAGAAAATGAAGGATT






GGCTGAAATTCGCCATGGCTTGGTGGCACACCCTCGGTGGAGCCAGCGCCGACCAGTTCGGT






GGACAGACCCGCAGCTATGAGTGGGACAAGGCCGAGGATGCCGTACAGCGTGCTAAGGACAA






GATGGACGCCGGCTTCGAGATCATGGACAAACTGGGCATCGAGTATTTCTGCTTCCACGATG






TCGACCTCGTCGACGAGGGTGCTACCGTTGAGGAGTATGAGGCTCGCATGAAAGCCATCACC






GACTATGCCCAGGTCAAGATGAAGGAATATCCCAACATCAAACTGCTCTGGGGCACCGCCAA






CGTGTTCGGCAACAAGCGTTATGCCAACGGCGCTTCCACCAACCCCGACTTCGACGTGGTGG






CACGCGCTATCGTTCAGATCAAGAATGCCATCGACGCTACCATCAAGCTCGGCGGTCAGAAC






TACGTGTTCTGGGGCGGACGCGAGGGCTACATGAGCCTGCTCAATACCGATCAGAAACGTGA






GAAGGAACACATGGCCACCATGCTCACCATGGCGCGCGACTATGCTCGCAGCAAGGGATTCA






AGGGCACCTTCCTCATCGAACCCAAACCCATGGAGCCTTCCAAGCACCAGTATGATGTCGAC






ACCGAGACGGTCATCGGCTTCCTCCGCGCCCACAACCTCGACAAGGACTTCAAGGTGAACAT






CGAGGTCAACCACGCCACGCTCGCCGGCCACACCTTCGAGCACGAACTGGCTTGCGCCGTCG






ACGCCGGCATGCTCGGCAGCATCGACGCCAACCGCGGCGACGCACAGAACGGCTGGGATACC






GACCAGTTCCCCATCGACAACTACGAACTGACACAGGCCATGCTGGAGATCATCCGCAATGG






CGGCCTCGGCAATGGTGGTACCAACTTCGACGCCAAGATCCGTCGTAACAGCACCGACCTCG






AAGATCTCTTCATCGCTCACATCAGCGGTATGGATGCCATGGCTCGCGCGCTGCTCAACGCC






GCCGCCATCCTCGAGGAGAGCGAACTGCCCGCCATGAAGAAGGCCCGCTACGCTTCCTTCGA






CGAAGGTATCGGCAAGGACTTCGAAGACGGCAAACTCACCCTCGAGCAGGTTTACGAGTACG






GCAAGAAGGTAGGCGAGCCCAAGCAGACCTCCGGCAAGCAAGAGAAGTACGAGACCATCGTG






GCTCTCTACAGCAAATAA





1754MI3_007
Prevotella
Amino
80
MAKEYFPFTGKIPFEGKESKNVMAFHYYEPEKVVMGKKMKDWLKFAMAWWHTLGGASADQFG




Acid


GQTRSYEWDKAEDAVQRAKDKMDAGFEIMDKLGIEYFCFHDVDLVDEGATVEEYEARMKAIT








DYAQVKMKEYPNIKLLWGTANVFGNKRYANGASTNPDFDVVARAIVQIKNAIDATIKLGGQN








YVFWGGREGYMSLLNTDQKREKEHMATMLTMARDYARSKGFKGTFLIEPKPMEPSKHQYDVD








TETVIGFLRAHNLDKDFKVNIEVNHATLAGHTFEHELACAVDAGMLGSIDANRGDAQNGWDT








DQFPIDNYELTQAMLEIIRNGGLGNGGTNFDAKIRRNSTDLEDLFIAHISGMDAMARALLNA








AAILEESELPAMKKARYASFDEGIGKDFEDGKLTLEQVYEYGKKVGEPKQTSGKQEKYETIV







ALYSK





1754MI5_009
Prevotella
DNA
81
ATGAAAGAGTATTTCCCGCAAATTGGAAAGATTCCCTTCGAGGGACCAGAGAGCAAGAGTCC






ATTGGCGTTCCATTATTATGAGCCGGATCGCATGGTGCTCGGAAAGAGGATGGAGGATTGGC






TGAAATTCGCCATGGCATGGTGGCACACCCTTGGCCAGGCCAGCGGCGACCAGTTCGGCGGA






CAGACACGTGAGTACGAGTGGGATAAGGCTGGAGATCCGATACAAAGGGCAAAGGATAAGAT






GGACGCCGGATTCGAGATCATGGAGAAATTGGGTATCAAGTACTTCTGCTTCCATGATGTGG






ATCTCGTCGAGGAAGCTCCCACCATCGCCGAATATGAGGAGCGTATGAGGATCATCACCGAC






TATGCGCTCGAGAAGATGAAAGCCACTGGCATCAAACTCCTTTGGGGTACAGCCAATGTTTT






CGGACATAAGAGATATATGAATGGGGCCGCCACCAACCCGGAGTTCGGTGTTGTCGCCAGGG






CTGCTGTCCAGATCAAGAACGCGATCGACGCCACCATCAAGCTGGGAGGAACAAACTATGTG






TTCTGGGGTGGCCGCGAGGGCTACATGAGCCTGCTCAACACCCAGATGCAGAGGGAGAAGGA






CCATCTCGCCAATATGCTCAAGGCTGCTCGTGACTATGCTCGCGCCAAGGGATTCAAGGGCA






CATTCCTCATCGAGCCGAAGCCGATGGAACCTACTAAGCATCAGTACGATGTCGACACTGAG






ACCGTGATCGGCTTCCTCCGCGCAAACGGTCTTGACAAGGATTTCAAGGTCAACATCGAGGT






CAATCACGCCACTCTTGCGGGTCACACTTTCGAGCATGAGCTCGCCGTGGCTGTCGACAATG






GTCTCCTTGGCTCAATCGATGCGAACAGGGGAGATTATCAGAACGGTTGGGACACCGACCAG






TTCCCTGTTGATCTCTTTGATTTGACCCAGGCCATGCTCCAGATCATCCGTAACGGAGGCCT






CGGTAATGGTGGATCCAACTTCGACGCCAAGCTTCGCCGTAACTCCACTGATCCTGAGGATA






TATTCATTGCCCATATTTGCGGTATGGACGCTATGGCCAGGGCTCTCCTTGCCGCCGCCGCG






ATCGTGGAGGAGTCTCCTATCCCGGCTATGGTCAAAGAGCGTTACGCATCCTTCGACGAAGG






TGAGGGCAAGAGATTCGAGGATGGTAAGATGAGTCTGGAGGAACTTGTTGATTACGCGAAGA






CTCACGGAGAGCCCGCCCAGAAGAGTGGCAAACAGGAGCTCTACGAAACCCTTGTCAACATG






TACATCAAATAA





1754MI5_009
Prevotella
Amino
82
MKEYFPQIGKIPFEGPESKSPLAFHYYEPDRMVLGKRMEDWLKFAMAWWHTLGQASGDQFGG




Acid


QTREYEWDKAGDPIQRAKDKMDAGFEIMEKLGIKYFCFHDVDLVEEAPTIAEYEERMRIITD








YALEKMKATGIKLLWGTANVFGHKRYMNGAATNPEFGVVARAAVQIKNAIDATIKLGGTNYV








FWGGREGYMSLLNTQMQREKDHLANMLKAARDYARAKGFKGTFLIEPKPMEPTKHQYDVDTE








TVIGFLRANGLDKDFKVNIEVNHATLAGHTFEHELAVAVDNGLLGSIDANRGDYQNGWDTDQ








FPVDLFDLTQAMLQIIRNGGLGNGGSNFDAKLRRNSTDPEDIFIAHICGMDAMARALLAAAA








IVEESPIPAMVKERYASFDEGEGKRFEDGKMSLEELVDYAKTHGEPAQKSGKQELYETLVNM







YIK





5586MI1_003
Prevotella
DNA
83
ATGGCAAAAGAGTATTTTCCGTTTACCGGTAAGATTCCTTTCGAGGGAAAGGACAGTAAGAA






TGTAATGGCGTTCCACTACTACGAGCCCGAGCGCGTGGTAATGGGCAAGAAGATGAAGGAGT






GGCTGAAGTTTGCCATGGCCTGGTGGCACACGCTGGGTGGAGCCAGTGCCGACCAGTTTGGC






GGACAGACCCGCAGCTACGAGTGGGACAAGGCTGAAGACGCCGTGCAGCGTGCCAAGGACAA






GATGGATGCCGGCTTCGAGATCATGGACAAGCTGGGCATCGAGTATTTCTGCTTCCATGATG






TCGATCTCGTTGACGAGGGTGCCACTGTCGAGGAGTATGAGGCTCGCATGCAGGCCATCACC






GACTATGCGCAGGAGAAGATGAAGCAGTATCCTGCCATCAAGCTGCTGTGGGGTACGGCCAA






TGTCTTTGGCAACAAGCGTTATGCCAACGGTGCCTCTACCAATCCCGACTTCGATGTGGTGG






CCCGCGCCATCGTGCAGATTAAGAATGCCATTGATGCCACCATCAAGCTGGGCGGCAGCAAC






TATGTGTTCTGGGGCGGTCGCGAGGGCTACATGTCGCTGCTCAACACCGACCAGAAGCGTGA






GAAGGAACACATGGCCCGGATGCTGACCATGGCCCGCGACTATGCCCGCTCGAAGGGCTTCA






AGGGCAACTTCCTGATTGAGCCCAAGCCCATGGAGCCGTCGAAGCATCAGTACGACGTGGAC






ACCGAGACGGTTATCGGATTCCTCCGCGCACATGGCCTTGACAAGGACTTCAAGGTGAACAT






CGAGGTGAACCATGCCACGCTGGCCGGTCATACCTTCGAGCACGAACTGGCTTGCGCCGTAG






ATGCCGGCATGCTGGGCAGCATTGATGCCAACCGCGGCGACGCACAGAACGGATGGGACACC






GACCAGTTCCCCATCGACAACTATGAGTTGACACAGGCCATGATGGAGATTATCCGCAATGG






CGGTCTGGGTCTTGGCGGTACCAATTTCGATGCCAAGATTCGCCGTAACTCCACCGACCTGG






AAGACCTCTTCATCGCCCACATCAGTGGCATGGACGCCATGGCTCGTGCGCTCCTTAATGCT






GCCGACATTCTGGAGAACAGCGAACTGCCCGCCATGAAGAAAGCGCGCTACGCCTCGTTCGA






CAGTGGCATGGGCAAGGACTTCGAGGACGGCAAACTGACCCTTGAGCAGGTTTACGAATACG






GCAAAAAAGTCGGCGAACCTAAGCAGACCTCCGGCAAGCAGGAGAAGTACGAGACCATCGTG






GCTCTCTATGCCAAGTAA





5586MI1_003
Prevotella
Amino
84
MAKEYFPFTGKIPFEGKDSKNVMAFHYYEPERVVMGKKMKEWLKFAMAWWHTLGGASADQFG




Acid


GQTRSYEWDKAEDAVQRAKDKMDAGFEIMDKLGIEYFCFHDVDLVDEGATVEEYEARMQAIT








DYAQEKMKQYPAIKLLWGTANVFGNKRYANGASTNPDFDVVARAIVQIKNAIDATIKLGGSN








YVFWGGREGYMSLLNTDQKREKEHMARMLTMARDYARSKGFKGNFLIEPKPMEPSKHQYDVD








TETVIGFLRAHGLDKDEKVNIEVNHATLAGHTFEHELACAVDAGMLGSIDANRGDAQNGWDT








DQFPIDNYELTQAMMEIIRNGGLGLGGTNFDAKIRRNSTDLEDLFIAHISGMDAMARALLNA








ADILENSELPAMKKARYASFDSGMGKDFEDGKLTLEQVYEYGKKVGEPKQTSGKQEKYETIV







ALYAK





5586MI2_006
Prevotella
DNA
85
ATGGCAAAAGAGTATTTTCCGTTTACAGGTAAAATTCCTTTCGAAGGAAAGGACAGTAAGAA






CGTAATGGCTTTCCACTACTACGAGCCCGAAAAGGTCGTGATGGGAAAGAAAATGAAAGACT






GGCTGAAGTTCGCCATGGCCTGGTGGCACACACTGGGTGGCGCCAGCGCCGACCAGTTTGGC






GGCCAGACACGCAGCTATGAGTGGGACAAGGCTGCCGATGCCGTGCAGCGCGCAAAGGACAA






GATGGACGCCGGCTTCGAAATCATGGACAAGCTGGGCATCGAGTATTTCTGCTTCCACGACG






TGGACCTCGTTGAGGAGGGAGCCACCATCGAGGAGTATGAGGCCCGCATGAAGGCTATCACC






GACTATGCCCAGGAGAAGATGAAACAGTATCCCAGCATCAAGCTGCTCTGGGGCACCGCCAA






TGTGTTTGGCAACAAGCGCTACGCCAACGGCGCCAGCACCAACCCCGACTTCGACGTCGTGG






CCCGTGCCATCGTGCAGATCAAGAACGCCATCGATGCCACCATCAAGCTGGGCGGCACCAAC






TACGTGTTCTGGGGCGGACGCGAGGGCTACATGAGCCTGCTCAACACCGACCAGAAGCGCGA






GAAGGAGCACATGGCCACCATGCTCACCATGGCCCGCGACTACGCCCGCGCAAAGGGATTCA






AGGGCACCTTCCTCATCGAGCCCAAGCCCATGGAGCCGTCGAAGCACCAGTACGACGTGGAC






ACCGAGACCGTCATCGGTTTCCTGAAGGCCCACGGTCTGGACAAGGACTTCAAGGTGAACAT






CGAGGTGAACCACGCCACGCTGGCCGGCCACACCTTCGAGCATGAGCTGGCCTGCGCCGTCG






ACGCCGGTATGCTGGGCAGCATCGATGCCAACCGCGGCGACGCCCAGAACGGCTGGGACACC






GACCAGTTCCCCATCGACAACTTCGAGCTCACCCAGGCCATGATGGAAATTATCCGCAACGG






CGGCCTCGGCAACGGCGGCACCAACTTCGACGCTAAGATCCGCCGCAACTCCACCGACCTCG






AGGACCTCTTCATCGCCCACATCAGCGGCATGGACGCCATGGCCCGCGCACTGATGAACGCT






GCCGACATTATGGAGAACAGCGAGCTGCCCGCCATGAAGAAGGCACGCTACGCCAGCTTCGA






CGCCGGCATCGGCAAGGACTTTGAGGATGGCAAGCTCTCGCTGGAGCAGGTCTACGAGTATG






GCAAGAAGGTGGAAGAGCCCAAGCAGACCAGCGGCAAGCAGGAGAAGTACGAGACCATCGTC






GCCCTCTATGCCAAGTAA





5586MI2_006
Prevotella
Amino
86
MAKEYFPFTGKIPFEGKDSKNVMAFHYYEPEKVVMGKKMKDWLKFAMAWWHTLGGASADQFG




Acid


GQTRSYEWDKAADAVQRAKDKMDAGFEIMDKLGIEYFCFHDVDLVEEGATIEEYEARMKAIT








DYAQEKMKQYPSIKLLWGTANVFGNKRYANGASTNPDFDVVARAIVQIKNAIDATIKLGGTN








YVFWGGREGYMSLLNTDQKREKEHMATMLTMARDYARAKGFKGTFLIEPKPMEPSKHQYDVD








TETVIGFLKAHGLDKDFKVNIEVNHATLAGHTFEHELACAVDAGMLGSIDANRGDAQNGWDT








DQFPIDNFELTQAMMEIIRNGGLGNGGTNFDAKIRRNSTDLEDLFIAHISGMDAMARALMNA








ADIMENSELPAMKKARYASFDAGIGKDFEDGKLSLEQVYEYGKKVEEPKQTSGKQEKYETIV







ALYAK





5586MI8_003
Prevotella
DNA
87
ATGGCAAAAGAGTATTTCGCCTTTACAGGCAAGATTCCTTTCGAGGGAAAAGACAGTAAGAA






CGTGATGGCTTTCCACTACTACGAGCCGGAGCGTGTGGTGATGGGCAAGAAGATGAAGGAGT






GGCTGAAGTTCGCCATGGCCTGGTGGCACACACTGGGTGGCGCATCGGCCGACCAGTTCGGA






GGCCAGACACGCAGCTACGAGTGGGACAAGGCCGCCGACGCCGTGCAGCGCGCCAAGGACAA






GATGGACGCCGGCTTCGAGATTATGGACAAGCTGGGCATCGAGTACTTCTGCTTCCACGATG






TAGACCTCGTTGAGGAGGGTGAGACCATAGCCGAGTACGAGCGCCGCATGAAGGAAATCACC






GACTACGCACAGGAGAAGATGAAGCAGTTCCCCAACATCAAGCTGCTCTGGGGCACAGCCAA






CGTGTTCGGCAACAAGCGCTACGCCAACGGCGCATCGACCAACCCCGACTTCGACGTTGTGG






CACGCGCCATCGTGCAGATCAAGAACGCCATCGACGCCACCATCAAGCTCGGCGGCTCCAAC






TATGTGTTCTGGGGCGGACGCGAGGGCTATATGAGCCTGCTCAACACCGACCAGAAGCGCGA






GAAGGAGCACATGGCCACCATGCTCACCATGGCCCGCGACTATGCACGCGCCAAGGGATTCA






AGGGCACATTCCTCATCGAGCCGAAGCCCATGGAGCCCTCGAAGCACCAGTACGACGTAGAC






ACAGAGACCGTCATCGGCTTCCTCCGTGCACACGGGCTGGACAAGGACTTCAAGGTGAACAT






CGAGGTAAACCACGCCACACTGGCCGGCCACACCTTCGAGCACGAGCTGGCTTGCGCCGTCG






ACGCTGGCATGCTGGGCAGCATCGACGCCAACCGTGGCGACGCACAGAACGGATGGGACACC






GACCAGTTCCCCATCGACAACTTCGAGCTCACACAGGCCATGATGGAAATCATCCGCAATGG






CGGACTGGGCAATGGCGGCACCAACTTCGACGCCAAGATCCGTCGTAACAGCACCGACCTCG






AAGACCTCTTCATCGCCCACATCAGCGGCATGGACGCCATGGCACGCGCACTGCTCAACGCT






GCCGACATCCTGGAGCACAGCGAGCTGCCCAAGATGAAGAAGGAGCGCTACGCCAGCTTCGA






CGCAGGCATCGGCAAGGACTTCGAAGACGGCAAGCTCACACTCGAGCAGGTCTACGAGTACG






GCAAGAAGGTCGAAGAGCCCCGTCAGACCAGCGGCAAGCAGGAGAAGTACGAGACCATCGTC






GCCCTCTATGCCAAGTAA





5586MI8_003
Prevotella
Amino
88
MAKEYFAFTGKIPFEGKDSKNVMAFHYYEPERVVMGKKMKEWLKFAMAWWHTLGGASADQFG




Acid


GQTRSYEWDKAADAVQRAKDKMDAGFEIMDKLGIEYFCFHDVDLVEEGETIAEYERRMKEIT








DYAQEKMKQFPNIKLLWGTANVFGNKRYANGASTNPDFDVVARAIVQIKNAIDATIKLGGSN








YVFWGGREGYMSLLNTDQKREKEHMATMLTMARDYARAKGFKGTFLIEPKPMEPSKHQYDVD








TETVIGFLRAHGLDKDFKVNIEVNHATLAGHTFEHELACAVDAGMLGSIDANRGDAQNGWDT








DQFPIDNFELTQAMMEIIRNGGLGNGGTNFDAKIRRNSTDLEDLFIAHISGMDAMARALLNA








ADILEHSELPKMKKERYASFDAGIGKDFEDGKLTLEQVYEYGKKVEEPRQTSGKQEKYETIV







ALYAK





5586MI14_003
Prevotella
DNA
89
ATGGCAAAAGAGTATTTTCCGTTTACTGGTAAGATTCCTTTCGAGGGAAAGGATAGTAAGAA






TGTAATGGCTTTCCACTATTACGAGCCCGAGAAAGTCGTGATGGGAAAGAAGATGAAGGACT






GGCTGAAGTTCGCAATGGCTTGGTGGCATACACTGGGTGGTGCATCTGCAGACCAGTTCGGT






GGAGAGACCCGCAGCTACGAGTGGAGCAAGGCTGCTGATCCCGTTCAGCGCGCCAAGGACAA






GATGGACGCCGGCTTTGAGATTATGGATAAGCTGGGCATCGAGTACTTCTGTTTCCACGATA






TAGACCTCGTTCAGGAGGCAGATACCATTGCAGAATATGAGGAGCGCATGAAGGCAATTACC






GACTATGCTCTGGAGAAGATGAAGCAGTTCCCCAACATCAAGTTGCTCTGGGGTACCGCTAA






CGTATTTAGCAACAAGCGCTATATGAACGGTGCTTCTACCAATCCCGACTTCGACGTGGTGG






CCCGTGCCATCGTTCAGATCAAGAACGCTATTGATGCAACCATCAAACTCGGTGGTACCAAC






TATGTATTCTGGGGTGGTCGTGAGGGTTACATGAGCCTATTGAATACCGACCAGAAGCGTGA






AAAGGAGCACATGGCAATGATGCTCGGTATGGCTCGCGACTATGCCCGCAGCAAGGGATTCA






AGGGTACGTTCCTCATCGAGCCGAAGCCGATGGAGCCCTCTAAGCATCAGTATGATGTCGAT






ACGGAGACTGTGATTGGTTTCCTGAAGGCACACGGTCTGGACAAGGACTTCAAGGTGAACAT






CGAGGTGAACCACGCTACACTGGCTGGTCATACCTTCGAGCATGAGCTGGCTTGCGCTGTTG






ACGCAGGTATGCTGGGCTCTATCGACGCTAACCGCGGTGATGCCCAGAACGGCTGGGATACC






GACCAGTTCCCCATCGACAACTACGAGCTGACACAGGCTATGATGGAAATCATCCGCAACGG






TGGTCTGGGCAATGGTGGTACCAACTTCGACGCTAAGATCCGCCGTAACTCTACCGACCTCG






AGGATCTGTTCATCGCTCATATCAGTGGTATGGATGCTATGGCCCGTGCTTTGTTGAATGCT






GCCGACATTCTGGAGAACTCTGAACTGCCCGCTATGAAGAAGGCCCGCTACGCCAGCTTCGA






CAACGGTATCGGTAAGGACTTCGAGGATGGCAAGCTGACCTTCGAGCAGGTTTACGAATATG






GTAAGAAAGTTGAAGAGCCGAAGCAGACCTCTGGCAAGCAGGAGAAATACGAGACCATCGTT






GCTCTGTATGCTAAATAA





5586MI14_003
Prevotella
Amino
90
MAKEYFPFTGKIPFEGKDSKNVMAFHYYEPEKVVMGKKMKDWLKFAMAWWHTLGGASADQFG




Acid


GETRSYEWSKAADPVQRAKDKMDAGFEIMDKLGIEYFCFHDIDLVQEADTIAEYEERMKAIT








DYALEKMKQFPNIKLLWGTANVFSNKRYMNGASTNPDFDVVARAIVQIKNAIDATIKLGGTN








YVFWGGREGYMSLLNTDQKREKEHMAMMLGMARDYARSKGFKGTFLIEPKPMEPSKHQYDVD








TETVIGFLKAHGLDKDFKVNIEVNHATLAGHTFEHELACAVDAGMLGSIDANRGDAQNGWDT








DQFPIDNYELTQAMMEIIRNGGLGNGGTNFDAKIRRNSTDLEDLFIAHISGMDAMARALLNA








ADILENSELPAMKKARYASFDNGIGKDFEDGKLTFEQVYEYGKKVEEPKQTSGKQEKYETIV







ALYAK





5586MI26_003
Prevotella
DNA
91
ATGGCAAAAGAGTATTTTCCGTTTACCGGTAAAATTCCTTTCGAGGGAAAGGACAGTAAGAA






TGTAATGGCTTTCCACTACTACGAGCCTGAGCGCGTAGTGATGGGAAAGAAGATGAAGGATT






GGTTGCGATTTGCAATGGCTTGGTGGCACACACTGGGTGGCGCTTCTGCCGACCAGTTTGGT






GGTCAGACCCGCAGTTACGAATGGGACAAGGCTGCTGATGCTGTTCAGCGTGCTAAGGACAA






GATGGATGCCGGCTTCGAGATTATGGATAAGCTGGGAATCGAGTTCTTCTGCTGGCACGATA






TCGACCTCGTTGAAGAGGGTGAGACCATTGAAGAGTATGAGCGCCGCATGAAGGCTATCACC






GACTATGCTCTTGAGAAGATGCAGCAGTATCCCAACATCAAGAACCTCTGGGGAACAGCCAA






TGTGTTTGGCAACAAGCGTTATGCCAACGGTGCCAGCACAAACCCAGACTTTGACGTCGTTG






CTCGTGCTATCGTACAGATTAAGAATGCTATCGACGCTACTATCAAGTTGGGTGGTCAGAAT






TATGTGTTCTGGGGTGGCCGTGAGGGCTACATGAGCCTGCTCAATACTGACCAGAAGCGTGA






GAAGGAGCACATGGCTACAATGCTGACCATGGCACGCGACTATGCCCGCAGCAAGGGATTCA






AGGGTAACTTCCTCATTGAGCCCAAGCCCATGGAGCCGTCAAAGCACCAGTATGATGTTGAC






ACCGAGACCGTATGCGGTTTCCTGCGTGCCCACAACCTTGACAAGGATTTCAAGGTAAATAT






CGAGGTTAACCATGCTACTCTGGCTGGTCATACTTTCGAGCACGAACTGGCATGCGCTGTTG






ACGCTGGTATGCTTGGTTCTATCGATGCTAACCGTGGTGATGCCCAGAATGGCTGGGATACC






GACCAGTTCCCCATCAACAACTATGAACTCACTCAGGCTATGCTTGAGATCATCCGTAATGG






TGGTCTGGGTCTTGGCGGCACAAACTTCGATGCCAAGATTCGTCGTAACTCAACAGATCTTG






AGGATCTCTTCATCGCTCACATCAGTGGTATGGATGCCATGGCCCGTGCTCTGCTGAATGCT






GCTGCTATTCTGGAGGAGAGCGAGCTGCCTAAGATGAAGAAGGAGCGTTATGCTTCTTTCGA






TGCCGGTATCGGTAAGGACTTCGAGGATGGCAAGCTTACCCTTGAGCAGGCTTACGAGTATG






GTAAGAAGGTTGAGGAGCCCAAGCAGACTTCAGGCAAGCAGGAGAAGTACGAGACCATCGTT






GCTCTGTATGCAAAATAA





5586MI26_003
Prevotella
Amino
92
MAKEYFPFTGKIPFEGKDSKNVMAFHYYEPERVVMGKKMKDWLRFAMAWWHTLGGASADQFG




Acid


GQTRSYEWDKAADAVQRAKDKMDAGFEIMDKLGIEFFCWHDIDLVEEGETIEEYERRMKAIT








DYALEKMQQYPNIKNLWGTANVFGNKRYANGASTNPDFDVVARAIVQIKNAIDATIKLGGQN








YVFWGGREGYMSLLNTDQKREKEHMATMLTMARDYARSKGEKGNFLIEPKPMEPSKHQYDVD








TETVCGFLRAHNLDKDFKVNIEVNHATLAGHTFEHELACAVDAGMLGSIDANRGDAQNGWDT








DQFPINNYELTQAMLEIIRNGGLGLGGTNFDAKIRRNSTDLEDLFIAHISGMDAMARALLNA








AAILEESELPKMKKERYASFDAGIGKDFEDGKLTLEQAYEYGKKVEEPKQTSGKQEKYETIV







ALYAK





5586MI86_001
Prevotella
DNA
93
ATGAAACAGTATTTTCCCCAGATTGGAAAGATACCCTTCGAGGGTGTAGAGAGCAAGAATGT






GATGGCTTTCCACTATTATGAGCCAGAAAGAGTAGTCATGGGCAAGCCTATGAAAGAATGGC






TGCGCTTCGCTATGGCGTGGTGGCACACGCTGGGGCAGGCGAGCGGCGACCCCTTCGGCGGA






CAGACCCGCAGCTACGAGTGGGACCGTGCGGCCGACGCGCTACAGCGCGCCAAGGACAAGAT






GGATGCGGGCTTCGAGCTGATGGAGAAGCTTGGCATTGAGTACTTCTGCTTCCACGACGTGG






ACCTCGTAGAAGAGGGCGCCACGGTGGAGGAATACGAGCGGCGGATGGCTGCCATCACCGAC






TACGCGGTAGAGAAGATGCGCGAGCATCCCGAGATACACTGCCTGTGGGGCACGGCCAATGT






CTTCGGCCACAAGCGCTACATGAACGGAGCCGCCACCAACCCCGACTTCGACGTGGTGGCGC






GTGCGGTGGTGCAGATAAAGAACAGCATCGACGCCACGATCAAGCTGGGCGGCGAGAACTAT






GTGTTCTGGGGCGGACGCGAGGGATATATGAGCCTGCTCAACACCGACCAGCGCCGCGAGAA






GGAGCACCTGGCCATGATGCTTGCGAAGGCCCGCGACTATGGCCGCGCCCACGGCTTCAAGG






GCACCTTCCTGATAGAGCCCAAGCCGATGGAGCCCATGAAGCACCAGTACGACGTGGACACC






GAGACGGTGATAGGTTTCCTGCGTGCCCACGGACTGGACAAGGACTTCAAGGTGAACATCGA






GGTGAACCACGCCACGTTGGCGGGCCACACGTTCGAGCACGAGCTGGCCTGTGCCGTCGATG






CCGGCATGCTGGGCAGCATCGACGCCAACCGTGGCGACGCGCAGAACGGATGGGATACGGAC






CAGTTCCCCATAGACTGCTACGAGCTCACGCAGGCGTGGATGGAGATCATTCGTGGCGGCGG






CTTCACCACCGGCGGCACCAACTTCGACGCTAAGCTGCGCCGCAACTCGACCGACCCCGAGG






ATATCTTCATAGCTCACATCAGCGGCATGGATGCTATGGCCCGCGCCCTGCTCTGCGCCGCC






GACATCTTGGAGCACAGCGAGCTGCCGGAGATGAAGCGGAAGCGCTATGCCTCGTTCGACAG






CGGCATGGGCAAGGAGTTCGAAGAGGGCAATCTCAGCTTCGAGCAAATCTATGCCTACGGCA






AGCAGGCGGGCGAACCGGCCACGACCAGCGGCAAGCAGGAGAAATACGAAGCCATTGTTTCA






CTTTATACCCGATGA





5586MI86_001
Prevotella
Amino
94
MKQYFPQIGKIPFEGVESKNVMAFHYYEPERVVMGKPMKEWLRFAMAWWHTLGQASGDPFGG




Acid


QTRSYEWDRAADALQRAKDKMDAGFELMEKLGIEYFCFHDVDLVEEGATVEEYERRMAAITD








YAVEKMREHPEIHCLWGTANVFGHKRYMNGAATNPDFDVVARAVVQIKNSIDATIKLGGENY








VFWGGREGYMSLLNTDQRREKEHLAMMLAKARDYGRAHGFKGTFLIEPKPMEPMKHQYDVDT








ETVIGFLRAHGLDKDFKVNIEVNHATLAGHTFEHELACAVDAGMLGSIDANRGDAQNGWDTD








QFPIDCYELTQAWMEIIRGGGFTTGGTNFDAKLRRNSTDPEDIFIAHISGMDAMARALLCAA








DILEHSELPEMKRKRYASFDSGMGKEFEEGNLSFEQIYAYGKQAGEPATTSGKQEKYEAIVS







LYTR





5586MI108_002
Prevotella
DNA
95
ATGGCAAAAGAGTATTTTCCGTTTATCGGTAAGGTTCCTTTCGAAGGAACAGAGAGCAAGAA






CGTGATGGCATTCCACTACTATGAGCCCGAAAAGGTGGTCATGGGTAAGAAAATGAAGGACT






GGCTGAAGTTCGCTATGGCTTGGTGGCACACACTGGGTGGTGCCAGCGCCGACCAGTTTGGT






GGTCAGACTCGCAGCTACGAGTGGGACAAGGCTGCTGATGCCGTTCAGCGCGCCAAGGACAA






GATGGATGCTGGCTTCGAGATCATGGATAAGCTCGGCATTGAGTACTTCTGCTTCCATGACG






TAGACCTCGTTGAGGAGGGTGAAACCGTCGCTGAGTATGAGGCTCGCATGAAGGTCATCACC






GACTATGCCCTGGAGAAGATGCAGCAGTTCCCCAACATCAAACTGCTCTGGGGTACTGCTAA






CGTGTTCGGCCACAAGCGCTATGCCAACGGTGCCAGCACCAATCCCGACTTCGACGTCGTGG






CCCGTGCTATCGTTCAGATCAAGAATGCCATCGATGCTACCATTAAGCTCGGCGGTACGAAC






TATGTGTTCTGGGGTGGTCGTGAGGGCTACATGAGCCTTCTCAACACCGACCAGAAGCGCGA






GAAGGAGCACATGGCAACGATGCTGACCATGGCTCGCGACTATGCCCGCGCCAAGGGATTCA






AGGGCACGTTCCTCATCGAGCCGAAGCCCATGGAGCCCTCGAAGCATCAGTACGACGTCGAC






ACCGAGACCGTCATCGGCTTCCTCCGTGCCCACGGTCTGGATAAGGACTTCAAGGTGAACAT






CGAGGTGAACCACGCCACGCTGGCCGGTCATACCTTCGAGCACGAACTGGCTTGCGCCGTTG






ATGCCGGCATGCTCGGCTCTATCGATGCCAACCGCGGCGACGCTCAGAACGGCTGGGACACC






GACCAGTTCCCCATCGACAACTACGAGCTCACTCAGGCCATGATGGAAATCATCCGTAATGG






CGGTCTGGGCAACGGCGGCACGAACTTCGATGCCAAGATCCGTCGTAACAGCACCGACCTCG






AGGACCTCTTCATCGCTCACATCAGCGGCATGGATGCCATGGCACGCGCTCTGATGAACGCT






GCTGCCATCCTCGAAGAGAGCGAGCTGCCCGCCATGAAGAAGGCCCGCTATGCTTCGTTCGA






CGAGGGTATCGGCAAGGACTTCGAGGACGGCAAGTTGTCACTTGAGCAGGTCTACGAATATG






GTAAGAAGGTTGAGGAGCCCAAGCAGACCTCGGGCAAGCAGGAGAAGTACGAGACCATCGTG






GCCCTCTATGCCAAGTAA





5586MI108_002
Prevotella
Amino
96
MAKEYFPFIGKVPFEGTESKNVMAFHYYEPEKVVMGKKMKDWLKFAMAWWHTLGGASADQFG




Acid


GQTRSYEWDKAADAVQRAKDKMDAGFEIMDKLGIEYFCFHDVDLVEEGETVAEYEARMKVIT








DYALEKMQQFPNIKLLWGTANVFGHKRYANGASTNPDFDVVARAIVQIKNAIDATIKLGGTN








YVFWGGREGYMSLLNTDQKREKEHMATMLTMARDYARAKGFKGTFLIEPKPMEPSKHQYDVD








TETVIGFLRAHGLDKDFKVNIEVNHATLAGHTFEHELACAVDAGMLGSIDANRGDAQNGWDT








DQFPIDNYELTQAMMEIIRNGGLGNGGTNFDAKIRRNSTDLEDLFIAHISGMDAMARALMNA








AAILEESELPAMKKARYASFDEGIGKDFEDGKLSLEQVYEYGKKVEEPKQTSGKQEKYETIV







ALYAK





5586MI182_004
Prevotella
DNA
97
ATGGCAAAAGAGTATTTTCCGTTTGTTGGTAAGATTCCTTTCGAGGGAAAGGATAGTAAGAA






TGTAATGGCTTTCCACTATTACGAACCAGAGAAGGTCGTGATGGGAAAGAAGATGAAGGACT






GGCTGAAGTTCGCCATGGCATGGTGGCACACACTGGGACAGGCCAGTGCCGACCCGTTTGGA






GGTCAGACCCGCAGCTACGAGTGGGACAAGGCTGACGATGCTGTGCAGCGCGCAAAGGACAA






GATGGATGCCGGATTTGAGATCATGGACAAGCTGGGCATCGAGTACTTCTGCTTCCACGATG






TAGACCTCGTTGAGGAGGGAGCAACTGTTGAGGAGTACGAGGCTCGCATGAAGGCCATCACC






GACTATGCATTGGAGAAGATGAAAGAGTATCCCAACATCAAGAACCTCTGGGGTACAGCCAA






TGTATTCAGCAACAAGCGCTATATGAACGGTGCCAGCACCAACCCCGACTTCGACGTTGTTG






CACGTGCCATCGTACAGATAAAGAACGCCATTGACGCTACCATCAAGCTCGGCGGTCAGAAC






TACGTGTTCTGGGGCGGACGTGAGGGATACATGAGCCTGCTCAACACCGACCAGAAGCGCGA






GAAGGAGCACATGGCAACCATGCTGACCATGGCTCGCGACTACGCTCGCAAGAACGGTTTCA






AGGGCACATTCCTCATCGAGCCTAAGCCCATGGAACCCTCAAAGCACCAGTACGACGTAGAC






ACAGAGACCGTATGCGGTTTCCTCCGCGCCCATGGTCTTGACAAGGATTTCAAGGTGAACAT






TGAGGTGAACCACGCTACCCTCGCCGGCCACACCTTTGAGCATGAACTGGCTTGCGCCGTCG






ACAACGGCATGCTCGGCAGCATCGATGCCAACCGCGGCGACGTTCAGAACGGCTGGGACACC






GACCAGTTCCCCATCGACAACTACGAGCTGACTCAGGCCATGCTCGAAATCATCCGCAACGG






TGGTCTGGGCAACGGCGGTACCAACTTCGACGCCAAGATCCGTCGTAACTCTACCGACCTCG






AGGATCTGTTCATCGCCCACATCAGCGGTATGGACGCCATGGCACGTGCACTGCTCAATGCA






GCAGCCATACTGGAGGAGAGCGAGCTGCCTGCCATGAAGAAGGAGCGTTACGCCAGCTTCGA






CAGCGGCATCGGCAAGGACTTCGAGGACGGCAAGCTCACACTTGAGCAGGCCTATGAGTATG






GTAAGAAGGTTGAGGAGCCAAAGCAGACCTCTGGCAAGCAGGAGAAGTATGAGACTATAGTA






GCCCTCTACGCTAAGTAG





5586MI182_004
Prevotella
Amino
98
MAKEYFPFVGKIPFEGKDSKNVMAFHYYEPEKVVMGKKMKDWLKFAMAWWHTLGQASADPFG




Acid


GQTRSYEWDKADDAVQRAKDKMDAGFEIMDKLGIEYFCFHDVDLVEEGATVEEYEARMKAIT








DYALEKMKEYPNIKNLWGTANVFSNKRYMNGASTNPDFDVVARAIVQIKNAIDATIKLGGQN








YVFWGGREGYMSLLNTDQKREKEHMATMLTMARDYARKNGFKGTFLIEPKPMEPSKHQYDVD








TETVCGFLRAHGLDKDFKVNIEVNHATLAGHTFEHELACAVDNGMLGSIDANRGDVQNGWDT








DQFPIDNYELTQAMLEIIRNGGLGNGGTNFDAKIRRNSTDLEDLFIAHISGMDAMARALLNA








AAILEESELPAMKKERYASFDSGIGKDFEDGKLTLEQAYEYGKKVEEPKQTSGKQEKYETIV







ALYAK





5586MI193_004
Prevotella
DNA
99
ATGACTAAAGAGTATTTCCCTACCATTGGCAAGATTCCCTTTGAGGGACCTGAAAGCAAGAA






CCCGCTTGCATTCCATTACTATGAGCCCGACCGCCTGGTCATGGGCAAGAAGATGAAAGACT






GGCTGCGTTTCGCCATGGCCTGGTGGCACACCCTGGGCCAGGCCTCCGGCGACCAGTTCGGC






GGCCAGACCCGCCACTATGCCTGGGATGATCCGGATTGCCCGTATGCACGTGCCAAAGCCAA






GGCCGACGCCGGTTTCGAAATCATGCAGAAACTGGGCATTGAATTCTTCTGCTTCCACGACA






TCGACCTGGTCGAGGATGCCGATGAAATCGCCGAGTACGAGGCCCGGATGAAGGACATCACC






GACTATCTGCTCGTCAAGATGAAAGAGACCGGCATCAAGAACCTTTGGGGAACGGCCAACGT






ATTTGGCCACAAGCGCTACATGAACGGCGCCGCCACCAACCCCGATTTCGACGTGCTGGCCC






GTGCCGCCGTCCAGATCAAGAACGCCATCGACGCCACCATCAAGTTGGGCGGTCAGAACTAT






GTGTTCTGGGGCGGCCGTGAAGGCTACCAGACCCTGCTCAATACCCAGATGCAGCGCGAGAA






GGAACACATGGGCCGTATGTTGGCACTGGCCCGCGACTATGGCCGTGCACACGGTTTCAAGG






GCACGTTCCTCATCGAGCCCAAACCGATGGAGCCGACCAAGCACCAGTACGATCAGGATACG






GAAACCGTCATCGGCTTCCTGCGCCGCCATGGCCTCGACAAGGACTTCAAGGTCAACATCGA






GGTGAACCATGCTACCCTGGCGGGCCACACCTTCGAGCACGAGCTGGCTTGCGCCGTCGACC






ACGGCATGCTGGGCAGCATCGACGCCAACCGGGGTGATGCCCAGAACGGCTGGGACACCGAC






CAGTTCCCGATCGATAACTATGAGCTGACGCTGGCCATGCTCCAGATCATCCGCAACGGCGG






CCTGGCACCCGGCGGCTCGAACTTCGATGCGAAGCTGCGTCGCAACTCCACCGATCCGGAAG






ATATCTTCATCGCGCACATCAGCGCCATGGATGCCATGGCCCGCGCCCTGGTCAATGCTGTC






GCCATTCTCGAGGAATCGCCCATCCCGGCCATGGTCAGGGAACGTTACGCCTCGTTCGACAG






CGGAAAGGGCAGGGAATATGAGGAAGGCAGGCTGTCTCTCGAAGACATCGTGGCCTATGCCA






AAGCCCACGGCGAACCGAAACAGATTTCCGGCAAGCAGGAACTCTACGAAACCATCGTGGCT






CTCTATTGCAAGTAG





5586MI193_004
Prevotella
Amino
100
MTKEYFPTIGKIPFEGPESKNPLAFHYYEPDRLVMGKKMKDWLRFAMAWWHTLGQASGDQFG




Acid


GQTRHYAWDDPDCPYARAKAKADAGFEIMQKLGIEFFCFHDIDLVEDADEIAEYEARMKDIT








DYLLVKMKETGIKNLWGTANVFGHKRYMNGAATNPDFDVLARAAVQIKNAIDATIKLGGQNY








VFWGGREGYQTLLNTQMQREKEHMGRMLALARDYGRAHGFKGTFLIEPKPMEPTKHQYDQDT








ETVIGFLRRHGLDKDFKVNIEVNHATLAGHTFEHELACAVDHGMLGSIDANRGDAQNGWDTD








QFPIDNYELTLAMLQIIRNGGLAPGGSNFDAKLRRNSTDPEDIFIAHISAMDAMARALVNAV








AILEESPIPAMVRERYASFDSGKGREYEEGRLSLEDIVAYAKAHGEPKQISGKQELYETIVA







LYCK





5586MI195_003
Prevotella
DNA
101
ATGGCAAAAGAGTATTTCCCGCAGATCGGAAAGATCGGCTTTGAGGGTCCTGCAAGCAAGAA






CCCGCTGGCATTCCATTATTATGACGCCGAGCGCGTGGTGATGGGTAAACCCATGAAAGACT






GGTTTAAATTCGCCCTCGCGTGGTGGCACAGCCTCGGCCAGGCCTCCGGCGACCCGTTCGGC






GGCCAGACCCGCTCCTACGAGTGGGACAAGGGCGAATGCCCCTACTGCCGCGCCCGCGCCAA






GGCGGACGCCGGCTTCGAGATCATGCAAAAGCTCGGCATCGGCTATTTCTGCTTCCACGACG






TCGACCTCATCGAAGACACGGACGACATCGCCGAATATGAGGCCCGCCTCAAGGACATCACG






GACTACCTGCTCGAAAGGATGCAGGAAACCGGCATCAAGAACCTCTGGGGCACGGCCAATGT






CTTCGGTCACAAGCGCTACATGAACGGCGCCGGCACCAATCCGCAGTTCGACATCGTCGCCC






GCGCTGCCGTCCAGATCAAGAACGCCCTCGACGCCACCATCAAGCTCGGTGGCTCGAACTAC






GTCTTCTGGGGCGGCCGCGAAGGTTATTACACGCTGCTCAACACCCAGATGCAGCGCGAGAA






AGACCACCTCGCCAAGCTCCTCACCGCCGCCCGCGACTATGCCCGCGCCAAGGGCTTCCAGG






GCACCTTCCTGATCGAGCCCAAGCCGATGGAGCCGACCAAGCACCAGTACGATGTCGACACG






GAGACTGTAATCGGATTCCTCCGCGCCAACGGACTGGACAAGGACTTCAAGGTCAACATCGA






GGTCAACCACGCCACCCTCGCCGGCCATACCTTCGAGCATGAGCTGACCGTCGCCCGCGAGA






ACGGATTCCTCGGCAGCATCGACGCCAACCGCGGTGACGCCCAGAACGGCTGGGACACCGAC






CAGTTCCCCGTGGACGCCTACGACCTCACCCAGGCCATGATGCAGGTGCTCCTGAACGGCGG






TTTCGGCAACGGCGGCACCAATTTCGACGCCAAGCTCCGTCGCAGCTCCACCGATCCCGAGG






ACATCTTCATCGCCCACATCAGCGCGATGGACGCCATGGCCCACGCCCTGCTGAACGCCGCG






GCCATTCTCGAGGAGAGCCCGCTGCCCGCGATGGTCAAGGAGCGTTACGCCTCCTTCGACAG






CGGTCTCGGCAAGCAGTTCGAGGAGGGAAAGGCCACGCTGGAGGACCTCTACGACTACGCCA






AGGCCCATGGCGAGCCCGTCGCCGCCTCCGGCAAGCAGGAACTGTGTGAAACTTACCTGAAT






CTGTATGCAAAGTAA





5586MI195_003
Prevotella
Amino
102
MAKEYFPQIGKIGFEGPASKNPLAFHYYDAERVVMGKPMKDWFKFALAWWHSLGQASGDPFG




Acid


GQTRSYEWDKGECPYCRARAKADAGFEIMQKLGIGYFCFHDVDLIEDTDDIAEYEARLKDIT








DYLLERMQETGIKNLWGTANVFGHKRYMNGAGTNPQFDIVARAAVQIKNALDATIKLGGSNY








VFWGGREGYYTLLNTQMQREKDHLAKLLTAARDYARAKGFQGTFLIEPKPMEPTKHQYDVDT








ETVIGFLRANGLDKDFKVNIEVNHATLAGHTFEHELTVARENGFLGSIDANRGDAQNGWDTD








QFPVDAYDLTQAMMQVLLNGGEGNGGTNEDAKLRRSSTDPEDIFIAHISAMDAMAHALLNAA








AILEESPLPAMVKERYASFDSGLGKQFEEGKATLEDLYDYAKAHGEPVAASGKQELCETYLN







LYAK





5586MI196_003
Prevotella
DNA
103
ATGACAAAAGAGTATTTCCCTACCATCGGCAAGATCCCCTTTGAGGGACCCGAGAGCAAAAA






CCCCCTCGCTTTTCATTACTATGAGCCCGACCGCCTGGTCATGGGCAAGAAGATGAAAGACT






GGCTGCGTTTCGCCATGGCCTGGTGGCACACCCTGGGCCAGGCCTCCGGCGACCAGTTTGGC






GGCCAGACCCGCCACTATGCCTGGGATGATCCGGATTGCCCGTATGCACGTGCCAAAGCCAA






GGCCGACGCCGGTTTCGAAATCATGCAGAAACTGGGCATTGAATTCTTCTGCTTCCACGACA






TCGACCTGATCGAGGATACCGATGACATCGTCGAGTATGAGGCCCGGATGAAGGACATCACC






GACTATCTGCTGGTCAAGATGAAAGAGACCGGCATCAAGAATCTCTGGGGAACGGCCAACGT






ATTCGGGCACAAGCGCTATATGAACGGCGCTGCCACCAACCCCGATTTCGACGTGCTGGCCC






GTGCCGCCGTCCAGATCAAGAACGCCATCGACGCCACCATCAAGCTGGGCGGCCAGAATTAT






GTGTTCTGGGGCGGGCGTGAAGGCTACCAGAGCCTGCTCAATACCCAGATGCAGCGCGAAAA






GGAACACATGGGCCGTATGTTGGCACTAGCCCGCGACTATGGCCGTGCACACGGTTTCAAGG






GCACGTTCCTCATCGAGCCCAAACCGATGGAGCCGACCAAGCACCAGTACGATCAGGATACG






GAGACCGTCATCGGTTTTCTGCGCCGCCATGGCCTCGACAAGGACTTCAAGGTCAACATCGA






GGTGAACCATGCTACCCTGGCGGGCCACACCTTCGAGCACGAGCTGGCCTGCGCCGTCGACC






ACGGCATGCTGGGCAGTATTGACGCCAACCGCGGTGACGCCCAGAACGGCTGGGACACCGAC






CAGTTCCCGATCGATAACTATGAGCTGACGCTGGCCATGCTCCAGATCATCCGCAACGGCGG






CCTGGCACCCGGCGGCTCGAACTTCGATGCGAAGCTGCGTCGCAACTCCACCGATCCGGAAG






ATATCTTCATCGCGCACATCAGCGCCATGGATGCCATGGCCCGCGCCCTGGTCAACGCTGTC






GCCATTCTTGAGGAATCGCCCATTCCGGACATGGTCAAGGAGCGCTACGCTTCGTTCGACAG






CGGAAAAGGCAGGGAGTACGAAGAGGGGAAACTTTCCTTCGAGGACCTCGTGGCCTATGCCA






AAGCCCACGGCGAACCGAAACAGATTTCCGGCAAGCAGGAACTCTACGAAACCATCGTGGCT






CTCTATTGCAAGTAG





5586MI196_003
Prevotella
Amino
104
MTKEYFPTIGKIPFEGPESKNPLAFHYYEPDRLVMGKKMKDWLRFAMAWWHTLGQASGDQFG




Acid


GQTRHYAWDDPDCPYARAKAKADAGFEIMQKLGIEFFCFHDIDLIEDTDDIVEYEARMKDIT








DYLLVKMKETGIKNLWGTANVFGHKRYMNGAATNPDFDVLARAAVQIKNAIDATIKLGGQNY








VFWGGREGYQSLLNTQMQREKEHMGRMLALARDYGRAHGFKGTFLIEPKPMEPTKHQYDQDT








ETVIGFLRRHGLDKDFKVNIEVNHATLAGHTFEHELACAVDHGMLGSIDANRGDAQNGWDTD








QFPIDNYELTLAMLQIIRNGGLAPGGSNFDAKLRRNSTDPEDIFIAHISAMDAMARALVNAV








AILEESPIPDMVKERYASFDSGKGREYEEGKLSFEDLVAYAKAHGEPKQISGKQELYETIVA







LYCK





5586MI197_003
Prevotella
DNA
105
ATGACAAAAGAGTATTTCCCTACCATCGGCAAGATCCCCTTTGAGGGACCCGAGAGCAAAAA






CCCCCTCGCTTTTCATTACTATGAGCCCGACCGCCTGGTCATGGGCAAGAAGATGAAAGACT






GGCTGCGTTTCGCCATGGCCTGGTGGCACACCCTGGGCCAGGCCTCCGGCGACCAGTTTGGC






GGCCAGACCCGCCACTATGCCTGGGATGATCCGGATTGCCCGTATGCACGTGCCAAAGCCAA






GGCCGACGCCGGTTTCGAAATCATGCAGAAACTGGGCATTGAATTCTTCTGCTTCCACGACA






TCGACCTGATCGAGGATACCGATGACATCGTCGAGTATGAGGCCCGGATGAAGGACATCACC






GACTATCTGCTGGTCAAGATGAAAGAGACCGGCATCAAGAATCTCTGGGGAACGGCCAACGT






ATTCGGGCACAAGCGCTATATGAACGGCGCTGCCACCAACCCCGATTTCGACGTGCTGGCCC






GTGCCGCCGCCCAGATCAAGAACGCCATCGACGCCACCATCAAGCTGGGCGGCCAGAATTAT






GTGTTCTGGGGCGGGCGTGAAGGCTACCAGAGCCTGCTCAATACCCAGATGCAGCGCGAAAA






GGAACACATGGGCCGTATGTTGGCACTAGCCCGCGACTATGGCCGTGCACACGGTTTCAAGG






GCACGCTCCTCATCGAGCCCAAACCGATGGAGCCGACCAAGCACCAGTACGATCAGGATACG






GAGACCGTCATCGGTTTTCTGCGCCGCCATGGCCTCGACAAGGACTTCAAGGTCAACATCGA






GGTGAACCATGCTACCCTGGCGGGCCACACCTTCGAGCACGAGCTGGCCTGCGCCGTCGACC






ACGGCATGCTGGGCAGTATTGACGCCAACCGCGGTGACGCCCAGGACGGCTGGGACACCGAC






CAGTTCCCGATCGATAACTATGAGCTGACGCTGGCCATGCTCCAGATCATCCGCAACGGCGG






CCTGGCACCCGGCGGCTCGAACTTCGATGCGAAGCTGCGTCGCAACTCCACCGATCCGGAAG






ATATCTTCATCGCGCACATCAGCGCCATGGATGCCATGGCCCGCGCCCTGGTCAACGCTGTC






GCCATTCTTGAGGAATCGCCCATTCCGGACATGGTCAAGGAGCGCTACGCTTCGTTCGACAG






CGGAAAAGGCAGGGAGTACGAAGAGGGGAAACTTTCCTTCGAGGACCTCGTGGCCTATGCCA






AAGCCCACGGCGAACCGAAACAGATTTCCGGCAAGCAGGAACTCTACGAAACCATCGTGGCT






CTCTATTGCAAGTAG





5586MI197_003
Prevotella
Amino
106
MTKEYFPTIGKIPFEGPESKNPLAFHYYEPDRLVMGKKMKDWLRFAMAWWHTLGQASGDQFG




Acid


GQTRHYAWDDPDCPYARAKAKADAGFEIMQKLGIEFFCFHDIDLIEDTDDIVEYEARMKDIT








DYLLVKMKETGIKNLWGTANVFGHKRYMNGAATNPDFDVLARAAAQIKNAIDATIKLGGQNY








VFWGGREGYQSLLNTQMQREKEHMGRMLALARDYGRAHGFKGTLLIEPKPMEPTKHQYDQDT








ETVIGFLRRHGLDKDFKVNIEVNHATLAGHTFEHELACAVDHGMLGSIDANRGDAQDGWDTD








QFPIDNYELTLAMLQIIRNGGLAPGGSNFDAKLRRNSTDPEDIFIAHISAMDAMARALVNAV








AILEESPIPDMVKERYASFDSGKGREYEEGKLSFEDLVAYAKAHGEPKQISGKQELYETIVA







LYCK





5586MI199_003
Prevotella
DNA
107
ATGACAAAAGAGTATTTCCCTACCATCGGCAAGATCCCCTTTGAGGGACCCGAGAGCAAAAA






CCCCCTCGCTTTTCATTACTATGAGCCCGACCGCCTGGTCATGGGCAAGAAGATGAAAGACT






GGCTGCGTTTCGCCATGGCCTGGTGGCACACCCTGGGCCAGGCCTCCGGCGACCAGTTTGGC






GGCCAGACCCGCCACTATGCCTGGGATGATCCGGATTGCCCGTATGCACGTGCCAAAGCCAA






GGCCGACGCCGGTTTCGAAATCATGCAGAAACTGGGCATTGAATTCTTCTGCTTCCACGACA






TCGACCTGATCGAGGATACCGATGACATCGTCGAGTATGAGGCCCGGATGAAGGACATCACC






GACTATCTGCTGGTCAAGATGAAAGAGACCGGCATCAAGAATCTCTGGGGAACGGCCAACGT






ATTCGGGCACAAGCGCTATATGAACGGCGCTGCCACCAACCCCGATTTCGACGTGCTGGCCC






GTGCCGCCGTCCAGATCAAGAACGCCATCGACGCCACCATCAAGCTGGGCGGCCAGAATTAT






GTGTTCTGGGGCGGGCGTGAAGGCTACCAGAGCCTGCTCAATACCCAGATGCAGCGCGAAAA






GGAACACATGGGCCGTATGTTGGCACTAGCCCGCGACTATGGCCGTGCACACGGTTTCAAGG






GCACGTTCCTCATCGAGCCCAAACCGATGGAGCCGACCAAGCACCAGTACGATCAGGATACG






GAGACCGTCATCGGTTTTCTGCGCCGCCATGGCCTCGACAAGGACTTCAAGGTCAACATCGA






GGTGAACCATGCTACCCTGGCGGGCCACACCTTCGAGCACGAGCTGGCCTGCGCCGTCGACC






ACGGCATGCTGGGCAGTATTGACGCCAACCGCGGTGACGCCCAGAACGGCTGGGACACCGAC






CAGTTCCCGATCGATAACTATGAGCTGACGCTGGCCATGCTCCAGATCATCCGCAACGGCGG






CCTGGCACCCGGCGGCTCGAACTTCGATGCGAAGCTGCGTCGCAACTCCACCGATCCGGAAG






ATGTCTTCATCGCGCACATCAGCGCCATGGATGCCATGGCCCGCGCCCTGGTCAACGCTGTC






GCCATTCTTGAGGAATCGCCCATTCCGGACATGGTCAAGGAGCGCTACGCTTCGTTCGACAG






CGGAAAAGGCAGGGAGTACGAAGAGGGGAAACTTTCCTTCGAGGACCTCGTGGCCTATGCCA






AAGCCCACGGCGAACCGAAACAGATTTCCGGCAAGCAGGAACTCTACGAAACCATCGTGGCT






CTCTATTGCAAGTAG





5586MI199_003
Prevotella
Amino
108
MTKEYFPTIGKIPFEGPESKNPLAFHYYEPDRLVMGKKMKDWLRFAMAWWHTLGQASGDQFG




Acid


GQTRHYAWDDPDCPYARAKAKADAGFEIMQKLGIEFFCFHDIDLIEDTDDIVEYEARMKDIT








DYLLVKMKETGIKNLWGTANVFGHKRYMNGAATNPDFDVLARAAVQIKNAIDATIKLGGQNY








VFWGGREGYQSLLNTQMQREKEHMGRMLALARDYGRAHGFKGTFLIEPKPMEPTKHQYDQDT








ETVIGFLRRHGLDKDFKVNIEVNHATLAGHTFEHELACAVDHGMLGSIDANRGDAQNGWDTD








QFPIDNYELTLAMLQIIRNGGLAPGGSNFDAKLRRNSTDPEDVFIAHISAMDAMARALVNAV








AILEESPIPDMVKERYASFDSGKGREYEEGKLSFEDLVAYAKAHGEPKQISGKQELYETIVA







LYCK





5586MI200_003
Prevotella
DNA
109
ATGGCAAAAGAGTATTTCCCGACAATCGGAAAGATCCCCTTCGAGGGCGTTGAGAGCAAGAA






TCCCCTTGCTTTCCATTATTATGACGCCGAGCGCGTGGTCATGGGCAAGCCCATGAAGGACT






GGTTCAAGTTCGCGATGGCCTGGTGGCACACCCTGGGCCAGGCTTCCGCGGACCCGTTCGGC






GGCCAGACCCGCTCCTACGAGTGGGACAAGGGCGAGTGCCCCTACTGCCGCGCCCGCGCCAA






GGCTGACGCCGGCTTCGAGATCATGCAGAAGCTCGGAATCGGCTACTATTGCTTCCACGACA






TCGACCTGGTGGAGGACACCGAGGACATCGCCGAATACGAGGCCCGCATGAAGGACATCACC






GACTACCTCGTCGAGAAGCAGAAGGAGACCGGCATCAAGAACCTCTGGGGCACCGCGAACGT






GTTCGGCAACAAGCGCTACATGAACGGCGCCGCCACGAACCCGCAGTTCGACATCGTCGCCC






GCGCGGCCCTGCAGATCAAGAACGCGATCGATGCCACCATCAAGCTCGGCGGCACCGGCTAC






GTGTTCTGGGGCGGCCGGGAAGGCTACTACACCCTGCTGAACACCCAGATGCAGCGCGAGAA






GGACCACCTCGCCAAGATGCTCACCGCCGCCCGCGACTACGCCCGCGCCAACGGCTTCAAGG






GCACCTTCCTCATCGAGCCCAAGCCGATGGAGCCCACCAAGCACCAATACGACGTGGACACG






GAGACCGTGATCGGCTTCCTCCGCGCCAATGGCCTGGACAAGGACTTCAAGGTGAACATCGA






GGTGAACCACGCCACCCTCGCCGGCCACACCTTCGAGCACGAGCTCACCGTGGCCGTTGACA






ACGGCTTCCTCGGCAGCATCGACGCCAACCGCGGCGACGCCCAGAACGGCTGGGATACCGAC






CAGTTCCCGGTGGATCCGTACGATCTCACCCAGGCGATGATCCAGATCATCCGCAACGGCGG






CTTCAAGGACGGCGGCACCAACTTCGACGCCAGGCTCCGCCGCTCTTCCACCGACCCGGAGG






ACATCTTCATCGCCCACATCAGCGCGATGGACGCCATGGCCCACGCCCTGCTGAACGCCGCC






GCCGTCATCGAGGAGAGCCCGCTCTGCGAGATGGTCGCCAAGCGTTACGCTTCCTTCGACAG






CGGCCTCGGCAAAAAGTTCGAGGAAGGCAAGGCCACCCTCGAGGAACTCTACGAGTATGCCA






AGGCGAACGGTGAGGTCAAGGCCGAATCCGGCAAGCAGGAGCTCTACGAGACCCTTCTGAAC






CTCTACGCGAAATAG





5586MI200_003
Prevotella
Amino
110
MAKEYFPTIGKIPFEGVESKNPLAFHYYDAERVVMGKPMKDWFKFAMAWWHTLGQASADPFG




Acid


GQTRSYEWDKGECPYCRARAKADAGFEIMQKLGIGYYCFHDIDLVEDTEDIAEYEARMKDIT








DYLVEKQKETGIKNLWGTANVFGNKRYMNGAATNPQFDIVARAALQIKNAIDATIKLGGTGY








VFWGGREGYYTLLNTQMQREKDHLAKMLTAARDYARANGFKGTFLIEPKPMEPTKHQYDVDT








ETVIGFLRANGLDKDFKVNIEVNHATLAGHTFEHELTVAVDNGFLGSIDANRGDAQNGWDTD








QFPVDPYDLTQAMIQIIRNGGFKDGGTNFDARLRRSSTDPEDIFIAHISAMDAMAHALLNAA








AVIEESPLCEMVAKRYASFDSGLGKKFEEGKATLEELYEYAKANGEVKAESGKQELYETLLN







LYAK





5586MI203_003
Prevotella
DNA
111
ATGGCACAAGCGTATTTTCCTACCATCGGGAAAATCCCCTTCGAGGGACCCGAAAGCAAGAA






TCCCCTGGCATTCCATTATTATGAGCCCGACCGCCTGGTCCTGGGCAAGAAGATGAAGGACT






GGCTGCGTTTCGCCATGGCCTGGTGGCACACGCTGGGCCAGGCTTCCGGCGACCAGTTCGGC






GGCCAGACCCGCCACTACGCCTGGGACGAGCCCGCCACGCCCCTGGAACGGGCCAAGGCCAA






GGCGGATGCCGGTTTCGAGATCATGCAGAAACTGGGCATCGAATTCTTCTGCTTCCACGATG






TGGACCTCATCGAAGAGGGCGCCACGATCGAGGAATACGAGCAGCGGATGCAGCAGATCACG






GATTATCTGCTGGTCAAGATGAAAGAGACCGGCATCCGCAACCTCTGGGGTACGGCCAACGT






GTTCGGACACGAGCGCTACATGAACGGCGCGGCCACGAACCCCGATTTCGATGTCGTGGCCC






GCGCGGCCGTGCAGATCAAGACGGCCATCGACGCCACCATCAAGTTGGGCGGCGAGAACTAT






GTGTTCTGGGGCGGCCGGGAAGGCTATATGAGCCTGCTCAATACGCAGATGCACCGCGAGAA






GCTGCATCTGGGCAAGATGCTCGCCGCGGCCCGCGACTACGGACGCGCCCACGGCTTCAAGG






GGACCTTCCTCATCGAACCCAAGCCGATGGAACCCACCAAGCATCAGTATGACCAGGATACG






GAGACGGTCATCGGTTTCCTGCGCCGCTACGGCCTGGACGAAGACTTCAAGGTGAACATCGA






GGTCAACCACGCTACGCTGGCCGGCCATACCTTCGAACACGAACTGGCCACGGCGGTCGATG






CCGGCCTGCTGGGCAGCATCGACGCCAACCGCGGCGACGCCCAGAACGGCTGGGATACCGAC






CAGTTCCCGATCGACAACTACGAACTGACCCTGGCGATGCTGCAGGTCATCCGCAACGGCGG






TCTGGCCCCGGGCGGCTCGAATTTCGATGCCAAGCTCCGCCGGAACTCCACCGATCCGGAAG






ACATCTTCATTGCCCACATCAGCGCGATGGATGCGATGGCGCGGGCCCTGCTCAATGCGGCC






GCCCTCTGCGAGACGTCCCCGATTCCGGCGATGGTCAAGGCGCGTTACGCTTCGTTCGACAG






CGGCGCCGGCAAGGATTTCGAAGAGGGAAGGATGACGCTGGAAGACCTCGTGGCCTATGCCA






GGACCCACGGCGAGCCGAAGCGGACCTCGGGCAAGCAGGAACTCTATGAGACCCTCGTGGCG






CTTTATTGCAAATAG





5586MI203_003
Prevotella
Amino
112
MAQAYFPTIGKIPFEGPESKNPLAFHYYEPDRLVLGKKMKDWLRFAMAWWHTLGQASGDQFG




Acid


GQTRHYAWDEPATPLERAKAKADAGFEIMQKLGIEFFCFHDVDLIEEGATIEEYEQRMQQIT








DYLLVKMKETGIRNLWGTANVFGHERYMNGAATNPDFDVVARAAVQIKTAIDATIKLGGENY








VFWGGREGYMSLLNTQMHREKLHLGKMLAAARDYGRAHGFKGTFLIEPKPMEPTKHQYDQDT








ETVIGFLRRYGLDEDFKVNIEVNHATLAGHTFEHELATAVDAGLLGSIDANAGDAQNGWDTD








QFPIDNYELTLAMLQVIRKGGLAPGGSNFDAKLRRNSTDPEDIFIAHISAMDAMARALLNAA








ALCETSPIPAMVKARYASFDSGAGKDFEEGRMTLEDLVAYARTHGEPKRTSGKQELYETLVA







LYCK





5586MI205_004
Prevotella
DNA
113
ATGACCAACGAGTATTTTCCCGGAATCGGTGTGATTCCGTTTGAAGGACAGGAAAGCAAGAA






TCCCCTGGCTTTCCATTATTATGACGCCAACCGCGTAGTGATGGGCAAACCCATGAAGGAAT






GGTTCAAATTTGCCATGGCCTGGTGGCATACGCTGGGGCAGGCATCGGCCGATCCCTTCGGC






GGACAGACCCGCTCCTACGCATGGGACAAGGGCGAGTGCCCTTACTGCCGTGCCCGCCAGAA






GGCCGACGCCGGCTTTGAACTGATGCAGAAGCTGGGAATCGGCTATTTCTGCTTCCACGATG






TGAATATCATCGAGGACTGCGAGGACATTGCCGAGTATGAGGCCCGTATGAAGGACATCACG






GACTATCTGCTGGTGAAGATGAAGGAAACGGGCATCAAGAATCTGTGGGGCACGGCCAACGT






CTTCGGCCACAAGCGCTATATGAACGGCGCCGCCACCAACCCGCAATTCGACGTGGTAGCCC






GCGCTGCGGTCCAGATCAAGAACGCCCTGGACGCCACCATCAAGCTGGGCGGCAGCAATTAT






GTGTTCTGGGGCGGCCGGGAAGGCTACTACACCCTTTTGAACACGCAGATGCAGCGGGAGAA






GGACCACCTGGCCCAGATGCTCAAGGCGGCCCGCGACTATGCCCGCGGCAAGGGATTCAAGG






GCACGTTCCTCATTGAGCCCAAGCCCATGGAGCCCACCAAGCACCAGTACGACGTAGATACG






GAGACCGTGATTGGTTTCCTGCGCGCCAACGGGCTGGACAAGGACTTCAAGGTGAATATCGA






AGTGAACCACGCCACCCTGGCCGGCCATACCTTCGAGCACGAGCTCACCGTGGCCCGCGAAA






ACGGCTTCCTGGGCAGCATCGACGCCAACCGCGGAGACGCCCAGAACGGCTGGGATACAGAC






CAGTTCCCCGTGGACGCCTTTGACCTCACCCAGGCCATGATGCAGGTCCTGCTCAACGGCGG






ATTCGGCAACGGCGGCACCAACTTCGACGCCAAACTGCGCCGTTCCTCCACGGATCCCGAGG






ACATCTTCATCGCCCACATCAGCGCCATGGACGCCATGGCCCACGCCCTCCTGAACGCCGCC






GCCATCCTGGAAGAGAGCCCCATGCCGGGCATGGTGAAGGAGCGCTACGCTTCCTTCGACAA






TGGCCTTGGCAAGAAGTTCGAGGAAGGAAAGGCCACGCTGGAAGAGCTGTACGACTATGCCA






AGAAGAACGGCGAGCCTGTGGCCGCTTCCGGAAAGCAGGAACTGTACGAAACGCTGCTGAAC






CTGTACGCCAAGTAA





5586MI205_004
Prevotella
Amino
114
MTNEYFPGIGVIPFEGQESKNPLAFHYYDANRVVMGKPMKEWFKFAMAWWHTLGQASADPFG




Acid


GQTRSYAWDKGECPYCRARQKADAGFELMQKLGIGYFCFHDVNIIEDCEDIAEYEARMKDIT








DYLLVKMKETGIKNLWGTANVFGHKRYMNGAATNPQFDVVARAAVQIKNALDATIKLGGSNY








VFWGGREGYYTLLNTQMQREKDHLAQMLKAARDYARGKGFKGTFLIEPKPMEPTKHQYDVDT








ETVIGFLRANGLDKDEKVNIEVNHATLAGHTFEHELTVARENGFLGSIDANRGDAQNGWDTD








QFPVDAFDLTQAMMQVLLNGGFGNGGTNFDAKLRRSSTDPEDIFIAHISAMDAMAHALLNAA








AILEESPMPGMVKERYASFDNGLGKKFEEGKATLEELYDYAKKNGEPVAASGKQELYETLLN







LYAK





5586MI206_004
Prevotella
DNA
115
ATGGCAAAAGAGTATTTCCCGACTATCGGCAAGATTCCCTTCGAGGGCGTCGAATCCAAGAA






CCCGATGGCATTCCACTATTATGACGCGAAACGCGTCGTGATGGGCAAGCCCATGAAGGACT






GGCTCAAGTTCGCGATGGCCTGGTGGCACACCCTGGGACAGGCTTCCGGCGACCCGTTCGGC






GGCCAGACCCGTTCCTACGAGTGGGACAAGGGCGAGTGCCCCTACTGCCGCGCCAAGGCCAA






GGCCGACGCCGGTTTCGAGATCATGCAGAAACTGGGCATCGAGTACTACTGCTTCCATGACA






TCGACCTGGTGGAGGACACCGAGGACATCGCCGAGTACGAGGCCCGCATGAAGGACATCACC






GACTACCTCGTCGAGAAGCAGAAGGAGACCGGTATCAAGAACCTCTGGGGCACGGCCAACGT






GTTCGGCAACAAGCGCTACATGAACGGCGCCGCCACGAACCCGCAGTTCGACGTCGTCGCCC






GCGCCGCCGTCCAGATCAAGAACGCCATCGACGCCACCATCAAACTCGGCGGCACCTCTTAC






GTGTTCTGGGGCGGCCGTGAAGGCTACTACACCCTCCTGAACACCCAGATGCAGCGCGAGAA






GGACCACCTCGCCAAGATGCTCACCGCCGCCCGCGACTACGCCCGCGCCCACGGCTTCAAGG






GCACCTTCCTCATCGAGCCCAAGCCCATGGAGCCCACCAAGCACCAGTACGACGTGGACACG






GAGACCGTGATCGGCTTCCTCCGCGCCAACGGCCTGGACAAGGACTTCAAGGTCAATATCGA






AGTGAACCACGCCACCCTCGCCGGCCACACCTTCGAGCATGAGCTCACCGTGGCGGTCGATA






ACGGCTTCCTCGGCTCCATCGACGCCAACCGTGGCGACGCCCAGAACGGCTGGGATACCGAC






CAGTTCCCGGTGGATCCGTACGACCTCACCCAGGCCATGATGCAGATCATCCGCAACGGCGG






CTTCAAGGACGGCGGCACCAACTTCGACGCCAAACTCCGCCGCTCCTCCACCGACCCGGAGG






ACATCTTCATCGCCCACATCAGCGCGATGGACGCCATGGCCCACGCGCTCCTGAACGCCGCC






GCCGTCATCGAGGAGAGCCCGCTCTGCAAGATGGTCGAGGAGCGCTACGCTTCCTTCGACAG






CGGTCTCGGCAAGCAGTTCGAGGAAGGCAAGGCCACCCTTGAGGACCTCTACGAGTATGCCA






AGAAGAACGGCGAGCCCGTCGTCGCTTCCGGCAAGCAGGAGCTCTACGAGACCCTTCTGAAC






CTCTACGCGAAGTAG





5586MI206_004
Prevotella
Amino
116
MAKEYFPTIGKIPFEGVESKNPMAFHYYDAKRVVMGKPMKDWLKFAMAWWHTLGQASGDPFG




Acid


GQTRSYEWDKGECPYCRAKAKADAGFEIMQKLGIEYYCFHDIDLVEDTEDIAEYEARMKDIT








DYLVEKQKETGIKNLWGTANVFGNKRYMNGAATNPQFDVVARAAVQIKNAIDATIKLGGTSY








VFWGGREGYYTLLNTQMQREKDHLAKMLTAARDYARAHGEKGTFLIEPKPMEPTKHQYDVDT








ETVIGFLRANGLDKDFKVNIEVNHATLAGHTFEHELTVAVDNGFLGSIDANRGDAQNGWDTD








QFPVDPYDLTQAMMQIIRNGGFKDGGTNFDAKLRRSSTDPEDIFIAHISAMDAMAHALLNAA








AVIEESPLCKMVEERYASFDSGLGKQFEEGKATLEDLYEYAKKNGEPVVASGKQELYETLLN







LYAK





5586MI208_003
Prevotella
DNA
117
ATGTCAACTGAGTATTTCCCTACAATCGGCAAGATTCCCTTCGAGGGACCCGAGAGCAAGAA






CCCCATGGCCTTCCACTACTATGAACCCGAAAAGTTGGTGATGGGCAAGAAGATGAAGGACT






GGCTGCGTTTCGCAATGGCCTGGTGGCACACCCTTGGAGCCGCATCCGGCGACCAGTTCGGC






GGACAGACCCGCAGTTACGCCTGGGACAAGGGCGACTGCCCTTACAGCCGCGCCCGCGCCAA






GGTCGACGCCGGCTTCGAGATCATGCAGAAGCTCGGCATAGAGTTCTTCTGCTTCCATGACA






TCGACCTGGTCGAGGATACCGACGACATCGCCGAGTATGAAGCCCGGATGAAAGACATCACG






GACTATCTGCTGGAAAAGATGGAGGCTACCGGCATCAAGAACCTCTGGGGCACGGCCAATGT






CTTCGGTCACAAGCGTTATATGAACGGTGCAGCCACAAACCCCGATTTCGCAGTGGTCGCAA






GGGCGGCCGTGCAGATCAAGAACGCCATCGACGCCACCATCAAGCTGGGTGGTGAGAACTAT






GTGTTCTGGGGTGGACGCGAGGGTTATATGAGCCTGCTCAACACCCAGATGCAGAGGGAGAA






GGAACACCTTGCCAAGATGCTCACCGCCGCACGTGACTATGCACGCGCCAAAGGTTTCAAGG






GCACGTTCCTCATCGAACCCAAGCCGATGGAACCCACCAAGCACCAGTATGACCAGGATACC






GAGACCGTTATCGGATTCCTCCGCAGCCACGGCCTGGACAAGGACTTCAAGGTCAACATCGA






GGTGAACCACGCCACCCTGGCGGGCCATACCTTCGAGCACGAACTGGCCACCGCCGTCGACA






ACGGCATGCTCGGCAGCATCGACGCCAACCGCGGAGACGCCCAGAACGGCTGGGACACCGAC






CAGTTCCCGATCGACAACTTCGAGCTCACGCTTGCCATGATGCAGATAATCCGCAACGGCGG






CCTGGCACCGGGCGGTTCGAACTTCGACGCAAAGCTGCGCCGCAATTCCACCGATCCCGAGG






ACATCTTCATCGCCCACATCAGCGCGATGGACGCCATGGCCCGCGCCCTCGTCAACGCCGCC






GCCATCCTCGGCGAGTCGCCCGTTCCGGCTATGGTCAAGGACCGCTATGCTTCGTTCGACTG






CGGCAAGGGCAAGGACTTCGAAGACGGCAAACTGACTCTCGAAGACATCGTCGCCTACGCCA






GGGAGAATGGCGAGCCGAAACAGATTTCCGGCAAGCAGGAACTCTACGAAACTATCGTCGCT






CTTTACTGCAAGTAA





5586MI208_003
Prevotella
Amino
118
MSTEYFPTIGKIPFEGPESKNPMAFHYYEPEKLVMGKKMKDWLRFAMAWWHTLGAASGDQFG




Acid


GQTRSYAWDKGDCPYSRARAKVDAGFEIMQKLGIEFFCFHDIDLVEDTDDIAEYEARMKDIT








DYLLEKMEATGIKNLWGTANVFGHKRYMNGAATNPDFAVVARAAVQIKNAIDATIKLGGENY








VFWGGREGYMSLLNTQMQREKEHLAKMLTAARDYARAKGFKGTFLIEPKPMEPTKHQYDQDT








ETVIGFLRSHGLDKDFKVNIEVNHATLAGHTFEHELATAVDNGMLGSIDANRGDAQNGWDTD








QFPIDNFELTLAMMQIIRNGGLAPGGSNFDAKLRRNSTDPEDIFIAHISAMDAMARALVNAA








AILGESPVPAMVKDRYASFDCGKGKDFEDGKLTLEDIVAYARENGEPKQISGKQELYETIVA







LYCK





5586MI210_002
Prevotella
DNA
119
ATGTCATATTTTCCTACTATCGGTAACATCCCCTTTGAGGGTGTAGAGAGCAAGAATCCCCT






TGCCTTCCATTATTATGACGCTTCCCGCGTAGTTATGGGCAAGCCCATGAAGGAGTGGCTCA






AGTTTGCCATGGCCTGGTGGCACACGCTGGGTCAGGCATCGGCCGACCCTTTCGGCGGACAA






ACCCGCAGCTATGCCTGGGACAAAGGCGAGTGCCCCTACTGCCGTGCCCGTGCCAAGGCCGA






CGCCGGCTTCGAGCTCATGCAGAAACTGGGCATCGAGTATTTCTGCTCCCACGACATTGACC






TCATCGAGGACTGCGACGACATTGCAGAGTACGAGGCCCGTCTGAAGGACATTACGGACTAC






CTCCTGGAGAAGATGAAGAAGACCGGTATCAAGAACCTGTGGGGTACGGCCAATGTGTTCGG






TAACAAGCGTTACATGAACGGTGCTGCTACCAACCCTCAGTTTGACGTTGTGGCCCGCGCTG






CCGTCCAGATCAAGAACGCCATTGACGCTACCATCAAGCTGGGCGGTTCCAACTATGTGTTC






TGGGGTGGCCGTGAGGGTTACTACACGCTTCTGAACACCCAGATGCAGCGTGAGAAGAATCA






CCTGGCTGCCATGCTCAAGGCTGCCCGCGACTATGCCCGCGCCAACGGTTTCAAGGGCACCT






TCCTCATTGAGCCCAAGCCCATGGAGCCCACCAAGCACCAGTACGACGTAGACACGGAGACC






GTGATTGGATTCCTCCGCGCCAACGGTCTGGAGAAGGACTTCAAGGTGAACATTGAGGTGAA






CCACGCTACTCTTGCCGGTCACACCTTCGAGCACGAGCTCACCGTGGCCCGTGAGAACGGCT






TCCTGGGTTCCATTGACGCCAACCGCGGAGATGCCCAGAACGGCTGGGACACCGACCAGTTC






CCGGTAGATGCCTTTGACCTCACCCAGGCCATGATGCAGATTCTCCTCAACGGAGGCTCCGG






CAATGGCGGTACCAACTTTGACGCCAAGCTGCGCCGTTCCTCCACCGACCCCGAGGACATCT






TCATCGCGCACATCAGCGCCATGGATGCCATGGCTCACGCCCTGCTCAATGCAGCTGCCGTG






CTGGAGGAGAGCCCGCTTTGCAAGATGGTCAAGGAGCGTTACGCTTCCTTCGACAGCGGTCT






TGGCAAGCAGTTCGAGGAAGGAAAGGCTACGCTGGAAGATCTGTATGCCTATGCCGTCAAGA






ACGGTGAGCCCGTGGTGGCTTCCGGCAAGCAGGAACTGTACGAAACCTTCCTGAACCTCTAT






GCAAAATGGTAA





5586MI210_002
Prevotella
Amino
120
MSYFPTIGNIPFEGVESKNPLAFHYYDASRVVMGKPMKEWLKFAMAWWHTLGQASADPFGGQ




Acid


TRSYAWDKGECPYCRARAKADAGFELMQKLGIEYFCSHDIDLIEDCDDIAEYEARLKDITDY








LLEKMKKTGIKNLWGTANVFGNKRYMNGAATNPQFDVVARAAVQIKNAIDATIKLGGSNYVF








WGGREGYYTLLNTQMQREKNHLAAMLKAARDYARANGFKGTFLIEPKPMEPTKHQYDVDTET








VIGFLRANGLEKDFKVNIEVNHATLAGHTFEHELTVARENGFLGSIDANRGDAQNGWDTDQF








PVDAFDLTQAMMQILLNGGSGNGGTNFDAKLRRSSTDPEDIFIAHISAMDAMAHALLNAAAV








LEESPLCKMVKERYASFDSGLGKQFEEGKATLEDLYAYAVKNGEPVVASGKQELYETFLNLY







AKW





5586MI212_002
Prevotella
DNA
121
ATGTCAACTGAGTATTTCCCTACAATCGGCAAGATTCCCTTCGAGGGACCCGAGAGCAAGAA






CCCCATGGCCTTCCACTACTATGAACCCGAAAAGTTGGTGATGGGCAAGAAGATGAAGGACT






GGCTGCGTTTCGCAATGGCCTGGTGGCACACCCTTGGAGCCGCATCCGGCGACCAGTTCGGC






GGACAGACCCGCAGTTACGCCTGGGACAAGGGCGACTGCCCTTACAGCCGCGCCCGCGCCAA






GGTCGACGCCGGCTTCGAGATCATGCAGAAGCTCGGCATAGAGTTCTTCTGCTTCCATGACA






TCGACCTGGTCGAGGATACCGACGACATCGCCGAGTATGAAGCCCGGATGAAAGACATCACG






GACTATCTGCTGGAAAAGATGGAGGTTACCGGCATCAAGAACCTCTGGGGCACGGCCAATGT






CTTCGGTCACAAGCGTTATATGAACGATGCAGCCACAAACCCCGATTTCGCAGTGGTCGCAA






GGGCGGCCGTGCAGATCAAGAACGCCATCGACGCCACCATCAAGCTGGGTGGTGAGAACTAT






GTGTTCTGGGGTGGACGCGAGGGTTATATGAGCCTGCTCAACACCCAGATGCAGAGGGAGAA






GGAACACCTTGCCAAGATGCTCACCGCCGCACGTGACTATGCACGCGCCAAAGGTTTCAAGG






GCACGTTCCTCATCGAACCCGAGCCGATGGAACCCACCAAGCACCAGTATGACCAGGATACC






GAGACCGTTATCGGATTCCTCCGCAGCCACGGCCTGGACAAGGACTTCAAGGTCAACATCGA






GGTGAACCACGCCACCCTGGCGGGCCATACCTTCGAGCACGAACTGGCCACCGCCGTCGACA






ACGGCATGCTCGGCAGCATCGACGCCAACCGCGGAGACGCCCAGAACGGCTGGGACACCGAC






CAGTTCCCGATCGACAACTTCGAGCTCACGCTTGCCATGATGCAGATAATCCGCAACGGCGG






CCTGGCACCGGGCGGTTCGAACTTCGACGCAAAGCTGCGCCGCAATTCCACCGATCCCGAGG






ACATCATCATCGCCCACATCAGCGCGATGGACGCCATGGCCCGCGCCCTCGTCAACGCCGCC






GCCATCCTCGGCGAGTCGCCCGTTCCGGCTATGGTCAAGGACCGCTATGCTTCGTTCGACTG






CGGCAAGGGCAAGGACTTCGAAGACGGCAAACTGACTCTCGAAGACATCGTCGCCTACGCCA






GGGAGAATGGCGAGCCGAAACAGATTTCCGGCAAGCAGGAACTCTACGAAACTATCGTCGCT






CTTTACTGCAAGTAA





5586MI212_002
Prevotella
Amino
122
MSTEYFPTIGKIPFEGPESKNPMAFHYYEPEKLVMGKKMKDWLRFAMAWWHTLGAASGDQFG




Acid


GQTRSYAWDKGDCPYSRARAKVDAGFEIMQKLGIEFFCFHDIDLVEDTDDIAEYEARMKDIT








DYLLEKMEVTGIKNLWGTANVFGHKRYMNDAATNPDFAVVARAAVQIKNAIDATIKLGGENY








VFWGGREGYMSLLNTQMQREKEHLAKMLTAARDYARAKGFKGTFLIEPEPMEPTKHQYDQDT








ETVIGFLRSHGLDKDFKVNIEVNHATLAGHTFEHELATAVDNGMLGSIDANRGDAQNGWDTD








QFPIDNFELTLAMMQIIRNGGLAPGGSNFDAKLRRNSTDPEDIIIAHISAMDAMARALVNAA








AILGESPVPAMVKDRYASFDCGKGKDFEDGKLTLEDIVAYARENGEPKQISGKQELYETIVA







LYCK





5586MI213_003
Prevotella
DNA
123
ATGACCAACGAGTATTTTCCCGGAATCGGTGTGATTCCGTTTGAAGGACAGGAAAGCAAGAA






TCCCCTGGCTTTCCATTATTATGACGCCAACCGCGTAGTGATGGGCAAACCCATGAAGGAAT






GGTTCAAATTTGCCATGGCCTGGTGGCATACGCTGGGGCAGGCATCGGCCGATCCCTTCGGC






GGACAGACCCGCTCCTACGCATGGGACAAGGGCGAGTGCCCTTACTGCCGTGCCCGCCAGAA






GGCCGACGCCGGCTTTGAACTGATGCAGAAGCTGGGAATCGGCTATTTCTGCTTCCACGATG






TGGATATCATCGAGGACTGCGAGGACATTGCCGAGTATGAGGCCCGTATGAAGGACATCACG






GACTATCTGCTGGTGAAGATGAAGGAAACGGGCATCAAGAATCTGTGGGGCACGGCCAACGT






CTTCGGCCACAAGCGCTATATGAACGGCGCCGCCACCAACCCGCAATTCGACGTGGTAGCCC






GCGCTGCGGTCCAGATCAAGAACGCCCTGGACGCCACCATCAAGCTGGGCGGCAGCAATTAT






GTGTTCTGGGGCGGCCGGGAAGGCTACTACACCCTTTTGAACACGCAGATGCAGCGGGAGAA






GGACCACCTGGCCCAGATGCTCAAGGCGGCCCGCGACTATGCCCGCGGCAAGGGATTCAAGG






GCACGTTCCTCATTGAGCCCAAGCCCATGGAGCCCACCAAGCACCAGTACGACGTAGATACG






GAGACCGTGATTGGTTTCCTGCGCGCCAACGGGCTGGACAAGGACTTCAAGGTGAATATCGA






AGTGAACCACGCCACCCTGGCCGGCCATACCTTCGAGCACGAGCTCACCGTGGCCCGCGAAA






ACGGCTTCCTGGGCAGCATCGACGCCAACCGCGGAGACGCCCAGAACGGCTGGGATACAGAC






CAGTTCCCCGTGGACGCCTTTGACCTCACCCAGGCCATGATGCAGGTCCTGCTCAACGGCGG






ATTCGGCAACGGCGGCACCAACTTCGACGCCAAACTGCGCCGTTCCTCCACGGATCCCGAGG






ACATCTTCATCGCCCACATCAGCGCCATGGACGCCATGGCCCACGCCCTCCTGAACGCCGCC






GCCATCCTGGAAGAGAGCCCCATGCCGGGCATGGTGAAGGAGCGCTACGCTTCCTTCGACAA






TGGCCTTGGCAAGAAGTTCGAGGAAGGAAAGGCCACGCTGGAAGAGCTGTACGACTATGCCA






AGAAGAACGGCGAGCCTGTGGCCGCTTCCGGAAAGCAGGAACTGTACGAAACGCTGCTGAAC






CTGTACGCCAAGTAA





5586MI213_003
Prevotella
Amino
124
MTNEYFPGIGVIPFEGQESKNPLAFHYYDANRVVMGKPMKEWFKFAMAWWHTLGQASADPFG




Acid


GQTRSYAWDKGECPYCRARQKADAGFELMQKLGIGYFCFHDVDIIEDCEDIAEYEARMKDIT








DYLLVKMKETGIKNLWGTANVFGHKRYMNGAATNPQEDVVARAAVQIKNALDATIKLGGSNY








VFWGGREGYYTLLNTQMQREKDHLAQMLKAARDYARGKGFKGTFLIEPKPMEPTKHQYDVDT








ETVIGELRANGLDKDEKVNIEVNHATLAGHTFEHELTVARENGFLGSIDANRGDAQNGWDTD








QFPVDAFDLTQAMMQVLLNGGFGNGGTNFDAKLRRSSTDPEDIFIAHISAMDAMAHALLNAA








AILEESPMPGMVKERYASFDNGLGKKFEEGKATLEELYDYAKKNGEPVAASGKQELYETLLN







LYAK





5586MI215_003
Prevotella
DNA
125
ATGGCAAAAGAGTATTTCCCGCAGATCGGAAAGATCGGCTTTGAGGGTCTTGAGAGCAAGAA






CCCGATGGCATTCCATTATTATGACGCCGAGCGTGTCGTGCTCGGAAAGAAGATGAAGGACT






GGCTGAAGTTCGCGATGGCCTGGTGGCATACGCTCGGACAGGCTTCCGGCGACCCATTCGGC






GGCCAGACTCGCAGCTATGAGTGGGACAAGGGCGAGTGCCCCTACTGCCGTGCCCGCGCCAA






GGCCGACGCCGGCTTCGAGCTCATGCAGAAGCTCGGCATCGAGTACTTCTGCTTCCACGACA






TCGACCTCATCGAGGACTGCGACGACATCGACGAGTACGAGGCCCGGATGAAGGACATCACC






GACTACCTGCTGGAGAAGATGAAGGAGACCGGAATCAAGAATCTCTGGGGAACGGCCAACGT






CTTCGGTCACAAGCGCTACATGAACGGCGCCGCTACCAATCCGCAGTTTGAAATCGTCGCCC






GCGCTGCCGTCCAGATCAAGAACGCGCTCGACGCCACCATCAAGCTCGGCGGCTCCAACTAC






GTCTTCTGGGGCGGCCGCGAGGGCTATTACACGCTGCTGAATACCCAGATGCAGCGCGAGAA






GGACCATCTCGCCAGGCTCCTTACCGCCGCCCGCGACTATGCGCGCGCCAAGGGGTTCAAGG






GGACCTTCCCCATCGAGCCGAAGCCGATGGAGCCGACCAAGCACCAGTATGACGTCGACACG






GAGACCGTCATCGGTTTCCTCCGCCAGAATGGCCTCGACAAGGACTTCAAGGTCAATATCGA






GGTGAACCACGCCACCCTCGCCGGCCATACCTTCGAGCACGAGCTGACCGCGGCCCGGGAGA






ACGGCTTCCTCGGCAGCATCGACGCCAACCGCGGCGACGCCCAGAACGGCTGGGACACCGAC






CAGTTCCCGGTGGACGCCTTCGATCTCACGCGGGCCATGATGCAGATCCTGCTCAATGGCGG






TTTCGGCAACGGCGGCACCAACTTCGACGCCAAGCTGCGCCGCAGCTCCACCGATCCCGAGG






ACATCTTCATCGCCCACATCAGCGCGATGGACGCCATGGCCCACGCCCTGCTGAATGCGGCC






GCCATCCTCGAGGAAAGCCCGCTGCCGGCCCTGGTCAAGCAGCGCTATGCGTCCTTCGACAG






CGGTCTCGGCAAGCAGTTCGAGGAGGGTAAGGCCACGCTCGAGGACCTGTACGCATACGCGA






AGGAGCACGGCGAGCCCGTCGCGGCCTCCGGCAAGCAGGAGCTCTGCGAGACCTATCTCAAC






CTCTACGCGAAATAA





5586MI215_003
Prevotella
Amino
126
MAKEYFPQIGKIGFEGLESKNPMAFHYYDAERVVLGKKMKDWLKFAMANWHTLGQASGDPFG




Acid


GQTRSYENDKGECPYCRARAKADAGFELMQKLGIEYFCFHDIDLIEDCDDIDEYEARMKDIT








DYLLEKMKETGIKNLWGTANVFGHKRYMNGAATNPQFEIVARAAVQIKNALDATIKLGGSNY








VFWGGREGYYTLLNTQMQREKDHLARLLTAARDYARAKGFKGTFPIEPKPMEPTKHQYDVDT








ETVIGFLRQNGLDKDEKVNIEVNHATLAGHTFEHELTAARENGFLGSIDANRGDAQNGWDTD








QFPVDAFDLTRAMMQILLNGGFGNGGTNFDAKLRRSSTDPEDIFIAHISAMDAMAHALLNAA








AILEESPLPALVKQRYASFDSGLGKQFEEGKATLEDLYAYAKEHGEPVAASGKQELCETYLN







LYAK





5607MI1_003
Prevotella
DNA
127
ATGAGTAAAGAGTATTTTCCTGGGATTGGCAAAATCCCGTATGAGGGAGCCGAGAGCAAGAA






TGTGATGGCATTCCACTATTATGATCCCGAACGCGTGGTCATGGGCAAGAAAATGAAAGACT






GGTTCAAGTTCGCTATTGCCTGGTGGCATACCCTGGGGCAGGCCAGTGCTGACCAGTTTGGC






GGACAGACCCGTTTCTATGAATGGGACAAAGCCGAGGACCCCTTGCAGCGTGCCAAGGACAA






GATGGATGCCGGTTTTGAAATCATGCAGAAGCTGGGCATCGAGTATTTCTGTTTCCATGATG






TGGACCTCATCGAGGAGGCCGATACCATCGAGGAATATGAAGCCCGCATGCAGGCGATTACC






GACTACGCGCTGGAGAAGATGAAGGCAACGGGTATCAAGTTGCTGTGGGGCACTGCCAACGT






GTTCGGCCACAAGCGTTACATGAACGGCGCCGCCACCAATCCCGACTTCAATGTCGTGGCAC






GTGCAGCCGTGCAGATCAAGAACGCCCTCGATGCTACCATCAAGTTGGGCGGAACGAGCTAC






GTCTTCTGGGGCGGTCGTGAAGGCTATCAGAGCCTGCTCAACACCCAGATGCAGCGCGAGAA






GAACCACCTGGCCAAGATGCTCACGGCAGCCCGTGACTATGCCCGTGCTAAGGGCTTCAAGG






GCACCTTCCTGATTGAGCCCAAGCCGATGGAACCCACCAAGCACCAGTATGACCAGGACACC






GAGACCGTTATCGGCTTCTTGCGTGCCAATGGCCTTGACAAGGACTTTAAGGTCAACATTGA






GGTCAACCATGCCACGCTGGCTGGCCACACCTTTGCACATGAGTTGGCAGTGGCTGTGGATA






ACGGTATGCTGGGCAGCATCGATGCTAACCGTGGTGACCACCAGAACGGCTGGGATACAGAC






CAGTTCCCCATCAACAGTTATGAACTCACCAATGCTATGCTGCAGATCATGCACGGCGGCGG






TTTCAAGGACGGCGGTACCAACTTTGACGCCAAGCTGCGCCGCAACAGTACCGACCCCGAGG






ACATCTTTACCGCTCACATCAGTGGTATGGACGCTCTGGCCCGTGCCCTGTTGAGTGCTGCC






GATATCCTTGAGAAGAGCGAGTTGCCTGAAATGCTCAAGGAACGCTATGCCAGCTTTGACGC






GGGTGAAGGCAAGCGCTTTGAGGATGGCCAGATGACTCTTGAGGAACTGGTTGCCTATGCCA






AGTCCCATGGCGAGCCTGCTACCATCAGTGGCAAGCAGGAAAAATATGAAGCCATCGTGGCT






TTGCACGTCAAGTAA





5607MI1_003
Prevotella
Amino
128
MSKEYFPGIGKIPYEGAESKNVMAFHYYDPERVVMGKKMKDWFKFAIAWWHTLGQASADQFG




Acid


GQTREYEWDKAEDPLQRAKDKMDAGFEIMQKLGIEYFCFHDVDLIEEADTIEEYEARMQAIT








DYALEKMKATGIKLLWGTANVFGHKRYMNGAATNPDFNVVARAAVQIKNALDATIKLGGTSY








VFWGGREGYQSLLNTQMQREKNHLAKMLTAARDYARAKGFKGTFLIEPKPMEPTKHQYDQDT








ETVIGFLRANGLDKDEKVNIEVNHATLAGHTFAHELAVAVDNGMLGSIDANRGDHQNGWDTD








QFPINSYELTNAMLQIMHGGGFKDGGTNFDAKLRRNSTDPEDIFTAHISGMDALARALLSAA








DILEKSELPEMLKERYASFDAGEGKRFEDGQMTLEELVAYAKSHGEPATISGKQEKYEAIVA







LHVK





5607MI2_003
Prevotella
DNA
129
ATGAGTAAAGAGTATTATCCTGAGATTGGCAAAATCCCGTTTGAGGGTCCCGAGAGCAAGAA






TGTGATGGCGTTCCATTACTATGAACCCGAACGCGTCGTCATGGGTAAGAAGATGAAAGACT






GGCTCAAGTTTGCCATGTGCTGGTGGCACAGCCTGGGTCAGGCCAGTGCCGACCAGTTCGGC






GGACAGACACGTTTCTACGAGTGGGACAAGGCCGATACCCCCCTGCAGCGTGCCAAGGACAA






AATGGATGCCGGATTTGAAATCATGCAGAAGTTGGGCATCGAGTACTTCTGCTTCCACGATG






TGGACCTCATCGAGGAGGCCGATACCATCGAGGAATACGAGGCCCGCATGAAGGCCATTACC






GACTATGCGCTGGAGAAGATGCAGGCCACCGGCATCAAGTTGCTGTGGGGCACTGCCAATGT






GTTCGGCCACAAGCGCTACATGAACGGCGCCGCCACCAATCCCGATTTCAATGTCGTGGCAC






GTGCCGCCGTCCAAATCAAGAATGCCATCGATGCCACCATCAAGCTGGGCGGCACGAGTTAC






GTCTTCTGGGGTGGTCGTGAGGGCTATCAGAGTCTGCTCAACACGCAGATGCAGCGCGAGAA






GGACCATCTGGCCCGCATGCTGGCGGCAGCCCGCGACTATGGCCGTGCCCATGGCTTCAAGG






GCACTTTCCTGATCGAGCCCAAACCCATGGAGCCCACCAAGCACCAGTATGATGTGGACACC






GAGACCGTGCTCGGCTTCCTGCGTGCCCACGGCCTGGACAAGGACTTCAAGGTTAACATCGA






GGTCAATCATGCTACGCTGGCGGGACACACTTTCAGCCACGAACTGGCTGTGGCCGTGGACA






ACGGTATGCTGGGCAGCATCGACGCCAACCGCGGCGATTATCAGAATGGCTGGGACACCGAC






CAGTTCCCCATCGACAGCTTCGAGCTCACCCAGGCCATGCTGCAGATCATGCGCGGCGGCGG






CTTCAAGGACGGAGGTACCAACTTCGATGCCAAGCTGCGTCGCAACAGTACCGACCCTGAGG






ACATCTTCATCGCCCACATCAGCGGTATGGATGCCATGGCACGCGGCCTGTTGAGCGCTGCC






GCTATCCTCGAGGATGGCGAGTTGCCCGCGATGCTCAAGGCACGTTATGCCAGCTTTGACCA






GGGCGAGGGTAAGCGCTTTGAGGACGGCGAGATGACGCTCGAGCAGCTGGTGGATTATGCAA






AGGATTATGCCAAATCGCACGGCGAGCCTGATGTCATCAGCGGCAAGCAGGAGAAGTTTGAA






ACCATCGTGGCCCTTTACGCCAAGTAA





5607MI2_003
Prevotella
Amino
130
MSKEYYPEIGKIPFEGPESKNVMAFHYYEPERVVMGKKMKDWLKFAMCWWHSLGQASADQFG




Acid


GQTRFYEWDKADTPLQRAKDKMDAGFEIMQKLGIEYFCFHDVDLIEEADTIEEYEARMKAIT








DYALEKMQATGIKLLWGTANVFGHKRYMNGAATNPDFNVVARAAVQIKNAIDATIKLGGTSY








VFWGGREGYQSLLNTQMQREKDHLARMLAAARDYGRAHGFKGTFLIEPKPMEPTKHQYDVDT








ETVLGFLRAHGLDKDFKVNIEVNHATLAGHTFSHELAVAVDNGMLGSIDANRGDYQNGWDTD








QFPIDSFELTQAMLQIMRGGGFKDGGTNFDAKLRRNSTDPEDIFIAHISGMDAMARGLLSAA








AILEDGELPAMLKARYASFDQGEGKRFEDGEMTLEQLVDYAKDYAKSHGEPDVISGKQEKFE







TIVALYAK





5607MI3_003
Prevotella
DNA
131
ATGACCAACGAGTATTTTCCCGGAATCGGTGTGATTCCGTTTGAAGGACAGGAAAGCAAGAA






TCCCCTGGCTTTCCATTATTATGACGCCAACCGCGTAGTGATGGGCAAACCCATGAAGGAAT






GGTTCAAATTTGCCATGGCCTGGTGGCATACGCTGGGGCAGGCATCGGCCGATCCCTTCGGC






GGACAGACCCGCTCCTACGCATGGGACAAGGGCGAGTGCCCTTACTGCCGTGCCCGCCAGAA






GGCCGACGCCGGCTTTGAACTGATGCAGAAGCTGGGAATCGGCTATTTCTGCTTCCACGATG






TGGATATCATCGAGGACTGCGAGGACATTGCCGAGTATGAGGCCCGTATGAAGGACATCACG






GACTATCTGCTGGTGAAGATGAAGGAAACGGGCATCAAGAATCTGTGGGGCACGGCCAACGT






CTTCGGCCACAAGCGCTATATGAACGGCGCCGCCACCAACCCGCAATTCGACGTGGTAGCCC






GCGCTGCGGTCCAGATCAAGAACGCCCTGGACGCCACCATCAAGCTGGGCGGCAGCAATTAT






GTGTTCTGGGGCGGCCGGGAAGGCTACTACACCCTTTTGAACACGCAGATGCAGCGGGAGAA






GGACCACCTGGCCCAGATGCTCAAGGCGGCCCGCGACTATGCCCGCGGCAAGGGATTCAAGG






GCACGTTCCTCATTGAGCCCAAGCCCATGGAGCCCACCAAGCACCAGTACGACGTAGATACG






GAGACCGTGATTGGTTTCCTGCGCGCCAACGGGCCGGACAAGGACTTCAAGGTGAATATCGA






AGTGAACCACGCCACCCTGGCCGGCCATACCTTCGAGCACGAGCTCACCGTGGCCCGCGAAA






ACGGCTTCCTGGGCAGCATCGACGCCAACCGCGGAGACGCCCAGAACGGCTGGGATACAGAC






CAGTTCCCCGTGGACGCCTTTGACCTCACCCAGGCCATGATGCAGGTCCTGCTCAACGGCGG






ATTCGGCAACGGCGGCACCAACTTCGACGCCAAACTGCGCCGTTCCTCCACGGATCCCGAGG






ACATCTTCATCGCCCACATCAGCGCCATGGACGCCATGGCCCACGCCCTCCTGAACGCCGCC






GCCATCCTGGAAGAGAGCCCCATGCCGGGCATGGTGAAGGAGCGCTACGCTTCCTTCGACAA






TGGCCTTGGCAAGAAGTTCGAGGAAGGAAAGGCCACGCTGGAAGAGCTGTACGACTATGCCA






AGAAGAACGGCGAGCCTGTGGCCGCTTCCGGAAAGCAGGAACTGTACGAAACGCTGCTGAAC






CTGTACGCCAAGTAA





5607MI3_003
Prevotella
Amino
132
MTNEYFPGIGVIPFEGQESKNPLAFHYYDANRVVMGKPMKEWFKFAMAWWHTLGQASADPFG




Acid


GQTRSYAWDKGECPYCRARQKADAGFELMQKLGIGYFCFHDVDIIEDCEDIAEYEARMKDIT








DYLLVKMKETGIKNLWGTANVEGHKRYMNGAATNPQEDVVARAAVQIKNALDATIKLGGSNY








VFWGGREGYYTLLNTQMQREKDHLAQMLKAARDYARGKGFKGTFLIEPKPMEPTKHQYDVDT








ETVIGFLRANGPDKDFKVNIEVNHATLAGHTFEHELTVARENGFLGSIDANRGDAQNGWDTD








QFPVDAFDLTQAMMQVLLNGGFGNGGTNFDAKLRRSSTDPEDIFIAHISAMDAMAHALLNAA








AILEESPMPGMVKERYASFDNGLGKKFEEGKATLEELYDYAKKNGEPVAASGKQELYETLLN







LYAK





5607MI4_005
Prevotella
DNA
133
ATGACTAAAGAGTATTTCCCTTCCGTCGGCAAGATTGCCTTTGAAGGACCCGAAAGCAAGAA






CCCTATGGCCTTCCATTATTATGACGCCAATCGCGTGGTAATGGGAAAGCCGATGAAAGAAT






GGCTTAAATTTGCCATGGCCTGGTGGCACACCCTGGGCCAGGCCTCTGCAGACCCCTTCGGC






GGTCAGACCCGCTCCTACGAGTGGGACAAGGGCGAGTGCCCCTACTGCCGCGCCAAGGCCAA






GGCCGATGCCGGCTTTGAACTGATGCAGAAACTGGGCATCGAGTATTTCTGCTTCCACGATA






TAGACCTGGTGGAAGACTGCGATGATATCGCCGAATACGAGGCCCGCATGAAGGACATCACG






GACTATCTCCTGGAGAAGATGAAGGAAACCGGCATCAAGAACCTCTGGGGAACCGCCAACGT






GTTCGGCCACAAGCGCTATATGAACGGCGCCGCCACCAACCCTCAGTTCGACATCGTGGCCC






GTGCCGCTGTCCAGATCAAGAACGCCCTGGATGCCACCATCAAGCTGGGCGGCTCCAACTAT






GTGTTCTGGGGCGGCCGTGAGGGCTACTATACCCTCCTGAACACCCAGATGCAGAGAGAGAA






GGACCACCTGGCCAAGATGCTCACCGCCGCCCGCGACTATGCCCGTGCCAAGGGCTTCAAGG






GCACCTTCCTCATCGAACCCAAGCCGATGGAGCCCACCAAGCACCAGTACGACGTAGATACG






GAGACCGTGATCGGCTTCCTCCGCGCCAACGGCCTGGACAAGGACTTCAAGGTGAATATTGA






GGTGAACCACGCCACCCTGGCCGGCCACACCTTCGAGCACGAGCTCACCGTGGCCCGCGAGA






ACGGCTTCCTGGGCAGCATCGACGCCAACCGCGGAGACGCCCAGAACGGCTGGGATACGGAC






CAGTTCCCGGTGGATGCCTTCGACCTCACCCAGGCTATGATGCAGATCCTTCTGAACGGAGG






CTTCGGCAACGGCGGTACCAACTTCGACGCCAAACTGCGCCGCTCCTCCACGGACCCCGAGG






ACATCTTCATCGCCCACATCAGCGCTATGGATGCCATGGCCCACGCCCTGCTGAATGCAGCC






GCCATCCTGGAGGAAAGCCCGCTTCCGAAGATGCTGAAAGAGCGTTATGCCAGCTTTGACGG






CGGTCTGGGCAAGAAGTTCGAAGAAGGCAAGGCCTCTCTGGAAGAACTCTACGAGTATGCCA






AGAGCAACGGAGAGCCCGTGGCCGCTTCCGGCAAGCAGGAGCTCTGCGAAACGTACCTGAAC






CTCTACGCTAAGTAA





5607MI4_005
Prevotella
Amino
134
MTKEYFPSVGKIAFEGPESKNPMAFHYYDANRVVMGKPMKEWLKFAMAWWHTLGQASADPFG




Acid


GQTRSYEWDKGECPYCRAKAKADAGFELMQKLGIEYFCFHDIDLVEDCDDIAEYEARMKDIT








DYLLEKMKETGIKNLWGTANVFGHKRYMNGAATNPQFDIVARAAVQIKNALDATIKLGGSNY








VFWGGREGYYTLLNTQMQREKDHLAKMLTAARDYARAKGFKGTFLIEPKPMEPTKHQYDVDT








ETVIGFLRANGLDKDFKVNIEVNHATLAGHTFEHELTVARENGFLGSIDANRGDAQNGWDTD








QFPVDAFDLTQAMMQILLNGGFGNGGTNFDAKLRRSSTDPEDIFIAHISAMDAMAHALLNAA








AILEESPLPKMLKERYASFDGGLGKKFEEGKASLEELYEYAKSNGEPVAASGKQELCETYLN







LYAK





5607MI5_002
Prevotella
DNA
135
ATGGCTAAAGAATACTTCCCCTCCATCGGCAAAATCCCTTTTGAAGGAGCCGACAGCAAAAA






TCCCCTCGCTTTCCATTATTATGACGCCGGACGCGTGGTTATGGGCAAGCCCATGAAGGAAT






GGCTTAAATTCGCCATGGCCTGGTGGCACACGCTGGGCCAGGCCTCCGGAGACCCCTTCGGC






GGCCAGACCCGCAGCTACGAATGGGACAAGGGCGAATGCCCCTACTGCCGCGCCAAGGCCAA






GGCCGACGCCGGTTTTGAAATCATGCAAAAGCTGGGCATCGAATACTTCTGCTTCCACGATG






TGGACCTTATCGAGGATTGCGATGACATTGCCGAATACGAAGCCCGCATGAAGGACATCACG






GACTACCTGCTGGAAAAGATGAAGGAGACCGGCATCAAGAACCTCTGGGGCACCGCCAATGT






CTTCGGCCACAAGCGCTACATGAACGGCGCCGGCACCAATCCGCAGTTCGATGTGGTGGCCC






GTGCCGCCGTCCAGATCAAGAACGCCCTGGACGCCACCATCAAGCTGGGCGGCTCCAACTAT






GTGTTCTGGGGCGGCCGCGAAGGCTATTACACCCTCCTCAACACACAGATGCAGCGGGAAAA






AGACCACCTGGCCAAGTTGCTGACGGCCGCCCGCGACTATGCCCGCGCCAAGGGCTTCAAGG






GCACCTTCCTCATTGAGCCCAAACCCATGGAACCCACCAAGCACCAGTACGACGTGGATACG






GAGACGGTCATCGGCTTCCTCCGTGCCAACGGCCTGGACAAGGACTTCAAGGTGAACATCGA






GGTGAACCACGCCACCCTGGCCGGCCACACCTTCGAGCATGAGCTCACCGTGGCCCGCGAGA






ACGGTTTCCTGGGCTCCATCGATGCCAACCGCGGCGACGCCCAGAACGGCTGGGACACGGAC






CAGTTCCCTGTGGACCCGTACGATCTTACCCAGGCCATGATGCAGGTGCTGCTGAACGGCGG






CTTCGGCAACGGCGGCACCAACTTCGACGCCAAACTCCGCCGCTCCTCCACCGACCCTGAGG






ACATCTTCATCGCCCATATTTCCGCCATGGATGCCATGGCCCACGCTTTGCTTAACGCAGCT






GCCGTGCTGGAAGAGAGCCCCCTGTGCCAGATGGTCAAGGAGCGTTATGCCAGCTTCGACGA






TGGCCTCGGCAAACAGTTCGAGGAAGGCAAGGCTACCCTGGAAGACCTGTACGAATACGCCA






AGGCCCAGGGTGAACCCGTTGTCGCCTCCGGCAAGCAGGAGCTTTACGAGACTCTCCTGAAC






CTGTATGCCGTCAAGTAA





5607MI5_002
Prevotella
Amino
136
MAKEYFPSIGKIPFEGADSKNPLAFHYYDAGRVVMGKPMKEWLKFAMAWWHTLGQASGDPFG




Acid


GQTRSYEWDKGECPYCRAKAKADAGFEIMQKLGIEYFCFHDVDLIEDCDDIAEYEARMKDIT








DYLLEKMKETGIKNLWGTANVFGHKRYMNGAGTNPQFDVVARAAVQIKNALDATIKLGGSNY








VFWGGREGYYTLLNTQMQREKDHLAKLLTAARDYARAKGFKGTFLIEPKPMEPTKHQYDVDT








ETVIGFLRANGLDKDFKVNIEVNHATLAGHTFEHELTVARENGFLGSIDANRGDAQNGWDTD








QFPVDPYDLTQAMMQVLLNGGFGNGGTNFDAKLRRSSTDPEDIFIAHISAMDAMAHALLNAA








AVLEESPLCQMVKERYASFDDGLGKQFEEGKATLEDLYEYAKAQGEPVVASGKQELYETLLN







LYAVK





5607MI6_002
Prevotella
DNA
137
ATGACCAAAGAATATTTCCCTACCGTCGGGAAGATCCCCTTCGAGGGCCCCGAAAGCAAGAA






CCCTATGGCGTTCCATTACTATGACCCCAACCGTCTGGTGATGGGCAAGAAGATGAAAGACT






GGCTGCGTTTCGCCATGGCCTGGTGGCACACCCTCGGCCAGGCGTCGGGCGACCAGTTCGGC






GGCCAGACCCGCAGTTATGCGTGGGACGAGGGAGAATGCCCGTACGAGCGCGCCCGTGCCAA






GGCTGACGCCGGCTTCGAGATCATGCAGAAACTCGGTATCGAGTTCTTCTGCTTCCACGACA






TCGACCTGATCGAGGATACCGACGACATCGCCGAGTATGAGGCCCGCCTGAAAGACATCACG






GACTATCTGCTCGAGAAGATGAAAGCCACTGGCATCAAAAATCTCTGGGGAACGGCCAACGT






GTTCGGCCACAAGCGTTGCATGAACGGCGCCGCCACCAACCCGGACTTCGCCGTGCTGGCCC






GCGCTGCCGTCCAGATCAAGAACGCCATCGACGCCACCATCAAGCTGGGCGGCGAGAACTAT






GTGTTCTGGGGTGGCCGCGAAGGCTACACGAGCCTGCTCAACACCCAGATGCAGCGTGAGAA






AGAGCACCTGGGCCGCCTGCTGTCCCTGGCCCGCGACTATGGCCGCGCCCACGGCTTCAAGG






GTACCTTCCTGATCGAGCCCAAGCCGATGGGACCGACGAAACACCAGTACGACCAGGATACG






GAAACTGTCATCGGTTTCCTGCGCCGCCACGGTCTAGACAAGGACTTCAAGGTCAATATCGA






GGTGAACCATGCCACGCTGGCGGGCCACACCTTCGAACACGAACTGGCCTGCGCCGTGGATC






ACGGTATGCTGGGCAGCATCGACGCCAACCGCGGTGACGCACAGAACGGCTGGGATACCGAC






CAGTTCCCGATCGACAACTTCGAGCTGACCCTTTCCATGCTCCAGATCATCCGCAACGGTGG






CCTGGCACCCGGCGGCTCGAATTTCGATGCCAAGCTGCGCCGCAACTCCACCGATCCCGAAG






ACATTTTCATCGCGCACATCAGCGCCATGGACGCCATGGCCCGCGCATTGGTCAATGCGGCC






GCCATCCTGGAGGAGAGCGCTATTCCGAAGATGGTCAAGGAGCGTTACGCTTCGTTCGACAG






CGGCAAAGGCAAGGAATACGAGGAAGGCAAGCTGACGCTCGAAGACATCGTGGCCTATGCCA






AGGCGAACGGAGAACCGAAGCAGATTTCCGGCAAACAGGAACTCTACGAGACGCTTGTCGCA






CTCTATAGCAAATAA





5607MI6_002
Prevotella
Amino
138
MTKEYFPTVGKIPFEGPESKNPMAFHYYDPNRLVMGKKMKDWLRFAMAWWHTLGQASGDQFG




Acid


GQTRSYAWDEGECPYERARAKADAGFEIMQKLGIEFFCFHDIDLIEDTDDIAEYEARLKDIT








DYLLEKMKATGIKNLWGTANVFGHKRCMNGAATNPDFAVLARAAVQIKNAIDATIKLGGENY








VFWGGREGYTSLLNTQMQREKEHLGRLLSLARDYGRAHGFKGTFLIEPKPMGPTKHQYDQDT








ETVIGFLRRHGLDKDFKVNIEVNHATLAGHTFEHELACAVDHGMLGSIDANRGDAQNGWDTD








QFPIDNFELTLSMLQIIRNGGLAPGGSNFDAKLRRNSTDPEDIFIAHISAMDAMARALVNAA








AILEESAIPKMVKERYASFDSGKGKEYEEGKLTLEDIVAYAKANGEPKQISGKQELYETLVA







LYSK





5607MI7_002
Prevotella
DNA
139
ATGACCAAAGGGTATTTCCCTACCATCGGCAGGATTCCCTTCGAGGGAACTGAAAGCAAGAA






TCCCCTCGCATTCCATTACTATGAGCCCGACCGGCTCGTACTGGGCAAGAAAATGAAAGACT






GGCTGCGTTTCGCGATGGCCTGGTGGCACACCCTGGGCCAGGCGTCCGGCGACCAGTTCGGC






GGCCAGACCCGCAGCTATGCCTGGGACAAGGCCGAGTGCCCCTATGAGCGCGCCAAGGCCAA






AGCCGACGCCGGCTTCGAGATCATGCAGAAACTCGGCATCGAGTTCTTCTGTTTCCACGACA






TTGACCTCGTTGAGGATACCGACGACATCGCCGAGTATGAGGCCCGGATGAAGGACATTACC






GACTATCTCCTGGTCAAGATGAAGGAGACCGGAATCAAGAACCTCTGGGGTACGGCCAATGT






CTTCGGCCACAAGCGCTATATGAACGGCGCCGCCACCAATCCCGACTTCGACGTGGTGGCCC






GCGCCGCCGTCCAGATCAAGAACGCCCTCGATGCCACCATCAAGCTGGGCGGTGAAAACTAT






GTGTTCTGGGGCGGCCGCGAAGGCTATATGAGCCTGCTCAACACGCAGATGCAGCGTGAGAA






GGAGCACCTGGGCCGGATGCTGGTCGCCGCCCGCGACTACGCCCGCGCCCACGGCTTCAAGG






GTACCTTCCTCATCGAGCCCAAACCGATGGAACCGACCAAGCACCAGTACGACCAGGATACG






GAAACCGTGATCGGCTTCCTTCGCCGCCACGGCCTGGACAAGGATTTCAAGGTGAACATCGA






AGTGAACCACGCCACGCTGGCCGGCCACACCTTCGAGCACGAACTGGCCACCGCCGTCGACT






GCGGCCTGCTGGGCAGCATCGACGCCAATCGCGGCGACGCTCAGAACGGCTGGGATACCGAC






CAGTTCCCGATCGACAACTTCGAACTCACGCTGGCCATGCTGCAGATTATCCGCAACGGCGG






TCTGGCACCCGGCGGCTCGAACTTCGACGCCAAACTGCGCCGTAACTCCACCGATCCGGAAG






ATATCTTCATCGCCCACATCAGTGCGATGGACGCGATGGCCCGTGCGCTGGTCAACGCCGCC






GCAATCTGGGAAGAGTCTCCCATCCCGCAGATGAAGAAAGAACGCTACGCGTCGTTCGACAG






CGGCAAGGGCAAGGAATTCGAAGAGGGCAAGCTCTGCCTCGAAGACCTCGTGGCCTATGCCA






AGGCGAACGGAGAACCGAAACAGATCTCCGGCAGGCAGGAACTATATGAGACCATCGTCGCC






CTTTATTGCAAATAG





5607MI7_002
Prevotella
Amino
140
MTKGYFPTIGRIPFEGTESKNPLAFHYYEPDRLVLGKKMKDWLRFAMAWWHTLGQASGDQFG




Acid


GQTRSYAWDKAECPYERAKAKADAGFEIMQKLGIEFFCFHDIDLVEDTDDIAEYEARMKDIT








DYLLVKMKETGIKNLWGTANVFGHKRYMNGAATNPDFDVVARAAVQIKNALDATIKLGGENY








VFWGGREGYMSLLNTQMQREKEHLGRMLVAARDYARAHGFKGTFLIEPKPMEPTKHQYDQDT








ETVIGFLRRHGLDKDFKVNIEVNHATLAGHTFERELATAVDCGLLGSIDANRGDAQNGWDTD








QFPIDNFELTLAMLQIIRNGGLAPGGSNFDAKLRRNSTDPEDIFIAHISAMDAMARALVNAA








AIWEESPIPQMKKERYASFDSGKGKEFEEGKLCLEDLVAYAKANGEPKQISGRQELYETIVA







LYCK





5608MI1_004
Prevotella
DNA
141
ATGACCAACGAGTATTTTCCCGGAATCGGTGTGATTCCGTTTGAAGGACAGGAAAGCAAGAA






TCCCATGGCTTTCCATTATTATGACGCCAACCGCGTAGTGATGGGCAAACCCATGAAGGAAT






GGTTCAAATTTGCCATGGCCTGGTGGCATACGCTGGGGCAGGCATCGGCCGATCCCTTCGGC






GGACAGACCCGCTCCTACGCATGGGACAAGGGCGAGTGCCCTTACTGCCGTGCCCGCCAGAA






GGCCGACGCCGGCTTTGAACTGATGCAGAAGCTGGGTATCGGCTATTTCTGCTTCCACGATG






TGGATATCATCGAGGACTGCGAAGACATTGCCGAGTATGAGGCCCGTATGAAGGACATCACG






GACTATCTGCTGGTGAAGATGAAGGAAACGGGCATCAAGAACCTGTGGGGCACGGCCAACGT






CTTCGGCCACAAGCGCTATATGAACGGCGCTGCCACCAACCCGCAGTTCGACGTGGTGGCCC






GCGCTGCGGTCCAGATCAAGAACGCCCTGGACGCCACCATCAAGCTGGGCGGCAGCAATTAC






GTGTTCTGGGGCGGCCGCGAAGGCTATTATACCCTTTGGAACACGCAGATGCGGCGGGAGAA






GGACCACCTGGCCCAGATGCTCAAGGCAGCCCGTGACTATGCCCGCGGCAAGGGATTCAAGG






GCACGTTCCTCATTGAGCCCAAGCCCATGGAGCCCACCAAGCACCAGTACGACGTAGATACG






GAGACCGTGATTGGCTTCCTGCGCGCAAACGGACTGGACAAGGACTTCAAGGTGAATATCGA






AGTGAACCACGCCACCCTGGCCGGCCACACCTTCGAGCACGAACTCACCGTGGCCCGCGAAA






ACGGCTTCCTGGGCAGCATCGACGCCAACCGCGGAGACGCCCAGAACGGTTGGGATACAGAC






CAGTTCCCCATAGATGCCTTTGACCTCACCCAGGCCATGATGCAGGTCCTGCTCAACGGCGG






ATTCGGCAACGGCGGCACCAACTTCGACGCCAAACTGCGCCGTTCCTCCACGGATCCCGAGG






ACATCTTCATCGCCCACATCGGCGCCATGGACGCCATGGCCCACGCCCTCCTGAACGCCGCC






GCCATCCTGGAAGAGAGCCCCATGCCGGGCATGGTGAAGGAGCGCTACGCTTCCTTCGACAA






TGGCCTTGGCAAGAAGTTCGAGGAAGGAAAGGCCACGCTGGAAGAGCTGTACGACTATGCCA






AGAAGAACGGCGAGCCTGTGGCCGCTTCCGGCAAGCAGGAACTGTACGAAACGCTGCTGAAC






CTGTACGCCAAGTAA





5608MI1_004
Prevotella
Amino
142
MTNEYFPGIGVIPFEGQESKNPMAFHYYDANRVVMGKPMKEWFKFAMAWWHTLGQASADPFG




Acid


GQTRSYAWDKGECPYCRARQKADAGFELMQKLGIGYFCFHDVDIIEDCEDIAEYEARMKDIT








DYLLVKMKETGIKNLWGTANVFGHKRYMNGAATNPQFDVVARAAVQIKNALDATIKLGGSNY








VFWGGREGYYTLWNTQMRREKDHLAQMLKAARDYARGKGFKGTFLIEPKPMEPTKHQYDVDT








ETVIGFLRANGLDKDFKVNIEVNHATLAGHTFEHELTVARENGFLGSIDANRGDAQNGWDTD








QFPIDAFDLTQAMMQVLLNGGFGNGGTNFDAKLRRSSTDPEDIFIAHIGAMDAMAHALLNAA








AILEESPMPGMVKERYASFDNGLGKKFEEGKATLEELYDYAKKNGEPVAASGKQELYETLLN







LYAK





5608MI2_002
Prevotella
DNA
143
ATGAAAGAATACTTCCCTACCATCGGAAAAATCCCTTTCGAGGGCCCTCAGAGCAAGAATCC






GCTCGCATTCCATTACTATGACGCCAACCGCGTTGTCGCCGGCAAACCCATGAAGGACTGGC






TCAAGTTCGCCATGGCTTGGTGGCACACCCTGGGCGCAGCATCGGCAGACCCCTTCGGCGGC






CAGACCCGCAGCTACGAGTGGGACAAAGCCGAGTGCCCTTACTGCCGTGCCCGTGAAAAGGC






CGACGCCGGCTTCGAGATCATGCAGAAACTTGGAATCGAGTACTTCTGCTTCCATGACATCG






ACCTTGTGGAAGACTGCGAGGACATTGCCGAGTACGAGGCCCGCATGAAGGACATCACGGAC






TACCTCCTGGAGAAGATGAAGGCCACCGGCATCAAGAACCTGTGGGGCACCGCCAACGTCTT






TGGCAACAAGCGCTACATGAACGGCGCAGCCACCAACCCTCAGTTCGACATCGTTGCCCGTG






CAGCTGTCCAGATCAAGAACGCCATCGACGCAACAATCAAGCTGGGCGGTACCGGTTACGTA






TTCTGGGGCGGCCGCGAGGGCTACTACACCCTCCTGAACACCCAGATGCAGCGCGAGAAGGA






CCACCTTGCCAAGATGCTCACCGCAGCCCGCGACTACGCCCGCGCCAAGGGATTCAAGGGCA






CATTCCTCATCGAGCCCAAGCCCATGGAGCCCACCAAGCACCAGTACGATGTTGACACGGAA






ACCGTCATCGGCTTCCTCCGCGCCAACGGCCTGGACAAGGACTTCAAGGTGAACATCGAGGT






GAACCACGCCACCCTGGCCGGCCACACCTTCGAGCACGAGCTCACCGTGGCCGTGGACAACG






GCTTCCTGGGCAGCATCGACGCAAACCGCGGCGACGCCCAGAACGGCTGGGACACTGACCAG






TTCCCTGTGGATCCTTACGACCTCACCCAGGCAATGATGCAGATTATCCGCAACGGCGGCTT






CAAGGACGGCGGCACCAACTTCGACGCCAAACTCCGCCGCAGCTCCACGGACCCCGAGGACA






TCTTCATCGCCCACATCAGCGCAATGGATGCAATGGCACACGCCCTCATCAACGCTGCTGCA






GTGCTTGAGGAAAGCCCTCTGTGCGAGATGGTTGCAAAGCGCTACGCCAGCTTTGACAGCGG






TCTTGGCAAGAAGTTCGAGGAAGGCAAAGCCACTCTCGAGGAGATCTACGAGTATGCCAAGA






AGGCCCCGGCACCCGTCGCCGCCTCCGGCAAGCAGGAGCTCTACGAGACACTGCTCAATCTG






TACGCTAAATAA





5608MI2_002
Prevotella
Amino
144
MKEYFPTIGKIPFEGPQSKNPLAFHYYDANRVVAGKPMKDWLKFAMAWWHTLGAASADPFGG




Acid


QTRSYEWDKAECPYCRAREKADAGFEIMQKLGIEYFCFHDIDLVEDCEDIAEYEARMKDITD








YLLEKMKATGIKNLWGTANVFGNKRYMNGAATNPQFDIVARAAVQIKNAIDATIKLGGTGYV








FWGGREGYYTLLNTQMQREKDHLAKMLTAARDYARAKGFKGTFLIEPKPMEPTKHQYDVDTE








TVIGFLRANGLDKDFKVNIEVNHATLAGHTFEHELTVAVDNGFLGSIDANRGDAQNGWDTDQ








FPVDPYDLTQAMMQIIRNGGFKDGGTNFDAKLRRSSTDPEDIFIAHISAMDAMAHALINAAA








VLEESPLCEMVAKRYASFDSGLGKKFEEGKATLEEIYEYAKKAPAPVAASGKQELYETLLNL







YAK





5608MI3_004
Prevotella
DNA
145
ATGACCAAAGAGTATTTCCCTACAATCGGAAAGATTCCCTTCGAAGGCCCGGAGAGCAAGAA






TCCGCTGGCATTCCATTACTATGAACCCGACAGAATCATCCTCGGCAGGAAGATGAAGGACT






GGCTGCGCTTCGCCGTGGCCTGGTGGCACACCCTCGGCCAGGCGTCCGGCGACCAGTTCGGA






GGCCAGACCCGCAACTATGCGTGGGACGAGCCCGAATGCCCGGTAGAGCGCGCGAAAGCCAA






GGCCGACGCCGGCTTCGAGCTGATGCAGAAGCTGGGCATCGAGTATTTCTGCTTCCACGACG






TAGACCTCATAGAGGAGGCCGCAACCATCGAAGAATATGAGGAGCGCATGGGCATCATAACC






GACTACCTGCTCGGGAAGATGAAGGAGACAGGTATCAAGAACCTCTGGGGCACCGCCAACGT






GTTCGGCCACAAGCGTTACATGAACGGAGCCGCCACCAACCCCGACTTCGACGTGGTGGCCC






GTGCGGCCGTGCAGATCAAGAACGCCATCGACGCCACCATCAAGCTGGGCGGCGAGAATTAC






GTATTCTGGGGCGGACGCGAGGGCTATGCAAGCCTGCTCAACACTCAGATGCAGCGCGAGAA






AGACCACCTGGGACGCATGCTGGCTGCAGCCCGCGACTATGGCCGCGCCCACGGATTCAAGG






GCACTTTCCTCATCGAGCCCAAACCCATGGAGCCTACCAAGCACCAGTACGACCAGGATACC






GAGACCGTTATCGCCTTCCTGCGCAGGAACGGCCTCGACAAGGATTTCAAGGTAAACATCGA






GGTGAACCACGCCACCCTGGCGGGCCACACCTTCGAGCACGAACTGGCGGTGGCAGTGGACA






ACGGCCTGCTTGGCAGCATCGACGCCAACCGCGGCGACGCGCAGAACGGATGGGACACCGAC






CAGTTCCCCATCGACAACTTCGAGCTCACCCAGGCCATGCTGCAGATAATCCGCAACGGCGG






ACTGGGAACCGGCGGATCGAACTTCGACGCCAAGCTGCGCCGCAATTCCACCGACCCTGAGG






ATATCTTCATCGCCCACATCAGTGCGATGGACGCCATGGCACGCGCGCTGGCAAACGCCGCC






GCAATCATCGAAGAGAGCCCCATCCCCGCAATGCTGAAGGAGCGCTACGCATCGTTCGACAG






CGGCAAGGGCAAGGAGTTCGAGGACGGCAAACTGAGCCTCGAAGAACTGGTAGCCTACGCCA






AGGCGAACGGCGAGCCGAAGCAGATTTCCGGCAAGCAGGAACTCTACGAAACCATAGTGGCC






CTCTATTGCAAGTAA





5608MI3_004
Prevotella
Amino
146
MTKEYFPTIGKIPFEGPESKNPLAFHYYEPDRIILGRKMKDWLRFAVAWWHTLGQASGDQFG




Acid


GQTRNYAWDEPECPVERAKAKADAGFELMQKLGIEYFCFHDVDLIEEAATIEEYEERMGIIT








DYLLGKMKETGIKNLWGTANVFGHKRYMNGAATNPDFDVVARAAVQIKNAIDATIKLGGENY








VFWGGREGYASLLNTQMQREKDHLGRMLAAARDYGRAHGFKGTFLIEPKPMEPTKHQYDQDT








ETVIAFLRRNGLDKDFKVNIEVNHATLAGHTFEHELAVAVDNGLLGSIDANRGDAQNGWDTD








QFPIDNFELTQAMLQIIRNGGLGTGGSNFDAKLRRNSTDPEDIFIAHISAMDAMARALANAA








AIIEESPIPAMLKERYASFDSGKGKEFEDGKLSLEELVAYAKANGEPKQISGKQELYETIVA







LYCK





5609MI1_005
Prevotella
DNA
147
ATGGCACAAGAATACTTCCCTACCATTGGGAAAATCCCCTTCGAGGGCACTGAGAGCAAGAA






TCCCCTTGCTTTCCATTACTATGAGCCGGAGCGCATTGTCTGCGGCAAACCCATGAAAGAAT






GGCTCAAGTTTGCCATGGCCTGGTGGCACACGCTGGGGCAGGCATCGGCCGATCCCTTCGGC






GGCCAAACCCGCAGCTATGCCTGGGATAAGGGCGAATGCCCCTACTGCCGTGCCCGCGCCAA






GGCGGACGCCGGCTTCGAGATTATGCAAAAGCTGGGCATCGAGTACTTCTGCTTCCACGATA






TCGACCTGGTAGAAGACTGTGACGATATTGCGGAATACGAAGCCCGCATGAAGGACATCACG






GACTACCTCCTGGAGAAGATGAAGGAAACCGGTATCAAGAACCTCTGGGGCACCGCCAATGT






GTTTGGTCACAAGCGCTACATGAACGGCGCCGCCACCAACCCGCAGTTTGACGTAGTGGCCC






GTGCCGCTGTTCAGATTAAGAACGCCATTGACGCCACCATCAAGTTGGGCGGTGCCAATTAC






GTGTTCTGGGGCGGCCGCGAGGGCTATTACAGCCTCCTGAACACCCAGATGCAGCGGGAGAA






GGACCACCTGGCCAAGCTGCTCACGGCAGCCCGCGACTATGCCCGCGCCAACGGCTTCAAGG






GAACCTTCCTGATTGAGCCCAAGCCCATGGAGCCCACCAAGCACCAGTACGACGTGGATACG






GAGACGGTCATTGGCTTCCTCCGCGCCAACGGCCTGGACAAGGACTTCAAGGTGAATATCGA






GGTGAACCACGCCACGTTGGCCGGCCACACCTTTGAGCACGAGCTCACCGTGGCCCGCGAGA






ACGGCTTCCTGGGCAGCATCGACGCCAACCGCGGCGATGCCCAGAACGGCTGGGATACGGAC






CAGTTCCCGGTAGACGCTTATGAGCTCACCCAGGCCATGATGCAGGTGCTCCTGAACGGAGG






CTTCGGCAACGGCGGCACCAACTTCGACGCCAAGCTGCGCCGCTCCTCCACGGACCCGGAGG






ACATCTTCATCGCCCATATCAGTGCGATGGATGCCATGGCCCACGCCCTGCTCAACGCCGCC






GCCGTGCTGGAGGAAAGCCCCCTGTGCCAGATGGTGAAGGAGCGCTACGCCAGCTTTGACAG






CGGTCCGGGCAAGCAGTTCGAGGAAGGAAAGGCCACCCTGGAGGACCTGTACAACTACGCCA






AAGCCACCGGTGAACCCGTGGTTGCCTCCGGCAAGCAGGAACTTTACGAGACCCTCCTGAAC






CTCTATGCAAAGTAG





5609MI1_005
Prevotella
Amino
148
MAQEYFPTIGKIPFEGTESKNPLAFHYYEPERIVCGKPMKEWLKFAMAWWHTLGQASADPFG




Acid


GQTRSYAWDKGECPYCRARAKADAGFEIMQKLGIEYFCFHDIDLVEDCDDIAEYEARMKDIT








DYLLEKMKETGIKNLWGTANVFGHKRYMNGAATNPQFDVVARAAVQIKNAIDATIKLGGANY








VFWGGREGYYSLLNTQMQREKDHLAKLLTAARDYARANGFKGTFLIEPKPMEPTKHQYDVDT








ETVIGFLRANGLDKDFKVNIEVNHATLAGHTFEHELTVARENGFLGSIDANRGDAQNGWDTD








QFPVDAYELTQAMMQVLLNGGFGNGGTNFDAKLRRSSTDPEDIFIAHISAMDAMAHALLNAA








AVLEESPLCQMVKERYASFDSGPGKQFEEGKATLEDLYNYAKATGEPVVASGKQELYETLLN







LYAK





5610MI1_003
Prevotella
DNA
149
ATGGCACAAGAATACTTCCCTACCATTGGGAAAATCCCCTTCGAGGGCACTGAGAGCAAGAA






TCCCCTTGCTTTCCATTACTATGAGCCGGAGCGCATTGTCTGCGGCAAACCCATGAAAGAAT






GGCTCAAGTTTGCCATGGCCTGGTGGCACACGCTGGGGCAGGCATCGGCCGATCCCTTCGGC






GGCCAAACCCGCAGCTATGCCTGGGATAAGGGCGAATGCCCCTACTGCCGTGCCCGTGCCAA






GGCGGACGCCGGTTTTGAGATTATGCAAAAGCTGGGCATCGAGTACTTCTGCTTCCACGATA






TCGACCTGGTAGAAGACTGTGACGATATTGCGGAATACGAAGCCCGCATGAAGGACATCACG






GACTACCTCCTGGAGAAGATGAAGGAAACCGGCATCAAGAACCTCTGGGGCACCGCCAATGT






GTTTGGTCACAAGCGCTACATGAACGGCGCCGGCACCAATCCGCAGTTTGACGTGGTGGCCC






GTGCTGCCGTGCAAATCAAGAACGCCATTGACGCCACCATCAAGTTGGGCGGTGCCAATTAC






GTGTTCTGGGGCGGCCGCGAGGGCTATTACAGCCTCCTGAACACCCAGATGCAGCGGGAGAA






GGACCACCTGGCCAAGCTGCTCACGGCAGCCCGCGACTATGCCCGCGCCAACGGCTTCAAGG






GAACCTTCCTGATTGAGCCCAAGCCCATGGAGCCCACCAAGCACCAGTACGACGTGGATACG






GAGACGGTCATTGGCTTCCTCCGCGCCAACGGCCTGGACAAGGACTTCAAGGTGAATATCGA






GGTGAACCACGCCACGCTGGCCGGCCACACCTTTGAGCACGAACTCACCGTGGCCCGCGAGA






ACGGCTTCCTGGGCAGCATCGACGCCAACCGCGGCGATGCCCAGAACGGCTGGGATACGGAC






CAGTTCCCGGTAGACGCTTATGAGCTCACCCAGGCCATGATGCAGGTGCTCCTGAACGGAGG






CTTCGGCAACGGCGGCACCAACTTCGACGCCAAGCTGCGCCGCTCCTCCACGGACCTGGAGG






ACATCTTCATCGCCCATATCAGTGCGATGGATGCCATGGCCCACGCCCTGCTCAACGCCGCC






GCCGTGCTGGAGGAAAGCCCCCTGTGCCAGATGGTGAAGGAGCGCTACGCCAGCTTTGACAG






CGGTCCGGGCAAGCAGTTCGAGGAAGGAAAGGCCACCCTGGAGGACCTGTACAACTACGCCA






AAGCCAACGGTGAACCCGTGGTTGCCTCCGGCAAGCAGGAACTTTACGAGACCCTCCTGAAC






CTCTATGCAAAGTAG





5610MI1_003
Prevotella
Amino
150
MAQEYFPTIGKIPFEGTESKNPLAFHYYEPERIVCGKPMKEWLKFAMAWWHTLGQASADPFG




Acid


GQTRSYAWDKGECPYCRARAKADAGFEIMQKLGIEYFCFHDIDLVEDCDDIAEYEARMKDIT








DYLLEKMKETGIKNLWGTANVFGHKRYMNGAGTNPQFDVVARAAVQIKNAIDATIKLGGANY








VFWGGREGYYSLLNTQMQREKDHLAKLLTAARDYARANGFKGTFLIEPKPMEPTKHQYDVDT








ETVIGFLRANGLDKDFKVNIEVNHATLAGHTFEHELTVARENGFLGSIDANRGDAQNGWDTD








QFPVDAYELTQAMMQVLLNGGFGNGGTNFDAKLRRSSTDLEDIFIAHISAMDAMAHALLNAA








AVLEESPLCQMVKERYASFDSGPGKQFEEGKATLEDLYNYAKANGEPVVASGKQELYETLLN







LYAK





5610MI2_004
Prevotella
DNA
151
ATGGCAAAAGAATATTTCCCTACCATCGGCAAGATTCCTTTTGAAGGAACCGACAGCAAGAG






TCCCCTCGCCTTCCATTACTATGACGCCCAGCGCGTTGTGATGGGCAAACCCATGAAGGAAT






GGCTCAAGTTCGCCATGGCCTGGTGGCACACCCTGGGCCAGGCATCGGCCGACCCCTTCGGC






GGTCAGACCCGCCACTATGCCTGGGATGAAGGCGAATGCCCCTACTGCCGCGCCAAAGCCAA






GGCCGACGCCGGCTTCGAGATCATGCAGAAACTGGGCATCGAGTACTTCTGCTTCCACGATG






TGGACCTGGTGGAAGACTGCGACGACATCGCCGAGTACGAAGCCCGCATGAAGGACATCACG






GACTACCTGCTGGAGAAGATGAAGGAAACCGGCATCAAGAACCTCTGGGGCACGGCCAATGT






GTTCGGCCACAAGCGTTACATGAACGGCGCCGGGACCAACCCGCAGTTTGACATTGTGGCCC






GCGCTGCCGTCCAGATCAAAAACGCCCTGGACGCCACCATCAAGCTGGGCGGTTCCAACTAC






GTGTTCTGGGGCAGCCGCGAAGGCTACTACACCCTCCTGAACACCCAGATGCAGCGGGAGAA






AGACCACCTGGCCAAGCTCCTGACCGCCGCCCGCGACTACGCCCGCGCCAAAGGCTTCAAGG






GAACCTTCCTCATCGAGCCCAAACCCATGGAGCCCACCAAGCACCAGTACGACGTGGACACC






GAGACCGTAATCGGCTTCCTGCGTGCCAACGGCCTGGACAAGGACTTCAAGGTGAACATCGA






GGTGAACCACGCCACCCTGGCTGGCCACACCTTCGAGCACGAACTCACCGTCGCCCGTGAAA






ACGGCTTCCTCGGATCGATCGACGCCAACCGCGGCGACGCCCAGAACGGCTGGGACACCGAC






CAGTTCCCCGTAGACGCCTATGACCTCACCCAGGCCATGATGCAGGTGCTGCTGAACGGCGG






TTTCGGCAATGGCGGTACCAACTTCGACGCCAAGCTCCGCCGCTCCTCCACGGATCCGGAAG






ACATCTTCATCGCCCACATCAGCGCCATGGACGCCATGGCCCACGCCCTGCTGAACGCCGCC






GCCGTGCTGGAAGAAAGCCCGCTTCCCGCCATGGCGAAAGAGCGCTACGCCTCCTTTGACAG






CGGACTTGGCAAGAAGTTCGAAGAGGGAAAGGCCACCCTCGAAGAGCTGTACGACTATGCCA






AGGCTAACGACGCCCCTGTCGCCGCCTCCGGCAAGCAGGAACTTTACGAAACCTTCTTGAAC






CTCTATGCAAAATAG





5610MI2_004
Prevotella
Amino
152
MAKEYFPTIGKIPFEGTDSKSPLAFHYYDAQRVVMGKPMKEWLKFAMAWWHTLGQASADPFG




Acid


GQTRHYAWDEGECPYCRAKAKADAGFEIMQKLGIEYFCFHDVDLVEDCDDIAEYEARMKDIT








DYLLEKMKETGIKNLWGTANVFGHKRYMNGAGTNPQFDIVARAAVQIKNALDATIKLGGSNY








VFWGSREGYYTLLNTQMQREKDHLAKLLTAARDYARAKGFKGTFLIEPKPMEPTKHQYDVDT








ETVIGFLRANGLDKDFKVNIEVNHATLAGHTFEHELTVARENGFLGSIDANRGDAQNGWDTD








QFPVDAYDLTQAMMQVLLNGGFGNGGTNFDAKLRRSSTDPEDIFIAHISAMDAMAHALLNAA








AVLEESPLPAMAKERYASFDSGLGKKFEEGKATLEELYDYAKANDAPVAASGKQELYETFLN







LYAK





5751MI1_003
Prevotella
DNA
153
ATGGCAAAACAGTATTTTCCGCAAATCGGAAAGATTAAATTCGAAGGAACAGAGAGCAAGAA






TCCGCTTGCGTTCCATTATTATGACGCAAACAGGGTAGTCCTCGGAAAGGCAATGGAGGAGT






GGCTCAAGTTCGCAATGGCTTGGTGGCATACTCTCGGACAGGCTTCCGGAGACCAGTTCGGC






GGCCAGACCCGCAGCTACGAGTGGGATCTTGCAGCCACCCCCGAGCAGCGCGCAAAGGACAA






GCTCGACGCCGGCTTCGAAATAATGGAGAAACTTGGAATCAAGTATTTCTGTTTCCACGATG






TTGACCTTATCGAAGACAGCGACGATATTGCGACATATGAGGCTCGTCTCAAGGACCTTACA






GACTACGCTGCAGAGCAGATGAAGCTCCACGACATCAAGCTCCTCTGGGGTACAGCGAATGT






ATTCGGCAACAAGCGCTACATGAACGGTGCGGCTACAAACCCTGATTTCGATGTAGTTGCCC






GCGCAGCCGTTCAGATTAAGAACGCTATCGACGCGACCATCAAGCTCGGTGGTACCAGCTAT






GTATTCTGGGGCGGTCGTGAGGGATATCAGAGCCTGCTCAACACTCAGATGCAGCGTGAGAA






GGACCACCTCGCAACCATGCTTACAATCGCTCGCGACTATGCTCGCAGCAAGGGCTTTACCG






GAACCTTCCTTATCGAGCCTAAGCCGATGGAGCCTACAAAACACCAGTACGACGTAGATACA






GAGACTGTTGTCGGCTTCCTCAAGGCACACGGCCTGGACAAGGACTTCAAGGTAAATATCGA






GGTTAACCACGCAACTCTCGCAGGCCACACCTTCGAGCACGAACTCACCGTTGCTGTGGATA






ACGGAATGCTCGGTTCTATCGACGCTAACCGCGGTGATGCACAGAACGGCTGGGATACAGAC






CAGTTCCCTGTAAGCGCTGAGGAGCTTACCCTCGCTATGATGCAGATTATCCGTAATGGTGG






CCTTGGCAACGGAGGATCCAACTTCGACGCAAAGCTTCGCCGCAACTCTACCGATCCTGAAG






ACATCTTCATCGCACACATCTGCGGTATGGATGCAATGGCACACGCTCTCCTCAATGCAGCT






GCAATTATCGAGGAGTCTCCTATCCCTACAATGGTTAAGGAGCGTTACGCTTCCTTCGACAG






CGGTATGGGTAAGGACTTCGAGGATGGAAAGCTTACCCTCGAGGATCTCTACAGCTACGGCG






TGAAGAACGGAGAGCCAAAGCAGACCAGCGCAAAGCAGGAGCTCTATGAGACTCTCATGAAT






ATCTATTGCAAGTAA





5751MI1_003
Prevotella
Amino
154
MAKQYFPQIGKIKFEGTESKNPLAFHYYDANRVVLGKAMEEWLKFAMAWWHTLGQASGDQFG




Acid


GQTRSYEWDLAATPEQRAKDKLDAGFEIMEKLGIKYFCFHDVDLIEDSDDIATYEARLKDLT








DYAAEQMKLHDIKLLWGTANVFGNKRYMNGAATNPDFDVVARAAVQIKNAIDATIKLGGTSY








VFWGGREGYQSLLNTQMQREKDHLATMLTIARDYARSKGFTGTFLIEPKPMEPTKHQYDVDT








ETVVGFLKAHGLDKDFKVNIEVNHATLAGHTFEHELTVAVDNGMLGSIDANRGDAQNGWDTD








QFPVSAEELTLAMMQIIRNGGLGNGGSNFDAKLRRNSTDPEDIFIAHICGMDAMAHALLNAA








AIIEESPIPTMVKERYASFDSGMGKDFEDGKLTLEDLYSYGVKNGEPKQTSAKQELYETLMN







IYCK





5751MI2_003
Prevotella
DNA
155
ATGGCAAAAGAATTTTTTCCACAAGTAGGCAAGATTCCATTTGAGGGTCCTGAAAGTACTAA






CGTACTCGCATTCCACTACTATGATCCAGAACGCGAAGTTCTTGGTAAGAAAATGAAAGATT






GGCTGAAGTATGCTATGGCTTGGTGGCACACACTCGGTCAGGCAAGTGGCGACCAATTCGGT






GGTCAAACTCGTTCGTATGAATGGGATGAAGCCGACGATGTTCTTCAACGCGCAAAGGATAA






AATGGATGCTGGTTTTGAATTGATGACCAAACTTGGCATTGAATACTACTGCTTCCATGATG






TCGACCTTATTGAAGAAGGTGCAACAATTGAAGAATATGAAGCTCGTATGCAAGCTATCACC






GACTACGCATTAGAAAAACAAAAAGAAACCGGCATTAAGCTCCTTTGGGGTACTGCTAATGT






GTTTGGTCATAAGCGTTATATGAATGGTGCGGCAACAAACCCTGACTTTGATGTAGTGGCTC






GCGCTGCTGTACAAATCAAGAACGCTATCGATGCAACTATCAAGCTTGGTGGTCAAAACTAT






GTATTCTGGGGTGGCCGCGAAGGTTATATGAGTTTGCTCAACACTCAAATGCAACGCGAAAA






AGACCACTTGGCAAAGATGCTTACCGCAGCTCGCGACTATGCTCGTGCTAAGGGCTTCAAGG






GTACATTCCTCGTTGAACCTAAGCCTATGGAACCAACTAAGCATCAATATGATACCGATACA






GAAACTGTGATTGGTTTCCTCCGTGCAAATGGTCTTGAAAAAGACTTCAAGGTGAACATTGA






AGTGAACCATGCTACTCTCGCTCAGCACACTTTCGAACACGAACTCGCTGTGGCTGTCGACA






ATGGCATGCTCGGTTCTATCGACGCTAACCGTGGCGATGCTCAAAATGGCTGGGATACCGAC






CAATTCCCAATCGACAACTACGAACTCACCCTCGCTATGCTCCAAATCATTCGCAATGGTGG






TCTTGGCAATGGCGGTAGCAACCTCGACGCTAAGATTCGTCGTAATAGCACCGACCTTGAAG






ACCTCTTTATCGCTCACATCAGTGGTATGGATGCTATGGCTCGTGCACTTCTCAATGCTGCT






GCAATCGTTGAAAAGAGCGAAATTCCTGCTATGTTGAAGCAGCGTTATGCAAGCTCTGATGC






AGGTATGGGTAAGGACTTCGAAGAAGGAAAACTCACTCTCGAACAACTCGTAGACTATGCTA






AGGCTAACGGCGAACCTGCTACAGTAAGCGGCAAGCAAGAAAAGTATGAAACTCTCGTTGCT






CTCTACGCTAAGTAA





5751MI2_003
Prevotella
Amino
156
MAKEFFPQVGKIPFEGPESTNVLAFHYYDPEREVLGKKMKDWLKYAMAWWHTLGQASGDQFG




Acid


GQTRSYEWDEADDVLQRAKDKMDAGFELMTKLGIEYYCFHDVDLIEEGATIEEYEARMQAIT








DYALEKQKETGIKLLWGTANVFGHKRYMNGAATNPDFDVVARAAVQIKNAIDATIKLGGQNY








VFWGGREGYMSLLNTQMQREKDHLAKMLTAARDYARAKGFKGTFLVEPKPMEPTKHQYDTDT








ETVIGFLRANGLEKDFKVNIEVNHATLAQHTFEHELAVAVDNGMLGSIDANRGDAQNGWDTD








QFPIDNYELTLAMLQIIRNGGLGNGGSNLDAKIRRNSTDLEDLFIAHISGMDAMARALLNAA








AIVEKSEIPAMLKQRYASSDAGMGKDFEEGKLTLEQLVDYAKANGEPATVSGKQEKYETLVA







LYAK





5752MI1_003
Prevotella
DNA
157
ATGACTAAAGAGTATTTCCCGGGAATCGGAAAGATTCCGTTTGAAGGAACCAAGAGCAAGAA






CCCCCTGGCCTTCCATTATTATAACGCCTCCCAGGTAGCGATGGGCAAGCCCATGAAGGACT






GGCTCAAGTATGCCATGGCCTGGTGGCACACCCTGGGCCAGGCCTCTGCAGACCCCTTTGGC






GGCCAGACCCGCTCCTACGAATGGGACAAGGGCGAGTGCCCTTATTGCCGCGCCAAGCAGAA






GGCCGATGCCGGCTTTGAGCTCATGCAGAAGCTGGGCATCGAGTACTACTGCTTCCACGACG






TGGACATCATCGAGGACTGCGAGGACATTGCCGAGTACGAGGCCCGCATGAAGGACATCACG






GACTACCTGCTGGAGAAGCAGAAAGAGACCGGCATCAAGAACCTCTGGGGCACCGCCAACGT






GTTTGGCCACAAGCGCTACATGAACGGCGCCGCCACCAACCCTCAGTTTGACATTGTGGCCC






GTGCCGCCGTCCAGATCAAGAACGCCCTGGATGCCACCATCAAGCTGGGTGGTACCAACTAC






GTGTTCTGGGGTGGCCGCGAAGGCTACTACACGCTGCTCAACACCCAGATGCAGCGGGAGAA






GAACCACCTGGCCAAGATGCTCACCGCCGCCCGCGACTACGCCCGCGCCAAGGGCTTCAAGG






GCACCTTCCTCATTGAGCCCAAACCCATGGAGCCCACCAAGCACCAGTACGACGTGGACACC






GAGACCGTGATTGGTTTCATCCGCGCCAACGGCCTGGACAAGGACTTCAAGGTAAACATTGA






GGTAAACCACGCCACCCTGGCCGGCCACACCTTTGAGCACGAGCTCACCGTGGCCCGCGAGA






ACGGCTTCCTGGGCTCCATCGACGCCAACCGCGGAGATGCCCAGAACGGCTGGGATACGGAC






CAGTTCCCCATCGACGCCCTGGATCTCACCCAGGCTATGATGCAGGTCATCCTCAACGGTGG






CTTCGGCAATGGCGGCACCAACTTTGACGCCAAGCTCCGCCGCTCCTCCACCGATCCCGAGG






ACATCTTCATCGCCCACATCAGCGCCATGGATGCCATGGCACACGCCCTCCTGAACGCAGCC






GCCATCCTGGAAGAGAGCCCCCTGCCCGCCATGGTCAAGGAGCGTTACGCTTCCTTCGACAG






CGGTCTGGGCAAGAAGTTCGAAGAAGGCAAGGCCTCCCTGGAAGAACTTTACGAATATGCCA






AGAAGAATGGAGAGCCCGTGGCCGCTTCCGGCAAACAGGAGCTCTGCGAAACTTACTTGAAC






CTCTATGCAAAGTAG





5752MI1_003
Prevotella
Amino
158
MTKEYFPGIGKIPFEGTKSKNPLAFHYYNASQVAMGKPMKDWLKYAMAWWHTLGQASADPFG




Acid


GQTRSYEWDKGECPYCRAKQKADAGFELMQKLGIEYYCFHDVDIIEDCEDIAEYEARMKDIT








DYLLEKQKETGIKNLWGTANVFGHKRYMNGAATNPQFDIVARAAVQIKNALDATIKLGGTNY








VFWGGREGYYTLLNTQMQREKNHLAKMLTAARDYARAKGFKGTFLIEPKPMEPTKHQYDVDT








ETVIGFIRANGLDKDFKVNIEVNHATLAGHTFEHELTVARENGFLGSIDANRGDAQNGWDTD








QFPIDALDLTQAMMQVILNGGFGNGGTNFDAKLRRSSTDPEDIFIAHISAMDAMAHALLNAA








AILEESPLPAMVKERYASFDSGLGKKFEEGKASLEELYEYAKKNGEPVAASGKQELCETYLN







LYAK





5752MI2_003
Prevotella
DNA
159
ATGACTAAAGAGTATTTCCCGGGAATCGGAAAGATTCCGTTTGAAGGAACCAAGAGCAAGAA






CCCCCTGGCCTTCCATTATTATAACGCCTCCCAGGTAGTGATGGGCAAGCCCATGAAGGACT






GGCTCAAGTATGCCATGGCCTGGTGGCACACCCTGGGCCAGGCCTCTGCAGACCCCTTTGGC






GGCCAGACCCGCTCCTACGAATGGGACAAGGGCGAGTGCCCGTACTGCCGCGCCAAGCAGAA






GGCCGATGCCGGCTTTGAGCTCATGCAGAAGCTGGGCATCGAGTACTACTGCTTCCACGACG






TGGACATCATCGAGGACTGCGAGGACATTGCCGAGTACGAGGCCCGCATGAAGGACATCACG






GACTACCTGCTGGAGAAGCAGAAAGAGACCGGCATCAAGAACCTCTGGGGCACCGCCAACGT






GTTTGGCCACAAGCGCTACATGAACGGCGCCGCCACCAACCCTCAGTTTGACATTGTGGCCC






GTGCCGCCGTCCAGATCAAGAACGCCCTGGATGCCACCATCAAACTGGGTGGTACCAACTAC






GTGTTCTGGGGTGGCCGCGAAGGCTACTACACGCTGCTCAACACCCAGATGCAGCGGGAGAA






GAACCACCTGGCCAAGATGCTCACCGCCGCCCGCGACTACGCCCGCGCCAAGGGCTTCAAGG






GCACCTTCCTCATTGAGCCCAAACCCATGGAGCCCACCAAGCACCAGTACGACGTGGACACC






GAGACCGTGATTGGTTTCATCCGCGCCAACGGCCTGGACAAGGACTTCAAGGTAAACATTGA






GGTAAACCACGCCACCCTGGCCGGCCACACCTTTGAGCACGAGCTCACCGTGGCCCGCGAGA






ACGGCTTCCTGGGCTCCATCGACGCCAACCGCGGAGATGCCCAGAACGGCTGGGATACGGAC






CAGTTCCCCATCGACGCCCTGGATCTCACCCAGGCTATGATGCAGGTCATCCTCAACGGTGG






CTTCGGCAATGGCGGCACCAACTTTGACGCCAAGCTCCGCCGCTCCTCCACCGATCCCGAGG






ACATCTTCATCGCCCACATCAGCGCCATGGATGCCATGGCACACGCCCTCCTGAACGCAGCC






GCCATCCTGGAAGAGAGCCCCCTGCCCGCCATGGTCAAGGAGCGTTACGCTTCCTTCGACAG






CGGTCTGGGCAAGAAGTTCGAAGAAGGCAAGGCCTCCCTGGAAGAACTTTACGAATATGCCA






AGAAGAATGGAGAGCCCGTGGCCGCTTCCGGCAAACAGGAGCTCTGCGAAACTTACTTGAAC






CTCTATGCAAAGTAG





5752MI2_003
Prevotella
Amino
160
MTKEYFPGIGKIPFEGTKSKNPLAFHYYNASQVVMGKPMKDWLKYAMAWWHTLGQASADPFG




Acid


GQTRSYEWDKGECPYCRAKQKADAGFELMQKLGIEYYCFHDVDIIEDCEDIAEYEARMKDIT








DYLLEKQKETGIKNLWGTANVFGHKRYMNGAATNPQFDIVARAAVQIKNALDATIKLGGTNY








VFWGGREGYYTLLNTQMQREKNHLAKMLTAARDYARAKGFKGTFLIEPKPMEPTKHQYDVDT








ETVIGFIRANGLDKDFKVNIEVNHATLAGHTFEHELTVARENGFLGSIDANRGDAQNGWDTD








QFPIDALDLTQAMMQVILNGGFGNGGTNFDAKLRRSSTDPEDIFIAHISAMDAMAHALLNAA








AILEESPLPAMVKERYASFDSGLGKKFEEGKASLEELYEYAKKNGEPVAASGKQELCETYLN







LYAK





5752MI3_002
Prevotella
DNA
161
ATGGCAAAAGAGTATTTCCCGACTATCGGCAAGATTCCCTTCGAGGGCGTCGAATCCAAGAA






CCCGATGGCATTCCACTACTATGACGCGAACCGCGTCGTGATGGGCAAGCCCATGAAGGACT






GGCTCAAGTTCGCGATGGCCTGGTGGCACACCCTGGGACAGGCTTCCGGCGACCCGTTCGGC






GGCCAGACCCGTTCCTACGAGTGGGACAAGGGCGAGTGCCCCTACTGCCGCGCCAAGGCCAA






GGCCGACGCCGGCTTCGAGATCATGCAGAAGCTCGGTATCGAGTACTACTGCTTCCATGACA






TCGACCTCGTGGAGGACACCGAGGACATCGCCGAGTACGAGGCCCGCATGAAGGACATCACC






GACTACCTCGTCGAGAAGCAGAAGGAAACCGGCATCAAGAACCTCTGGGGCACGGCCAACGT






GTTCGGCAACAAGCGCTACATGAACGGCGCCGCCACGAACCCGCAGTTCGACGTCGTCGCCC






GCGCCGCCGTCCAGATCAAGAACGCCATCGACGCCACCATCAAGCTCGGCGGTACCGGTTAC






GTGTTCTGGGGCGGCCGTGAAGGCTACTACACCCTCCTGAACACCCAGATGCAGCGCGAGAA






GGACCACCTCGCCAAGATGCTCACCGCCGCCCGCGACTACGCCCGCGCCCACGGCTTCCAGG






GCACCTTCCTCATCGAGCCCAAGCCCATGGAGCCCACCAAGCACCAGTACGACGTGGACACG






GAGACCGTGATCGGCTTCCTGCGCGCCAACGGTCTGGACAAGGACTTCAAGGTCAATATCGA






GGTGAACCACGCCACCCTCGCCGGCCACACCTTCGAGCACGAGCTCACCGTGGCTGTCGATA






ACGGCTTCCTCGGCTCCATCGACGCCAACCGCGGCGACGCCCAGAACGGCTGGGACACCGAC






CAGTTCCCCGTGGACCCGTACGACCTCACCCAGGCCATGATGCAGATCATCCGCAACGGCGG






TTTCAAGGACGGCGGCACCAACTTCGACGCCAAGCTCCGCCGCTCTTCCACCGACCCGGAGG






ACATCTTCATCGCCCACATCAGCGCGATGGACGCCATGGCCCACGCCCTGCTGAACGCCGCC






GCCGTCATCGAGGAGAGCCCGCTCTGCAAGATGGTCGAGGAGCGCTACGCTTCCTTCGACAG






CGGCCTCGGCAAGCAGTTCGAGGAAGGCAAGGCCACCCTCGAGGACCTCTACGAGTATGCCA






AGAAGAATGGCGAGCCCGTCGTCGCCTCCGGCAAGCAGGAGCTCTACGAGACGCTGCTGAAC






CTTTACGCGAAGTAG





5752MI3_002
Prevotella
Amino
162
MAKEYFPTIGKIPFEGVESKNPMAFHYYDANRVVMGKPMKDWLKFAMAWWHTLGQASGDPFG




Acid


GQTRSYEWDKGECPYCRAKAKADAGFEIMQKLGIEYYCFHDIDLVEDTEDIAEYEARMKDIT








DYLVEKQKETGIKNLWGTANVFGNKRYMNGAATNPQEDVVARAAVQIKNAIDATIKLGGTGY








VFWGGREGYYTLLNTQMQREKDHLAKMLTAARDYARAHGFQGTFLIEPKPMEPTKHQYDVDT








ETVIGFLRANGLDKDFKVNIEVNHATLAGHTFEHELTVAVDNGFLGSIDANRGDAQNGWDTD








QFPVDPYDLTQAMMQIIRNGGFKDGGTNFDAKLRRSSTDPEDIFIAHISAMDAMAHALLNAA








AVIEESPLCKMVEERYASFDSGLGKQFEEGKATLEDLYEYAKKNGEPVVASGKQELYETLLN







LYAK





5752MI5_003
Prevotella
DNA
163
ATGGCAAAAGAGTATTTCCCGACAATCGGTAAGATCCCCTTCGAGGGACCCGAGTCCAAGAA






CCCGATGGCATTCCACTACTATGACGCGGAGCGCGTGGTGATGGGCAAGAAGATGAAGGACT






GGTTCAAGTTCGCGATGGCCTGGTGGCACACCCTGGGCCAGGCTTCCGCCGACCCGTTCGGC






GGCCAGACCCGCTCCTACGAGTGGGACAAGGGCGAAGGCCCCTGCTCCCGCGCCCGCGCCAA






GGCTGACGCCGGTTTCGAGATCATGCAGAAACTGGGCATCGGCTACTACTGCTTCCACGACA






TCGACCTGGTGGAGGACACCGAGGACATCGCCGAGTATGAAGCCCGCATGAAGGACATCACC






GACTACCTCGTGGAGAAGCAGAAGGAGACCGGCATCAAGAACCTCTGGGGCACGGCCAACGT






ATTCGGCAACAAGCCCTACATGAACGGCGCCGCCACGAACCCGCAGTTCGACATCGCCGCCC






GCGCGGCCCTGCAGACCAAGAACGCCATCGATGCCACCATCAAGCTGGGCGGCACCGGTTAC






GTGTTCTGGGGCGGCCGTGAAGGCTACTACACCCTCCTGAACACCCAGATGCAGCGCGAGAA






GGACCACCTTGCCAAGATGCTCACCGCGGCTCGCGACTATGCCCGCGCCCACGGCTTCAAGG






GCACCTTCTTCATCGAGCCGAAACCGATGGAGCCCACCAAGCACCAGTACGACGTGGACACG






GAGACCGTGATCGGCTTCCTCCGCGCCAACGGCCTGGACAAGGACTTCAAGGTGAACATCGA






AGTGAACCACGCCACCCTCGCCGGCCACACCTTCGAGCACGGGCTCACCGTGGCCGTTGACA






ACGGCTTCCTCGGCAGCATCGACGCCAACCGCGGAGACGCCCAGAACGGCTGGGATACCGAC






CAGTTCCCGGTGGATCCGTACGACCTCACCCAGGCGATGATCCAGATCATCCGCAATGGCGG






CTTCAAGGACGGCGGTACCAACTTCGACGCCAAGCTCCGCCGCTCTTCCACCGACCCGGAGG






ACATCTTCATCGCCCACATCAGCGCGATGGACGCCATGGCCCACGCCCTGCTGAACGCCGCC






GCCGTGCTCGAGGAGAGCCCGCTCTGCGAGATGGTTGCAAAGCGTTACGCTTCCTTCGACAG






CGGTCTCGGCAAGAAGTTCGAGGAAGGCAACGCCACCCTCGAGGAACTCTACGAGTACGCCA






AGGCGAAGGGCGAGGTCGTTGCCGAATCCGGCAAGCAGGAACTCTACGAGACCCTGCTGAAC






CTCTACGCGAAGTAG





5752MI5_003
Prevotella
Amino
164
MAKEYFPTIGKIPFEGPESKNPMAFHYYDAERVVMGKKMKDWFKFAMAWWHTLGQASADPFG




Acid


GQTRSYEWDKGEGPCSRARAKADAGFEIMQKLGIGYYCFHDIDLVEDTEDIAEYEARMKDIT








DYLVEKQKETGIKNLWGTANVFGNKPYMNGAATNPQFDIAARAALQTKNAIDATIKLGGTGY








VFWGGREGYYTLLNTQMQREKDHLAKMLTAARDYARAHGFKGTFFIEPKPMEPTKHQYDVDT








ETVIGFLRANGLDKDFKVNIEVNHATLAGHTFEHGLTVAVDNGFLGSIDANRGDAQNGWDTD








QFPVDPYDLTQAMIQIIRNGGFKDGGTNFDAKLRRSSTDPEDIFIAHISAMDAMAHALLNAA








AVLEESPLCEMVAKRYASFDSGLGKKFEEGNATLEELYEYAKAKGEVVAESGKQELYETLLN







LYAK





5752MI6_004
Prevotella
DNA
165
ATGGCAAAAGAGTATTTCCCGACAATCGGAAAGATCCCCTTCGAGGGCGCTGAGAGCAAGAA






TCCCCTTGCTTTCCACTATTATGACGCCGAGCGTGTGGTCATGGGCAAGCCCATGAAGGACT






GGTTCAAGTTCGCGATGGCCTGGTGGCACACCCTGGGCCAGGCTTCCGCCGACCCGTTCGGC






GGCCAGACCCGCTCCTACGAGTGGGACAAGGGCGAGTGCCCCTACTGCCGCGCCCGCCAGAA






GGCTGACGCCGGTTTCGAGATCATGCAGAAGCTCGGCATCGGCTACTACTGCTTCCACGACA






TCGACCTGGTCGAGGACACCGAGGACATCGCCGAGTACGAGGCCCGCATGAAGGACATCACC






GACTACCTCGTCGAGAAGCAGAAGGAGACCGGCATCAAGAACCTCTGGGGCACGGCCAACGT






GTTCGGCAACAAGCGCTACATGAACGGCGCCGCCACGAACCCGCAGTTCGACATCGTCGCCC






ACGCGGCCCTGCAGATCAAGAACGCGATCGGCGCCACCATCAAGCTCGGCGGCACCGGTTAC






GTGTTCTGGGGCGGCCGTGAAGGTTACTACACCCTCCTGAACACCCAGATGCAGCGCGAGAA






GGACCACCTCGCCAAGATGCTCACCGCCGCCCGCGACTACGCCCGCGCCAACGGCTTCAAGG






GCACCTTCCTCATCGAGCCGAAGCCGATGGAGCCCACCAAGCACCAGTATGACGTGGACACG






GAGACCGTGATCGGCTTCCTCCGCGCCAACGGCCTGGACAAGGACTTCAAGGTGAACATCGA






GGTGAACCACGCCACCCTCGCCGGCCACACCTTCGAGCACGAGCTCACCGTGGCGGTCGACA






ACGGCTTCCTCGGCAGCATCGACGCCAACCGCGGTGACGCCCAGAACGGCTGGGATACCGAC






CAGTTCCCGGTGGATCCGTACGATCTCACCCAGGCGATGATCCAGATCATCCGCAACGGCGG






CTTCAAGGATGGCGGCACCAACTTCGACGCCAAGCTCCGCCGCTCTTCCACCGACCCGGAGG






ACATCTTCATCGCCCACATCAGCGCGATGGACGCCATGGCCCACGCCCTGCTGAACGCCGCC






GCCGTCATCGAGGAGAGCCCGCTCTGCGAGATGGTCGCCAAGCGCTACGCTTCCTTCGACAG






CGGTCTCGGCAAGAAGTTCGAGGAAGGCAACGCCACCCTCGAGGAACTCTACGAGTACGCCA






AGGCGAACGGTGAGGTCAAGGCCGAATCCGGCAAGCAGGAGCTCTACGAGACCCTTCTGAAC






CTCTACGCGAAATAG





5752MI6_004
Prevotella
Amino
166
MAKEYFPTIGKIPFEGAESKNPLAFHYYDAERVVMGKPMKDWFKFAMAWWHTLGQASADPFG




Acid


GQTRSYEWDKGECPYCRARQKADAGFEIMQKLGIGYYCFHDIDLVEDTEDIAEYEARMKDIT








DYLVEKQKETGIKNLWGTANVFGNKRYMNGAATNPQFDIVAHAALQIKNAIGATIKLGGTGY








VFWGGREGYYTLLNTQMQREKDHLAKMLTAARDYARANGFKGTFLIEPKPMEPTKHQYDVDT








ETVIGFLRANGLDKDFKVNIEVNHATLAGHTFEHELTVAVDNGFLGSIDANRGDAQNGWDTD








QFPVDPYDLTQAMIQIIRNGGFKDGGTNFDAKLRRSSTDPEDIFIAHISAMDAMAHALLNAA








AVIEESPLCEMVAKRYASFDSGLGKKFEEGNATLEELYEYAKANGEVKAESGKQELYETLLN







LYAK





5753MI1_002
Prevotella
DNA
167
ATGGCAAAAGAGTATTTCCCCACTATCGGGAAGATTCCTTTCGAAGGAGTCGAGAGCAAGAA






CCCCCTTGCATTCCATTATTATGACGCAAACCGCATGGTCATGGGCAAGCCCATGAAGGACT






GGTTCAAGTTCGCCATGGCATGGTGGCACACCCTGGGACAGGCCTCCGCAGACCCGTTCGGC






GGCCAGACCCGCTCCTACGAATGGGACAAGGGCGAATGCCCCTACTGCCGCGCCAGGGCAAA






GGCCGATGCCGGCTTCGAGATCATGCAGAAACTGGGTATCGAGTATTTCTGCTTCCATGACA






TCGACCTGGTAGAGGACTGCGACGACATCGCCGAGTACGAGGCCCGCATGAAGGACATCACG






GACTATCTCCTGGAGAAGATGAAGGAAACCGGCATCAAGAACCTCTGGGGCACCGCCAACGT






GTTCGGCAACAAGCGTTACATGAACGGCGCCGGCACCAATCCGCAGTTCGACGTAGTGGCCC






GCGCTGCCGTCCAGATCAAGAACGCCATCGACGCCACCATCAAGCTCGGCGGTTCCAACTAT






GTGTTCTGGGGCGGCCGTGAAGGATACTACACCCTGCTGAACACCCAGATGCAGCGCGAGAA






GGACCACCTCGGCAAACTGCTCACCGCCGCCCGCGACTATGCCCGCAAGAACGGCTTCAAGG






GCACCTTCCTCATCGAGCCCAAGCCGATGGAGCCCACCAAGCACCAGTACGACGTAGACACG






GAGACCGTGATCGGCTTCCTCCGCGCCAACGGCCTGGAGAAAGACTTCAAGGTGAACATCGA






GGTGAACCACGCCACCCTGGCCGGCCATACCTTCGAGCATGAACTCACCGTGGCCGTGGACA






ACGGCTTCCTGGGATCCATCGACGCCAACCGCGGCGACGCCCAGAACGGCTGGGATACGGAC






CAGTTCCCGGTAGACCCGTACGACCTCACCCAGGCCATGATGCAGATCATCCGCAACGGCGG






CCTCGGCAACGGCGGTACCAACTTCGACGCCAAACTGCGCCGTTCCTCCACCGATCCTGAGG






ACATCTTCATCGCCCACATCAGCGCCATGGACGCCATGGCCCACGCCCTGCTCAACGCAGCC






GCCGTGCTGGAAGAAAGTCCGCTCTGTGAGATGGTCAAGGAGCGCTACGCTTCCTTCGACAG






CGGTCTCGGCAAGAAGTTCGAAGAGGGCAAGGCTACCCTGGAAGAAATCTACGAGTATGCCA






AGAAGAGCGGCGAACCCGTGGTCGCTTCCGGCAAGCAGGAGCTCTACGAAACCCTGCTGAAC






CTCTACGCCAAGTAG





5753MI1_002
Prevotella
Amino
168
MAKEYFPTIGKIPFEGVESKNPLAFHYYDANRMVMGKPMKDWFKFAMAWWHTLGQASADPFG




Acid


GQTRSYEWDKGECPYCRARAKADAGFEIMQKLGIEYFCFHDIDLVEDCDDIAEYEARMKDIT








DYLLEKMKETGIKNLWGTANVFGNKRYMNGAGTNPQEDVVARAAVQIKNAIDATIKLGGSNY








VFWGGREGYYTLLNTQMQREKDHLGKLLTAARDYARKNGFKGTFLIEPKPMEPTKHQYDVDT








ETVIGFLRANGLEKDFKVNIEVNHATLAGHTFEHELTVAVDNGFLGSIDANRGDAQNGWDTD








QFPVDPYDLTQAMMQIIRNGGLGNGGTNFDAKLRRSSTDPEDIFIAHISAMDAMAHALLNAA








AVLEESPLCEMVKERYASFDSGLGKKFEEGKATLEEIYEYAKKSGEPVVASGKQELYETLLN







LYAK





5753MI2_002
Prevotella
DNA
169
ATGGCTAAAGAATACTTCCCCTCCATCGGCAAAATCCCTTTTGAAGGAGGCGACAGCAAAAA






TCCCCTCGCTTTCCATTATTATGACGCCGGACGCGTGGTTATGGGCAAGCCCATGAAGGAAT






GGCTTAAATTCGCCATGGCCTGGTGGCACACGCTGGGCCAGGCCTCCGGAGACCCCTTCGGC






GGCCAGACCCGCAGCTACGAATGGGACAAGGGCGAATGCCCCTACTGCCGCGCCAAAGCCAA






GGCCGACGCCGGTTTTGAAATCATGCAAAAGCTGGGTATCGAATACTTCTGCTTCCACGATG






TGGACCTTATCGAGGATTGCGATGACATTGCCGAATACGAAGCCCGCATGAAGGACATCACG






GACTACCTGCTGGAAAAGATGAAGGAGACCGGCATCAAGAACCTCTGGGGCACCGCCAATGT






CTTCGGCCACAAGCGCTACATGAACGGCGCCGCCACGAACCCGCAGTTCGACGTGGTCGCCC






GCGCCGCCGTCCAGATCAAGAACGCGATTGACGCCACCATCAAGCTCGGCGGTACCAGTTAT






GTATTCTGGGGCGGCCGCGAGGGCTACTACACCCTCCTGAACACCCAGATGCAGCGTGAGAA






AGACCACCTGGCCAAGATGCTCACCGCAGCCCGCGACTACGCCCGCGCCAAGGGCTTCAAGG






GCACCTTCCTCATCGAGCCCAAGCCGATGGAGCCCACCAAGCACCAGTACGACGTTGACACG






GAGACCGTGATCGGCTCCCTGCGCGCCAACGGCCTGGACAAGGACTTCAAGGTGAACATCGA






GGTGAACCACGCCACCCTGGCCGGCCACACCTTCGAGCACGAACTCACCGTGGCTGTTGACA






ACGGCTTCCTGGGCTCCATCGACGCCAACCGCGGCGACGCCCAGAACGGCTGGGATACGGAC






CAGTTCCCGGTAGACCCGTACGACCTCACCCAGGCCATGATGCAGATTATCCGCAACGGCGG






CTTCAAGGACGGCGGCACCAACTTCGATGCCAAACTGCGCCGCTCTTCCACCGATCCGGAAG






ACATCTTCATCGCCCACATCAGCGCTATGGATGCCATGGCACACGCCCTGCTCAACGCCGCC






GCCGTGCTGGAAGAGAGCCCGCTGTGCAACATGGTCAAGGAGCGTTACGCCGGCTTCGACAG






CGGCCTTGGCAAGAAGTTCGAGGAAGGGAAGGCAACGCTGGAGGAAATCTATGACTATGCCA






AGAAGAGCGGCGAACCCGTCGTGGCTTCCGGCAAGCAGGAACTCTACGAAACCATCCTGAAC






CTCTATGCCAAGTAG





5753MI2_002
Prevotella
Amino
170
MAKEYFPSIGKIPFEGGDSKNPLAFHYYDAGRVVMGKPMKEWLKFAMAWWHTLGQASGDPFG




Acid


GQTRSYEWDKGECPYCRAKAKADAGFEIMQKLGIEYFCFHDVDLIEDCDDIAEYEARMKDIT








DYLLEKMKETGIKNLWGTANVFGHKRYMNGAATNPQFDVVARAAVQIKNAIDATIKLGGTSY








VFWGGREGYYTLLNTQMQREKDHLAKMLTAARDYARAKGFKGTFLIEPKPMEPTKHQYDVDT








ETVIGSLRANGLDKDFKVNIEVNHATLAGHTFEHELTVAVDNGFLGSIDANRGDAQNGWDTD








QFPVDPYDLTQAMMQIIRNGGFKDGGTNFDAKLRRSSTDPEDIFIAHISAMDAMAHALLNAA








AVLEESPLCNMVKERYAGFDSGLGKKFEEGKATLEEIYDYAKKSGEPVVASGKQELYETILN







LYAK





5753MI4_002
Prevotella
DNA
171
ATGTCAAAAGAGTATTTCCCTACAATCGGCAGGGTCCCCTTCGAGGGACCTGAGAGCAAGAA






TCCGCTGGCGTTCCACTATTACGAGCCGGACCGGCTCGTCCTGGGCAGGAAAATGAAGGACT






GGCTGCGCTTCGCAATGGCCTGGTGGCATACGCTCGGGCAGGCTTCCGGCGACCAGTTCGGC






GGACAGACCTGCACATACGCCTGGGATGAAGGCGAGTGTCCCGTCTGCCGGGCAAAGGCCAA






GGCTGACGCCGGCTTTGAACTGATGCAGAAACTGGGCATCGGGTATTTCTGCTTCCACGACG






TGGACCTGGTCGAGGAGGCCGACACCATTGAAGAATACGAGGAGCGGATGCGGATCATCACC






GACTACCTGCTCGAGAAGATGGAAGAGACCGGCATCCGCAATCTCTGGGGAACCGCCAATGT






CTTCGGACACAAGCGCTATATGAACGGCGCCGCCACCAATCCCGACTTCGACGTCGTGGCCC






GTGCCGCGGTCCAGATCAAGAATGCCATCGATGCCACCATCAAACTGGGTGGTGAGAACTAT






GTGTTCTGGGGTGGCCGCGAGGGCTATACGAGCCTGCTCAACACGCAGATGCACCGGGAAAA






ACACCACCTCGGAAATATGCTCAGGGCAGCCCGCGACTATGGCCGTGCCCACGGTTTCAAGG






GAACGTTCCTGATCGAGCCCAAGCCGATGGAGCCGACCAAGCATCAGTACGACCAGGATACG






GAGACGGTCATCGGTTTCCTGCGCTGTCACGGCCTGGACAAGGATTTCAAGGTGAACATCGA






GGTGAACCACGCCACGCTCGCCGGACACACCTTCGAGCACGAACTGGCCACTGCGGTCGATG






CCGGCCTGCTGGGCAGCATCGATGCCAACCGCGGCGACGCCCAGAACGGCTGGGATACCGAC






CAGTTCCCGATCGACAACTACGAACTCACGCTGGCGATGCTGCAGATCATCCGCAATGGCGG






ACTCGCACCCGGCGGATCGAACTTCGATGCCAAGTTGCGCCGCAATTCCACCGATCCGGAAG






ACATCTTCATCGCCCACATCAGCGCGATGGACGCGATGGCCCGTGCCCTGCTCAATGCGGCG






GCCATCTGGACCGAATCGCCGATTCAGGATATGGTCAGGGACCGCTATGCTTCCTTCGACAG






CGGAAAGGGCAGGGAGTTCGAGGAAGGCAGACTCAGTCTGGAAGACCTCGTGGCCTATGCGA






AGGAGCACGGTGAGCCGCGCCAGATCTCCGGCAGGCAGGAACTTTATGAAACCATCGTAGCG






CTTTACTGCAGGTAA





5753MI4_002
Prevotella
Amino
172
MSKEYFPTIGRVPFEGPESKNPLAFHYYEPDRLVLGRKMKDWLRFAMAWWHTLGQASGDQFG




Acid


GQTCTYAWDEGECPVCRAKAKADAGFELMQKLGIGYFCFHDVDLVEEADTIEEYEERMRIIT








DYLLEKMEETGIRNLWGTANVFGHKRYMNGAATNPDFDVVARAAVQIKNAIDATIKLGGENY








VFWGGREGYTSLLNTQMHREKHHLGNMLRAARDYGRAHGFKGTFLIEPKPMEPTKHQYDQDT








ETVIGFLRCHGLDKDFKVNIEVNHATLAGHTFEHELATAVDAGLLGSIDANRGDAQNGWDTD








QFPIDNYELTLAMLQIIRNGGLAPGGSNFDAKLRRNSTDPEDIFIAHISAMDAMARALLNAA








AIWTESPIQDMVRDRYASFDSGKGREFEEGRLSLEDLVAYAKEHGEPRQISGRQELYETIVA







LYCR





5752MI4_004
Prevotella
DNA
173
ATGACTAAAGAGTATTTCCCGGGAATCGGAACGATTCCGTTTGAAGGAACCAAGAGCAAGAA






CCCCCTGGCCTTCCATTATTATAACGCCTCCCAGGTAGTGATGGGCAAGCCCATGAAGGACT






GGCTCAAGTATGCCATGGCCTGGTGGCACACCCTGGGCCAGGCCTCTGCAGACCCCTTTGGC






GGCCAGACCCGCTCCTACGAATGGGACAAGGGCGAGTGCCCGTACTGCCGCGCCAAGCAGAA






GGCCGATGCCGGCTTTGAGCTCATGCAGAAGCTGGGCATCGAGTACTACTGCTTCCACGACG






TGGACATCATCGAGGACTGCGAGGACATTGCCGAGTACGAGGCCCGCATGAAGGACATCACG






GACTACCTGCTGGAGAAGCAGAAAGAGACCGGCATCAAGAACCTCTGGGGCACCGCCAACGT






GTTTGGCCACAAGCGCTACATGAACGGCGCCGCCACCAACCCTCAGTTTGACATTGTGGCCC






GTGCCGCCGTCCAGATCAAGAACGCCCTGGATGCCGCCATCAAACTGGGTGGTACCAACTAC






GTGTTCTGGGGTGGCCGCGAAGGCTACTACACGCTGCTCAACACCCAGATGCAGCGGGAGAA






GAACCACCTGGCCAAGATGCTCACCGCCGCCCGCGACTACGCCCGCGCCAAGGGCTTCAAGG






GCACCTTCCTCATTGAGCCCAAACCCATGGAGCCCACCAAGCACCAGTACGACGTGGACACC






GAGACCGTGATTGGTTTCATCCGCGCCAACGGCCTGGACAAGGACTTCAAGGTAAACATTGA






GGTAAACCACGCCACCCTGGCCGGCCACACCTTTGAGCACGAGCTCACCGTGGCCCGCGAGA






ACGGCTTCCTGGGCTCCATCGACGCCAACCGCGGAGATGCCCAGAACGGCTGGGATACGGAC






CAGTTCCCCATCGACGCCCTGGATCTCACCCAGGCTATGATGCAGGTCATCCTCAACGGTGG






CTTCGGCAATGGCGGCACCAACTTTGACGCCAAGCTCCGCCGCTCCTCCACCGATCCCGAGG






ACATCTTCATCGCCCACATCAGCGCCATGGATGCCATGGCACACGCCCTCCTGAACGCAGCC






GCCATCCTGGAAGAGAGCCCCCTGCCCGCCATGGTCAAGGAGCGTTACGCTTCCTTCGACAG






CGGTCTGGGCAAGAAGTTCGAAGAAGGCAAGGCCTCCCTGGAAGAACTTTACGAATATGCCA






AGAAGAATGGAGAGCCCGTGGCCGCTTCCGGCAAACAGGAGCTCTGCGAAACTTACTTGAAC






CTCTATGCAAAGTAG





5752MI4_004
Prevotella
Amino
174
MTKEYFPGIGTIPFEGTKSKNPLAFHYYNASQVVMGKPMKDWLKYAMAWWHTLGQASADPFG




Acid


GQTRSYEWDKGECPYCRAKQKADAGFELMQKLGIEYYCFHDVDIIEDCEDIAEYEARMKDIT








DYLLEKQKETGIKNLWGTANVFGHKRYMNGAATNPQFDIVARAAVQIKNALDAAIKLGGTNY








VFWGGREGYYTLLNTQMQREKNHLAKMLTAARDYARAKGFKGTFLIEPKPMEPTKHQYDVDT








ETVIGFIRANGLDKDFKVNIEVNHATLAGHTFEHELTVARENGFLGSIDANRGDAQNGWDTD








QFPIDALDLTQAMMQVILNGGFGNGGTNFDAKLRRSSTDPEDIFIAHISAMDAMAHALLNAA








AILEESPLPAMVKERYASFDSGLGKKFEEGKASLEELYEYAKKNGEPVAASGKQELCETYLN







LYAK





727MI4_006
Rhizobiales
DNA
175
GTGACTGATTTCTTCAAGGGCATCGCGCCCGTCAAGTTTGAGGGGCCGCAGAGCTCCAATCC






GCTGGCCTATCGCCACTATAACAAGGACGAAATCGTCCTCGGCAAGCGGATGGAAGACCATA






TCCGTCCCGGCGTTGCCTATTGGCACACCTTCGCCTATGAGGGCGGCGATCCGTTTGGCGGC






CGCACCTTCGATCGCCCCTGGTTCGACAAGGGTATGGACGGCGCCCGCCTCAAGGCCGACGT






GGCCTTCGAACTGTTCGACCTGCTCGACGTTCCTTTCTTCTGTTTCCACGATGCTGATATCG






CTCCCGAAGGCGCAACGCTGGCCGAGAGCAACCGCAATGTGCGCGAGATTGGCGAGATCTTC






GCTCGCAAGATGGAAACCAGCCGCACCAAGCTGCTCTGGGGTACGGCAAACCTGTTCTCCAA






TCGCCGCTACATGGCCGGCGCCGCCACCAACCCGGACCCGGAAATCTTCGCCTATGCCGCTG






GGCAGGTGAAGAACGTGCTGGAACTGACCCACGAACTGGGCGGCGCCAACTATGTGCTGTGG






GGCGGTCGCGAGGGTTATGAAACCCTGCTCAACACCAAGATCGGCCAGGAAATGGACCAGAT






GGGCCGTTTTCTGTCGATGGTCGTCGAGCATGCCGAAAAGATCGGCTTCAAGGGCCAGATCC






TGATCGAGCCCAAGCCGCAGGAGCCGAGCAAGCACCAGTATGACTTCGACGTTGCAACCGTT






TACGGCTTCCTCAAGAAGTATGGTCTCGAAACCAAGGTGAAGTGCAATATCGAGGTCGGCCA






TGCCTTCCTCGCCAATCACTCCTTCGAGCATGAACTGGCTTTGGCCGCATCGCTGGGCATTC






TCGGCTCGGTCGACGCCAATCGCAACGATCTACAGTCCGGCTGGGATACCGACCAGTTCCCC






AATAATGTCCCCGAAACCGCACTCGCCTTCTATCAGATTCTCAAGGCGGGCGGACTGGGCAA






TGGCGGCTGGAACTTCGACGCCCGCGTGCGCCGCCAGTCACTTGATCCGGCCGACCTGCTGC






ACGGCCATATCGGCGGCCTCGACGTGCTGGCGCGCGGCCTCAAGGCCGCCGCGGCGCTGATC






GAGGACGGCACCTATGACAAGGTCGTCGACGCCCGCTATGCCGGCTGGAACCAGGGCCTGGG






CAAGGATATCCTTGGTGGCAAGCTGAACCTTGCCGACCTGGCTGCCAAGGTCGACGCCGAAA






ACCTCAACCCGCAGCCTAGGTCCGGCCAGCAGGAATATCTCGAAAACCTGATCAACCGGTTC






GTTTAG





727MI4_006
Rhizobiales
Amino
176
MTDFFKGIAPVKFEGPQSSNPLAYRHYNKDEIVLGKRMEDHIRPGVAYWHTFAYEGGDPFGG




Acid


RTFDRPWFDKGMDGARLKADVAFELFDLLDVPFFCFHDADIAPEGATLAESNRNVREIGEIF








ARKMETSRTKLLWGTANLFSNRRYMAGAATNPDPEIFAYAAGQVKNVLELTHELGGANYVLW








GGREGYETLLNTKIGQEMDQMGRELSMVVEHAEKIGFKGQILIEPKPQEPSKHQYDFDVATV








YGFLKKYGLETKVKCNIEVGHAFLANHSFEHELALAASLGILGSVDANRNDLQSGWDTDQFP








NNVPETALAFYQILKAGGLGNGGWNFDARVRRQSLDPADLLHGHIGGLDVLARGLKAAAALI








EDGTYDKVVDARYAGWNQGLGKDILGGKLNLADLAAKVDAENLNPQPRSGQQEYLENLINRF







V









Example 5
Quantification of XI Enzyme Activity

The clones identified in the ABD and SBD screens (see Table 2) were subcloned into vector p426PGK1 (FIG. 3), a modified version of p426GPD (ATCC accession number 87361) in which the GPD promoter was replaced with the PGK1 promoter from Saccharomyces cerevisiae (ATCC accession number 204501) gDNA. The clones were then transformed into yeast strain MYA11008.


Cells were grown as described in the materials and methods. Cell pellets were resuspended in about 300 μl of lysis buffer: approximate concentrations (50 mM NaH2PO4 (pH 8.0), 300 mM NaCl, 10 mM imidazole (Sigma, #15513), to which was added about 2 μl/ml beta-mercaptoethanol (BME)), and protease inhibitor cocktail tablet (Roche, 11836170001) (1 tablet for about 10 ml cell extract). The cell suspension was added to a 2 ml screw-cap microcentrifuge tube that had been pre-aliquotted with about 0.5 ml of acid washed glass beads (425-600 μm). Cells were lysed using a FastPrep-24 (MP Biomedicals, Solon, Ohio) at amplitude setting of about 6 for about 3 repetitions of about 1 minute. Cells were chilled on ice for about 5 minutes between repetitions. Samples were centrifuged at about 10,000×g for about 10 minutes at 4° C. Recovered supernatants were used in the XI enzyme activity assay. XI enzyme activity was performed as described in the materials and methods. Results are shown in Table 3.









TABLE 3







XI activity at pH 7.5










Volumetric



SEQ ID NO:
Activity
FIOPC












2
−60.73
2.58


4
−21.84
0.93


6
0.86
−0.05


8
−2.14
0.12


10
−2.38
0.13


12
−12.82
0.54


14
−26.97
1.45


16
−76.50
4.12


18
−15.32
0.83


20
−5.33
0.29


22
0.48
−0.03


24
0.36
−0.02


26
0.81
−0.04


28
−6.65
0.36


30
−9.10
0.49


32
−38.10
2.05


34
−21.76
1.17


36
−13.82
0.59


38
−17.58
0.75


40
−12.34
0.52


42
−74.88
3.18


44
−37.10
1.57


46
−35.57
1.51


48
−24.69
1.05


50
−32.23
1.37


52
−26.72
1.13


54
−90.79
3.85


56
−39.89
1.69


58
−74.26
3.15


60
−11.91
0.64


62
−15.43
0.83


64
−12.98
0.70


66
−27.45
1.48


68
−29.43
1.59


70
−4.54
0.24


72
−8.93
0.48


74
−0.20
0.01


76
−0.33
0.02


78
−50.55
2.15


80
−57.13
2.42


82
−58.09
2.47


84
−46.42
1.97


86
−35.95
1.53


88
−2.16
0.09


90
−32.77
1.39


92
−30.82
1.31


94
−8.16
0.35


96
−46.18
1.96


98
−30.05
1.28


100
−8.40
0.45


102
−8.34
0.45


104
−3.80
0.20


106
−4.81
0.26


108
−12.06
0.65


110
−6.10
0.33


112
−7.71
0.42


114
−4.17
0.22


116
−7.07
0.38


118
−13.50
0.73


120
−1.15
0.06


122
0.03
0.00


124
−4.41
0.24


126
−0.85
0.05


128
−14.60
0.79


130
−17.26
0.93


132
−0.75
0.04


134
−11.55
0.62


136
−7.20
0.39


138
0.16
−0.01


140
−3.63
0.20


142
−3.63
0.20


144
−1.20
0.06


146
−16.77
0.90


148
−2.00
0.11


150
−1.40
0.08


152
−3.63
0.20


154
−7.09
0.38


156
−0.96
0.05


158
−2.79
0.15


160
−3.23
0.17


162
−10.17
0.55


164
−0.51
0.03


166
−3.43
0.19


168
−5.65
0.30


170
−2.35
0.13


172
−1.20
0.06


174
−2.29
0.12


176
−1.92
0.08


Op-XI (ABD)
−23.56
NA


Op-XI (SBD)
−18.55
NA


Vo-ctrl
−1.74
NA









Example 6
Growth of Yeast Containing XI Clones on Xylose

A subset of the XI genes from Example 5 were expressed in Saccharomyces cerevisiae CEN.PK2-1Ca (ATCC: MYA1108) and assayed for ability to confer the ability to grow on xylose. This assay was carried out as follows: colonies were isolated on SC-ura+2% glucose agar plates and inoculated into about 3 ml “pre-cultures” of both SC-ura 2% glycerol and SC-ura 2% xylose media, incubated at about 30° C., about 220 rpm, overnight. Cells were harvested by centrifugation (about 100×g, 5 minutes), supernatant discarded and washed twice and resuspended in about 1 ml of SC-ura 2% xylose. Cells were inoculated into Biolector plates, containing SC-ura, 2% xylose, and inoculums were normalized to two different starting optical densities of about OD600 0.2 and 0.4. Plates were covered using gas permeable seals and incubated in a BioLector microfermentation device (m2p-labs, Model G-BL100) at about 30° C. for about 4 days at 800 rpm and 90% humidity. Growth readings from the Biolector were acquired for 60-100 hours according to manufacturer's recommendations. Results are shown in FIG. 4.


Example 7
Ethanol Production Under Anaerobic Conditions

A subset of the XI expressing yeast clones in strain Saccharomyces cerevisiae CEN.PK2-1Ca (ATCC: MYA1108) were assayed for ability to ferment xylose to ethanol (EtOH). In brief, single colonies were inoculated into about 25 ml of SC-ura medium supplemented with about 0.1% glucose and about 3% xylose. Cultures were incubated under microaerobic conditions at about 30° C. and about 200 rpm. Samples were harvested at about 0, 24, 48, 72 h, and ethanol concentration determined via HPLC standard assays. Ethanol productivity was calculated, and listed in units of grams of EtOH-per liter per hour, and FIOPC was generated comparing productivity of the control Op-XI. Results are shown in Table 4.









TABLE 4







Anaerobic EtOH Production.











Time (h)
EtOH














SEQ ID NO:
0
24
48
72
(g/L/h)
FIOPC
















6
0.28
0
0
0
−0.004
−0.5


8
0
0
0
0
0.000
0.0


10
0
0
0
0
0.000
0.0


14
0.37
0.28
0.71
1.24
0.013
1.7


16
0.33
0.275
0.72
1.06
0.011
1.4


18
0.29
0.135
0.31
0.595
0.005
0.6


20
0.33
0
0
0
−0.004
−0.5


22
0.32
0
0
0
−0.004
−0.5


24
0.28
0
0
0
−0.004
−0.5


26
0.26
0
0
0
−0.003
−0.4


28
0.23
0.385
1.015
1.54
0.019
2.5


30
0.27
0
0
0.07
−0.003
−0.3


32
0
0.165
0.48
0.815
0.012
1.5


34
0
0.125
0.33
0.615
0.009
1.1


36
0
0
0
0
0.000
0.0


46
0
0.285
0.905
1.625
0.023
3.0


60
0.45
0.35
0.87
1.39
0.014
1.8


62
0
0
0
0.065
0.001
0.1


64
0.38
0.275
0.735
1.18
0.012
1.6


66
0
0
0.12
0.22
0.003
0.4


68
0
0.05
0.275
0.5
0.007
0.9


70
0
0
0
0
0.000
0.0


72
0.119
0
0.054
0.1685
0.001
0.1


74
0.21
0.11
0.275
0.57
0.005
0.7


76
0.28
0
0
0
−0.004
−0.5


90
0
0.24
0.69
1.09
0.016
2.0


100
0.104
0.642
0.141
0.366
0.001
0.2


102
0.185
0
0
0.054
−0.002
−0.2


104
0.235
0.536
0
0
−0.005
−0.7


106
0.188
0.4835
0
0
−0.004
−0.6


108
0.19
0.5855
0.1455
0.313
0.000
0.0


110
0.3
0
0
0.05
−0.003
−0.4


112
0.19
0.5535
0.106
0.1135
−0.003
−0.4


114
0.174
0
0
0
−0.002
−0.3


116
0.15
0
0.0515
0.211
0.001
0.1


118
0.177
0.7075
0.5065
0.941
0.009
1.1


120
0.153
0
0
0
−0.002
−0.2


122
0.169
0.553
0
0.074
−0.003
−0.5


124
0.125
0
0
0
−0.002
−0.2


126
0.32
0
0
0
−0.004
−0.5


128
0
0
0
0
0.000
0.0


130
0
0
0
0
0.000
0.0


132
0.121
0
0
0
−0.002
−0.2


134
0.118
0
0
0.1105
0.000
0.0


136
0.108
0
0
0
−0.001
−0.2


138
0.172
0.513
0
0
−0.004
−0.6


140
0.17
0.542
0
0.3135
0.000
−0.1


142
0.102
0
0
0
−0.001
−0.2


144
0.28
0
0
0
−0.004
−0.5


146
0.103
0.635
0.263
0.563
0.004
0.5


150
0.27
0
0
0
−0.003
−0.4


149
0.27
0
0
0
−0.003
−0.4


152
0.17
0
0
0
−0.002
−0.3


154
0.23
0
0
0
−0.003
−0.4


156
0.23
0
0.
0
−0.003
−0.4


158
0.4
0
0.105
0.23
−0.002
−0.2


160
0.38
0
0
0
−0.005
−0.6


162
0.36
0.055
0.23
0.41
0.001
0.2


164
0.32
0
0
0
−0.004
−0.5


166
0.31
0
0
0
−0.004
−0.5


168
0.32
0
0.295
0.6
0.005
0.6


170
0.164
0.4995
0
0
−0.004
−0.5


172
0.27
0
0
0
−0.003
−0.4


174
0.3
0
0.17
0.345
0.001
0.2


OP-XI (pos)
0.2385
0.5875
0.6965
0.81508
0.008
NA


Host-(neg)
0.23625
0.088125
0
0
−0.003
NA









Example 8
Impact of PH on XI Activity

Extracts from strain Saccharomyces cerevisiae CEN.PK2-1Ca (ATCC: MYA1108, expressing XI gene candidates in vector p426PGK1, were prepared as described in the Materials and Methods and assayed for XI activity at pH 7.5 and pH 6.0. Percent activity listed was calculated by dividing the VA at pH 6 by the VA at pH 7.5 and multiplying by 100. Results are listed in Table 5.









TABLE 5







XI activity at pH 6 and pH 7.5












Organism
VA, pH 6
VA, pH 7.5
Percent


SEQ ID NO:
Classification
(U/ml)
(U/ml)
activity (pH 6)














2
Bacteroidales
1.92
2.59
74%


14

Bacteroides

0.32
0.98
32%


16

Bacteroides

1.16
2.40
48%


32

Bacteroides

1.17
2.21
53%


38
Firmicutes
2.46
2.77
89%


42
Firmicutes
1.71
2.18
79%


44
Firmicutes
0.19
0.25
76%


46
Firmicutes
1.49
1.95
76%


50
Firmicutes
0.81
0.95
86%


52
Firmicutes
0.02
0.08
26%


54
Neocallimastigales
1.46
2.90
51%


58
Neocallimastigales
1.89
3.05
62%


68
Neocallimastigales
1.50
1.97
76%


72
Neocallimastigales
0.57
1.04
55%


78

Prevotella

2.40
3.61
67%


80

Prevotella

1.52
2.29
66%


82

Prevotella

1.48
1.65
89%


84

Prevotella

1.79
2.96
61%


96

Prevotella

2.13
3.56
60%


116

Prevotella

0.06
0.13
47%


Host-neg

0.04
0.02
NA


Op-XI

0.61
1.25
49%









Example 9
KM for Selected XI Clones

The Km and Vmax at pH 6 were determined for a subset of the XI clones, expressed on p426PGK1 vector in Saccharomyces cerevisiae CEN.PK2-1Ca (ATCC: MYA1108), using the XI activity assay described in the Materials and Methods and varying the concentrations of xylose from about 40-600 mM. Results shown are calculated using the Hanes Plot, which rearranges the Michaelis-Menten equation (v=Vmax[S]/(Km+[S])) as: ([S]/v=Km/Vmax+[S]/Vmax), where plotting [S]/v against [S], resulting in a straight line and where the y intercept=Km/Vmax, the slope=1/Vmax, and the x intercept=−Km. Results are listed in Table 6.









TABLE 6







Km determination for 3 XIs









SEQ ID NO:
Km
Vmax





78
35.2
27.6


96
33.7
28.0


38
28.8
28.6









Example 10
Quantification of XI Activity Expressed from Single Genomic Integration Locus

A vector named pYDAB006 (FIG. 5A) for integration into locus YER131.5 (between YER131W and YER132C) in the S. cerevisiae genome was constructed using conventional cloning methods. The vector backbone with a PacI site at each end was derived from pBluescript II SK (+) (Agilent Technologies, Inc. Santa Clara, Calif.) by standard PCR techniques, which contained only the pUC origin of replication and bla gene encoding ampicillin resistance protein as a selectable marker. Two 300-base pair segments named YER131.5-A and YER 131.5-B were amplified from yeast genomic DNA by standard PCR techniques and connected with a multiple cloning site (MCS 1: 5′-GGCGCGCCTCTAGAAAGCTTACGCGTGAGCTCCCTGCAGGGATATCGGTACCG CGGCCGC-3′ (SEQ ID NO:181)) using the overlapping PCR technique. The PCR primers used in the overlapping PCR are shown in Table 7 below:









TABLE 7







Primers Used in pYDAB006 Construction










SEQ ID



Primer
NO:
Sequence (Pad site is underlined)





131.5AF
182
caccattaattaaAGCTTTGTAAATATGATGAGAGAATAATATA




AATCAAACG





131.5AR
183
GGCGCGCCTCTAGAAAGCTTAATCGACAAGAACACTTCT




ATTTATATAGGTATGAAA





131.5BF
184
GCAGGGATATCGGTACCCACCAGCGGCCGCTGAAGAAG




GTTTATTTCGTTTCGCTGT





131.5BR
185
caccattaattaaCCCAGGTGAGACTGGATGCTCCATA





ABMCSF
186
GCCTCTAGAAAGCTTACGCGTGAGCTCCCTGCAGGGATA




TCGGTACCCACCAGCGGCCGC





ABMCSR
187
CGCTGGTGGGTACCGATATCCCTGCAGGGAGCTCACGCG




TAAGCTTTCTAGAGGCGCGCC









The overlapping PCR product was then ligated with the vector backbone resulting in plasmid pYDAB006.


A vector named pYDURA01 (FIG. 5B) for generating yeast selectable and recyclable marker was constructed using similar method as pYDAB006. The URA3 expression cassette was amplified from yeast genomic DNA by standard PCR techniques. The 200 base pair fingerprint sequence (named R88:









(SEQ ID NO: 188))







TGCGTGTGCCGCGAGTCCACGTCTACTCGCGAACCGAGTGCAGGCGGGTC





TTCGGCCAGGACGGCCGTGCGTGACCCCGGCCGCCAGACGAAACGGACC





GCGCTCGCCAGACGCTACCCAGCCCGTTCATGCCGGCCGCGAGCCGACC





TGTCTCGGTCGCTTCGACGCACGCGCGGTCCTTTCGGGTACTCGCCTAA





GAC







at both sides of URA3 cassette was amplified by standard PCR techniques from the genomic DNA of yBPA317, which was a diploid strain having genotypes MATa/MATalpha; URA3/ura3; YDL074.5::P(TDH3)-CBT1-T(CYC1)-R88 YLR388.5::P(TDH3)-StBGL-T(CYC1)-R88/YLR388.5::P(TDH3)-StBGL-T(CYC1)-R88.









TABLE 8







Primers Used in pYDURA01 Construction









Primer
SEQ ID NO:
Sequence (KpnI and NotI sites are underlined)





NotI-KpnI-R88-F
189
caatagcggccgcggtaccTGCGTGTGCCGCGAGTCCAC





R88-BamHI-R
190
TGTTAGGATCCGTCTTAGGCGAGTACCCGAAAGG





BamHI-ura-F
191
caataggatccAGGCATATTTATGGTGAAGAATAAGT





ura-Xho-R
192
TGTTACTCGAGAAATCATTACGACCGAGATTCCCG





XhoI-R88-F
193
caatactcgagTGCGTGTGCCGCGAGTCCAC





R88-NotI-R
194
TGTTAGCGGCCGCGTCTTAGGCGAGTACCCGAAAGG









An expression cassette was generated for the XI genes by cloning into a vector named pYDPt005 (FIG. 5C). pYDPt005 was generated using similar method as pYDAB006. It contained a TDH3 promoter and a PGK1 terminator flanking a multiple cloning site (MCS 2: 5′-ACTAGTGGATCCCTCGAGGTCGACGTTTAAAC-3′ (SEQ ID NO:195), where single underline is SpeI site, double underline is XhoI site, and jagged underline is PmeI site). The promoter and the terminator were amplified from S. cerevisiae genomic DNA; an AscI site was added to the 5′ end of the TDH3 promoter while a Kpn1 site was added to the 3′ end of the PGK1 terminator during amplification. Primers used in the amplification are described in Table 9.









TABLE 9







Primers Used in pYDPt005 Construction









Primer
SEQ ID NO:
Sequence (AscI and KpnI sites are underlined)





TDH-F
196
CACCAGGCGCGCCTCTAGAAAGCTTACGCGTAGTTTATC




ATTATCAATACTGCCATTTCAAAGA





overlap-TDH-R
197
AACGTCGACCTCGAGGGATCCACTAGTTCGAAACTAAG




TTCTTGGTGTTTTAAAACT





overlap-PGK-F
198
GTGGATCCCTCGAGGTCGACGTTTAAACATTGAATTGA




ATTGAAATCGATAGATCAAT





PGK-R
199
CACCAGCGGCCGCGGTACCGATATCCCTGCAGGGAGCT




CGAAATATCGAATGGGAAAAAAAAACTGGAT









An Orpinomyces sp. XI gene (NCBI:169733248) was cloned in this vector between the SpeI and XhoI sites. The Orpinomyces sp. XI expression cassette and R88-Ura-R88 fragment were then cloned into vector pYDAB006 using AscI, KpnI and NotI sites; the resulting plasmid was named pYDABF006 (FIG. 5D). Subsequently, the Orpinomyces sp. XI gene in pYDABF0006 was replaced with a subset of the XI genes of Table 2 by digestion of pYDABF0006 with SpeI and PmeI and ligation to a DNA fragment encoding the appropriate XI sequence which had been amplified from p426PGK1-XI constructs. A SpeI site followed by a Kozak-like sequence (6 consecutive adenines) was added immediately in front of the start codon of the XI genes while a Pme1 site was added to the 3′ end of the XI genes during amplification.


XI gene integration cassettes were extracted by PacI digestion and used to transform yeast strain yBPA130 using standard techniques. Transformants were selected for growth on SC-Ura (Synthetic Complete, Ura dropout) agar plates. Integration position and existence of XI cassette in transformants was confirmed by PCR using the primers shown in Table 10.









TABLE 10







Primers Used in Integration Verification









Primer
SEQ ID NO:
Sequence





5′ of
200
ACAGGGATAACAAAGTTTCTCCAGC


integration





3′ of
201
CATACCAAGTCATGCGTTACCAGAG


integration





5′ of
202
TTTCCCATTCGATATTTCGAGCTCC


R88-ura-R88





3′ of
203
CATACCAAGTCATGCGTTACCAGAG


integration









Confirmed clones were then grown about 18 hours in liquid YPD to allow looping out of the URA3 marker and were selected for growth on SC+5-FOA agar plate. The absence of the URA3 marker was confirmed by PCR.


Strains containing the confirmed XI expression cassettes were inoculated into about 3 ml of modified YP Media (YP+0.1% Glucose+3.0% Xylose) and incubated overnight at about 30° C. and about 220 rpm. These overnight cultures were subcultured into about 25 ml of the same media to about OD600=0.2. Samples were incubated overnight at about 30° C. and about 220 rpm. Cultures were harvested when OD600 was between about 3 and 4. Pellets were collected by centrifugation for about 5 minutes at about 4000 rpm. The supernatant was discarded and pellets washed with about 25 ml of distilled-deionized water and centrifuged again using the same conditions. Supernatant was discarded and the pellet frozen at about −20° C. until lysis and characterization.


Cell pellets were thawed and about 200 mg of each pellet sample was weighed out into 2 ml microcentrifuge tubes. About 50 μl of Complete®, EDTA-free Protease WEST12569846152 Inhibitor cocktail (Roche Part#11873 580 001) at 5 times the concentration stated in the manufacturer's protocol was added to each sample. To this was added about 0.5 ml of Y-PER Plus® Dialyzable Yeast Protein Extraction Reagent (Thermo Scientific Part#78999) (YP+) to each sample. Samples were incubated at about 25° C. for about 4 hours on-rotating mixer. Sample supematants were collected after centrifugation at about 10,000×g for about 10 minutes for characterization.


Total protein concentrations of the XI sample extracts prepared above were carried out using Bio-Rad Protein Assay Dye Reagent Concentrate (Bio-Rad, cat#500-0006, Hercules Calif.) which is a modified version of the Bradford method (Bradford).


Yeast physiological pH ranges are known to range from about pH 6 to about pH 7.5 (Pena, Ramirez et al., 1995, J. Bacteriology 4:1017-1022). Ranking of XI activity at yeast physiological pH was accomplished using the assay conditions at pH 7.5 and modified for pH 6.0 as described in the materials and methods. The specific activities of 20 XIs when expressed from a single copy integrated into the yeast YER131.5 locus were evaluated. The results are listed in Table 11.









TABLE 11







SA of XI Expressed in an Industrial S. cerevisiae













Organism
SA, pH6
SA, pH 7.5



SEQ ID NO:
Classification
(U/mg)
(U/mg)
















2
Bacteroidales
0.86
1.08



14

Bacteroides

0.33
1.07



16

Bacteroides

0.57
1.05



32

Bacteroides

0.53
1.00



38
Firmicutes
1.00
0.94



42
Firmicutes
0.79
0.82



44
Firmicutes
0.08
0.10



46
Firmicutes
0.62
0.69



50
Firmicutes
0.35
0.41



52
Firmicutes
0.01
0.03



54
Neocallimastigales
0.64
1.17



58
Neocallimastigales
0.79
1.10



68
Neocallimastigales
0.01
0.02



72
Neocallimastigales
0.22
0.40



78

Prevotella

1.10
1.45



80

Prevotella

0.74
1.11



82

Prevotella

0.54
0.60



84

Prevotella

0.76
1.06



96

Prevotella

1.10
1.62



116

Prevotella

0.03
0.06



Host neg ctrl

0.00
0.02










Example 11
Identification of Sequence Motifs in Acid Tolerant XIs

The proposed mechanism of xylose isomerases can be summarized as follows: (i) binding of xylose to xylose isomerase, so that O3 and O4 are coordinated by metal ion I; (ii) enzyme-catalyzed ring opening (the identity of the ring-opening group remains a subject for further investigation; ring opening may be the rate limiting step in the overall isomerization process); (iii) chain extension (sugar binds in a linear extended form) in which O2 and O4 now coordinate metal ion I; (iv) O2 becomes deprotonated causing a shift of metal ion II from position 1 to an adjacent position 2 in which it coordinates O1 and O2 of the sugar together with metal ion I; (v) isomerization via an anionic transition state arises by a hydride shift promoted by electrophilic catalysis provided by both metal ions; (vi) collapse of transition state by return of metal ion II to position 1; (vii) chain contraction to a pseudo-cyclic position with ligands to metal ion I changing from O2/O4 back to O3/O4; (viii) enzyme-catalyzed ring closure; (ix) dissociation of xylulose from xylose isomerase (Lavie et al., 1994, Biochemistry 33(18), 5469-5480).


Many XIs identified contained one or both of two signature sequences characteristic of XIs, [LI]EPKP.{2}P (SEQ ID NO:204) and [FL]HD[̂K]D[LIV].[PD].[GDE](SEQ ID NO:205). Additional sequence motifs present in the top performing Firmicutes and Prevotella XIs were identified. The motifs are located near the active site including residues in direct contact with the D-xylose and/or the metal ions. The motifs are shown in Table 12 below:









TABLE 12







XI Sequence Motifs










XI Source
Motif
Sequence
SEQ ID NO:





Firmicutes
1A
P[FY][AST][MLVI][AS][WYFL]W[HT]N[LFMG]GA
206





Firmicutes
1B
P[FY][AS].{2}[WYFL]W[HT][{circumflex over ( )}TV].GA
207





Firmicutes
2
[GSN][IVA]R[YFHG][FYLIV]C[FW]HD.D
208





Firmicutes
3
T[ASTC][NK][{circumflex over ( )}L]F.[NDH][PRKAG][RVA][FY]C
209





Firmicutes
4
[WFY]D[TQVI]D.[FY][PF][{circumflex over ( )}T].{2, 4}[YFH]S[ATL]T
210





Firmicutes
5
GF[NH]FD[SA]KTR
211






Prevotella

1A
FG.QT[RK].{2}E[WYF][DNG].{2, 3}[DNEGT][AT]
212






Prevotella

1B
FG.QT[RK].{2}E[WYF][DNG].{3}[{circumflex over ( )}C][AP]
213






Prevotella

2
[FW]HD.D[LVI].[DE]EG[{circumflex over ( )}P][TSD][IV][EA]E
214









Example 12
In Vivo Evaluation of Xylose Isomerase

Haploid S. cerevisiae strain yBPA130 (MATa::ura3) and yBPA136 (MATalpha::ura3) were genetically modified to enhance C5 xylose utilization during fermentation. The modification includes the following: the native glucose repressible alcohol dehydrogenase II gene ADH2 was disrupted by inserting an expression cassette of the endogenous transaldolase gene TAL1 (SEQ ID NO:215) and xylulokinase gene XKS1 (SEQ ID NO:216). PHO13 encoding the native alkaline phosphatase specific for p-nitrophenyl phosphate gene was disrupted by inserting the native transketolase-1 gene TKL1 (SEQ ID NO:217). Native aldose reductase gene GRE3 was disrupted by inserting native D-ribulose-5-phosphate 3-epimerase gene RPE1 (SEQ ID NO:218) and Ribose-5-phosphate ketol-isomerase gene RKI1 (SEQ ID NO:219). Also one expression cassette of native galactose permease gene GAL2 (SEQ ID NO:220) was integrated into the S. cerevisiae strain, resulting in haploid strains pBPB007 (MATa::ura3) and pBPB008 (MATalpha::ura3). The genotype of pBPB007 and pBPB008 is adh2::TAL1-XKS1, pho13::TKL1-XKS1, gre3::RPE1-RKI1 and YLR388.5::GAL2. The sequences are shown in Table 13, below:












TABLE 13





Sequence
Type of
SEQ ID



Name
sequence
NO:
Sequence







TAL1 (S. cerevisiae)
DNA
215
ATGTCTGAACCAGCTCAAAAGAAACAAAAGGTTGCTAACAACTCT





CTAGAACAATTGAAAGCCTCCGGCACTGTCGTTGTTGCCGACACT





GGTGATTTCGGCTCTATTGCCAAGTTTCAACCTCAAGACTCCACA





ACTAACCCATCATTGATCTTGGCTGCTGCCAAGCAACCAACTTAC





GCCAAGTTGATCGATGTTGCCGTGGAATACGGTAAGAAGCATGGT





AAGACCACCGAAGAACAAGTCGAAAATGCTGTGGACAGATTGTTA





GTCGAATTCGGTAAGGAGATCTTAAAGATTGTTCCAGGCAGAGTC





TCCACCGAAGTTGATGCTAGATTGTCTTTTGACACTCAAGCTACC





ATTGAAAAGGCTAGACATATCATTAAATTGTTTGAACAAGAAGGT





GTCTCCAAGGAAAGAGTCCTTATTAAAATTGCTTCCACTTGGGAA





GGTATTCAAGCTGCCAAAGAATTGGAAGAAAAGGACGGTATCCAC





TGTAATTTGACTCTATTATTCTCCTTCGTTCAAGCAGTTGCCTGT





GCCGAGGCCCAAGTTACTTTGATTTCCCCATTTGTTGGTAGAATT





CTAGACTGGTACAAATCCAGCACTGGTAAAGATTACAAGGGTGAA





GCCGACCCAGGTGTTATTTCCGTCAAGAAAATCTACAACTACTAC





AAGAAGTACGGTTACAAGACTATTGTTATGGGTGCTTCTTTCAGA





AGCACTGACGAAATCAAAAACTTGGCTGGTGTTGACTATCTAACA





ATTTCTCCAGCTTTATTGGACAAGTTGATGAACAGTACTGAACCT





TTCCCAAGAGTTTTGGACCCTGTCTCCGCTAAGAAGGAAGCCGGC





GACAAGATTTCTTACATCAGCGACGAATCTAAATTCAGATTCGAC





TTGAATGAAGACGCTATGGCCACTGAAAAATTGTCCGAAGGTATC





AGAAAATTCTCTGCCGATATTGTTACTCTATTCGACTTGATTGAA





AAGAAAGTTACCGCTTAA





XKS1 (S. cerevisiae)
DNA
216
ATGTTGTGTTCAGTAATTCAGAGACAGACAAGAGAGGTTTCCAAC





ACAATGTCTTTAGACTCATACTATCTTGGGTTTGATCTTTCGACC





CAACAACTGAAATGTCTCGCCATTAACCAGGACCTAAAAATTGTC





CATTCAGAAACAGTGGAATTTGAAAAGGATCTTCCGCATTATCAC





ACAAAGAAGGGTGTCTATATACACGGCGACACTATCGAATGTCCC





GTAGCCATGTGGTTAGAGGCTCTAGATCTGGTTCTCTCGAAATAT





CGCGAGGCTAAATTTCCATTGAACAAAGTTATGGCCGTCTCAGGG





TCCTGCCAGCAGCACGGGTCTGTCTACTGGTCCTCCCAAGCCGAA





TCTCTGTTAGAGCAATTGAATAAGAAACCGGAAAAAGATTTATTG





CACTACGTGAGCTCTGTAGCATTTGCAAGGCAAACCGCCCCCAAT





TGGCAAGACCACAGTACTGCAAAGCAATGTCAAGAGTTTGAAGAG





TGCATAGGTGGGCCTGAAAAAATGGCTCAATTAACAGGGTCCAGA





GCCCATTTTAGATTTACTGGTCCTCAAATTCTGAAAATTGCACAA





TTAGAACCAGAAGCTTACGAAAAAACAAAGACCATTTCTTTAGTG





TCTAATTTTTTGACTTCTATCTTAGTGGGCCATCTTGTTGAATTA





GAGGAGGCAGATGCCTGTGGTATGAACCTTTATGATATACGTGAA





AGAAAATTCAGTGATGAGCTACTACATCTAATTGATAGTTCTTCT





AAGGATAAAACTATCAGACAAAAATTAATGAGAGCACCCATGAAA





AATTTGATAGCGGGTACCATCTGTAAATATTTTATTGAGAAGTAC





GGTTTCAATACAAACTGCAAGGTCTCTCCCATGACTGGGGATAAT





TTAGCCACTATATGTTCTTTACCCCTGCGGAAGAATGACGTTCTC





GTTTCCCTAGGAACAAGTACTACAGTTCTTCTGGTCACCGATAAG





TATCACCCCTCTCCGAACTATCATCTTTTC





ATTCATCCAACTCTGCCAAACCATTATATGGGTATGATTTGTTAT





TGTAATGGTTCTTTGGCAAGGGAGAGGATAAGAGACGAGTTAAAC





AAAGAACGGGAAAATAATTATGAGAAGACTAACGATTGGACTCTT





TTTAATCAAGCTGTGCTAGATGACTCAGAAAGTAGTGAAAATGAA





TTAGGTGTATATTTTCCTCTGGGGGAGATCGTTCCTAGCGTAAAA





GCCATAAACAAAAGGGTTATCTTCAATCCAAAAACGGGTATGATT





GAAAGAGAGGTGGCCAAGTTCAAAGACAAGAGGCACGATGCCAAA





AATATTGTAGAATCACAGGCTTTAAGTTGCAGGGTAAGAATATCT





CCCCTGCTTTCGGATTCAAACGCAAGCTCACAACAGAGACTGAAC





GAAGATACAATCGTGAAGTTTGATTACGATGAATCTCCGCTGCGG





GACTACCTAAATAAAAGGCCAGAAAGGACTTTTTTTGTAGGTGGG





GCTTCTAAAAACGATGCTATTGTGAAGAAGTTTGCTCAAGTCATT





GGTGCTACAAAGGGTAATTTTAGGCTAGAAACACCAAACTCATGT





GCCCTTGGTGGTTGTTATAAGGCCATGTGGTCATTGTTATATGAC





TCTAATAAAATTGCAGTTCCTTTTGATAAATTTCTGAATGACAAT





TTTCCATGGCATGTAATGGAAAGCATATCCGATGTGGATAATGAA





AATTGGGATCGCTATAATTCCAAGATTGTCCCCTTAAGCGAACTG





GAAAAGACTCTCATCTAA





TKL1 (S. cerevisiae)
DNA
217
ATGACTCAATTCACTGACATTGATAAGCTAGCCGTCTCCACCATA





AGAATTTTGGCTGTGGACACCGTATCCAAGGCCAACTCAGGTCAC





CCAGGTGCTCCATTGGGTATGGCACCAGCTGCACACGTTCTATGG





AGTCAAATGCGCATGAACCCAACCAACCCAGACTGGATCAACAGA





GATAGATTTGTCTTGTCTAACGGTCACGCGGTCGCTTTGTTGTAT





TCTATGCTACATTTGACTGGTTACGATCTGTCTATTGAAGACTTG





AAACAGTTCAGACAGTTGGGTTCCAGAACACCAGGTCATCCTGAA





TTTGAGTTGCCAGGTGTTGAAGTTACTACCGGTCCATTAGGTCAA





GGTATCTCCAACGCTGTTGGTATGGCCATGGCTCAAGCTAACCTG





GCTGCCACTTACAACAAGCCGGGCTTTACCTTGTCTGACAACTAC





ACCTATGTTTTCTTGGGTGACGGTTGTTTGCAAGAAGGTATTTCT





TCAGAAGCTTCCTCCTTGGCTGGTCATTTGAAATTGGGTAACTTG





ATTGCCATCTACGATGACAACAAGATCACTATCGATGGTGCTACC





AGTATCTCATTCGATGAAGATGTTGCTAAGAGATACGAAGCCTAC





GGTTGGGAAGTTTTGTACGTAGAAAATGGTAACGAAGATCTAGCC





GGTATTGCCAAGGCTATTGCTCAAGCTAAGTTATCCAAGGACAAA





CCAACTTTGATCAAAATGACCACAACCATTGGTTACGGTTCCTTG





CATGCCGGCTCTCACTCTGTGCACGGTGCCCCATTGAAAGCAGAT





GATGTTAAACAACTAAAGAGCAAATTCGGTTTCAACCCAGACAAG





TCCTTTGTTGTTCCACAAGAAGTTTACGACCACTACCAAAAGACA





ATTTTAAAGCCAGGTGTCGAAGCCAACAACAAGTGGAACAAGTTG





TTCAGCGAATACCAAAAGAAATTCCCAGAATTAGGTGCTGAATTG





GCTAGAAGATTGAGCGGCCAACTACCCGCA





AATTGGGAATCTAAGTTGCCAACTTACACCGCCAAGGACTCTGCC





GTGGCCACTAGAAAATTATCAGAAACTGTTCTTGAGGATGTTTAC





AATCAATTGCCAGAGTTGATTGGTGGTTCTGCCGATTTAACACCT





TCTAACTTGACCAGATGGAAGGAAGCCCTTGACTTCCAACCTCCT





TCTTCCGGTTCAGGTAACTACTCTGGTAGATACATTAGGTACGGT





ATTAGAGAACACGCTATGGGTGCCATAATGAACGGTATTTCAGCT





TTCGGTGCCAACTACAAACCATACGGTGGTACTTTCTTGAACTTC





GTTTCTTATGCTGCTGGTGCCGTTAGATTGTCCGCTTTGTCTGGC





CACCCAGTTATTTGGGTTGCTACACATGACTCTATCGGTGTCGGT





GAAGATGGTCCAACACATCAACCTATTGAAACTTTAGCACACTTC





AGATCCCTACCAAACATTCAAGTTTGGAGACCAGCTGATGGTAAC





GAAGTTTCTGCCGCCTACAAGAACTCTTTAGAATCCAAGCATACT





CCAAGTATCATTGCTTTGTCCAGACAAAACTTGCCACAATTGGAA





GGTAGCTCTATTGAAAGCGCTTCTAAGGGTGGTTACGTACTACAA





GATGTTGCTAACCCAGATATTATTTTAGTGGCTACTGGTTCCGAA





GTGTCTTTGAGTGTTGAAGCTGCTAAGACTTTGGCCGCAAAGAAC





ATCAAGGCTCGTGTTGTTTCTCTACCAGATTTCTTCACTTTTGAC





AAACAACCCCTAGAATACAGACTATCAGTCTTACCAGACAACGTT





CCAATCATGTCTGTTGAAGTTTTGGCTACCACATGTTGGGGCAAA





TACGCTCATCAATCCTTCGGTATTGACAGATTTGGTGCCTCCGGT





AAGGCACCAGAAGTCTTCAAGTTCTTCGGTTTCACCCCAGAAGGT





GTTGCTGAAAGAGCTCAAAAGACCATTGCATTCTATAAGGGTGAC





AAGCTAATTTCTCCTTTGAAAAAAGCTTTCTAA





RPE1 (S. cerevisiae)
DNA
218
ATGGTCAAACCAATTATAGCTCCCAGTATCCTTGCTTCTGACTTC





GCCAACTTGGGTTGCGAATGTCATAAGGTCATCAACGCCGGCGCA





GATTGGTTACATATCGATGTCATGGACGGCCATTTTGTTCCAAAC





ATTACTCTGGGCCAACCAATTGTTACCTCCCTACGTCGTTCTGTG





CCACGCCCTGGCGATGCTAGCAACACAGAAAAGAAGCCCACTGCG





TTCTTCGATTGTCACATGATGGTTGAAAATCCTGAAAAATGGGTC





GACGATTTTGCTAAATGTGGTGCTGACCAATTTACGTTCCACTAC





GAGGCCACACAAGACCCTTTGCATTTAGTTAAGTTGATTAAGTCT





AAGGGCATCAAAGCTGCATGCGCCATCAAACCTGGTACTTCTGTT





GACGTTTTATTTGAACTAGCTCCTCATTTGGATATGGCTCTTGTT





ATGACTGTGGAACCTGGGTTTGGAGGCCAAAAATTCATGGAAGAC





ATGATGCCAAAAGTGGAAACTTTGAGAGCCAAGTTCCCCCATTTG





AATATCCAAGTCGATGGTGGTTTGGGCAAGGAGACCATCCCGAAA





GCCGCCAAAGCCGGTGCCAACGTTATTGTCGCTGGTACCAGTGTT





TTCACTGCAGCTGACCCGCACGATGTTATCTCCTTCATGAAAGAA





GAAGTCTCGAAGGAATTGCGTTCTAGAGATTTGCTAGATTAG





RKI1 (S. cerevisiae)
DNA
219
ATGGCTGCCGGTGTCCCAAAAATTGATGCGTTAGAATCTTTGGGC





AATCCTTTGGAGGATGCCAAGAGAGCTGCAGCATACAGAGCAGTT





GATGAAAATTTAAAATTTGATGATCACAAAATTATTGGAATTGGT





AGTGGTAGCACAGTGGTTTATGTTGCCGAAAGAATTGGACAATAT





TTGCATGACCCTAAATTTTATGAAGTAGCGTCTAAATTCATTTGC





ATTCCAACAGGATTCCAATCAAGAAACTTGATTTTGGATAACAAG





TTGCAATTAGGCTCCATTGAACAGTATCCTCGCATTGATATAGCG





TTTGACGGTGCTGATGAAGTGGATGAGAATTTACAATTAATTAAA





GGTGGTGGTGCTTGTCTATTTCAAGAAAAATTGGTTAGTACTAGT





GCTAAAACCTTCATTGTCGTTGCTGATTCAAGAAAAAAGTCACCA





AAACATTTAGGTAAGAACTGGAGGCAAGGTGTTCCCATTGAAATT





GTACCTTCCTCATACGTGAGGGTCAAGAATGATCTATTAGAACAA





TTGCATGCTGAAAAAGTTGACATCAGACAAGGAGGTTCTGCTAAA





GCAGGTCCTGTTGTAACTGACAATAATAACTTCATTATCGATGCG





GATTTCGGTGAAATTTCCGATCCAAGAAAATTGCATAGAGAAATC





AAACTGTTAGTGGGCGTGGTGGAAACAGGTTTATTCATCGACAAC





GCTTCAAAAGCCTACTTCGGTAATTCTGACGGTAGTGTTGAAGTT





ACCGAAAAGTGA





GAL2 (S. cerevisiae)
DNA
220
ATGGCAGTTGAGGAGAACAATATGCCTGTTGTTTCACAGCAACCC





CAAGCTGGTGAAGACGTGATCTCTTCACTCAGTAAAGATTCCCAT





TTAAGCGCACAATCTCAAAAGTATTCTAATGATGAATTGAAAGCC





GGTGAGTCAGGGTCTGAAGGCTCCCAAAGTGTTCCTATAGAGATA





CCCAAGAAGCCCATGTCTGAATATGTTACCGTTTCCTTGCTTTGT





TTGTGTGTTGCCTTCGGCGGCTTCATGTTTGGCTGGGATACCGGT





ACTATTTCTGGGTTTGTTGTCCAAACAGACTTTTTGAGAAGGTTT





GGTATGAAACATAAGGATGGTACCCACTATTTGTCAAACGTCAGA





ACAGGTTTAATCGTCGCCATTTTCAATATTGGCTGTGCCTTTGGT





GGTATTATACTTTCCAAAGGTGGAGATATGTATGGCCGTAAAAAG





GGTCTTTCGATTGTCGTCTCGGTTTATATAGTTGGTATTATCATT





CAAATTGCCTCTATCAACAAGTGGTACCAATATTTCATTGGTAGA





ATCATATCTGGTTTGGGTGTCGGCGGCATCGCCGTCTTATGTCCT





ATGTTGATCTCTGAAATTGCTCCAAAGCACTTGAGAGGCACACTA





GTTTCTTGTTATCAGCTGATGATTACTGCAGGTATCTTTTTGGGC





TACTGTACTAATTACGGTACAAAGAGCTATTCGAACTCAGTTCAA





TGGAGAGTTCCATTAGGGCTATGTTTCGCTTGGTCATTATTTATG





ATTGGCGCTTTGACGTTAGTTCCTGAATCCCCACGTTATTTATGT





GAGGTGAATAAGGTAGAAGACGCCAAGCGTTCCATTGCTAAGTCT





AACAAGGTGTCACCAGAGGATCCTGCCGTCCAGGCAGAGTTAGAT





CTGATCATGGCCGGTATAGAAGCTGAAAAACTGGCTGGCAATGCG





TCCTGGGGGGAATTATTTTCCACCAAGACCAAAGTATTTCAACGT





TTGTTGATGGGTGTGTTTGTTCAAATGTTC





CAACAATTAACCGGTAACAATTATTTTTTCTACTACGGTACCGTT





ATTTTCAAGTCAGTTGGCCTGGATGATTCCTTTGAAACATCCATT





GTCATTGGTGTAGTCAACTTTGCCTCCACTTTCTTTAGTTTGTGG





ACTGTCGAAAACTTGGGACATCGTAAATGTTTACTTTTGGGCGCT





GCCACTATGATGGCTTGTATGGTCATCTACGCCTCTGTTGGTGTT





ACTAGATTATATCCTCACGGTAAAAGCCAGCCATCTTCTAAAGGT





GCCGGTAACTGTATGATTGTCTTTACCTGTTTTTATATTTTCTGT





TATGCCACAACCTGGGCGCCAGTTGCCTGGGTCATCACAGCAGAA





TCATTCCCACTGAGAGTCAAGTCGAAATGTATGGCGTTGGCCTCT





GCTTCCAATTGGGTATGGGGGTTCTTGATTGCATTTTTCACCCCA





TTCATCACATCTGCCATTAACTTCTACTACGGTTATGTCTTCATG





GGCTGTTTGGTTGCCATGTTTTTTTATGTCTTTTTCTTTGTTCCA





GAAACTAAAGGCCTATCGTTAGAAGAAATTCAAGAATTATGGGAA





GAAGGTGTTTTACCTTGGAAATCTGAAGGCTGGATTCCTTCATCC





AGAAGAGGTAATAATTACGATTTAGAGGATTTACAACATGACGAC





AAACCGTGGTACAAGGCCATGCTAGAATAA









A vector named pYDAB008 rDNA (FIG. 6) for integration xylose isomerase into ribosomal DNA loci in S. cerevisiae genome was constructed using conventional cloning methods. This vector can confer high copy number integration of genes and resulting in high-level expression of proteins. The vector was derived from pBluescript II SK (+) (Agilent Technologies, Inc., Santa Clara, Calif.). The pUC origin of replication and bla gene encoding ampicillin resistance was amplified with specific primer sequences as a selectable marker for cloning. A 741 base-pair segment R1 region, 253 base-pair R3 region and a 874 base-pair R2 region were amplified from yeast genomic DNA by PCR amplifications. A multiple cloning site of SEQ ID NO:181 (:5′-GGCGCGCCTCTAGAAAGCTTACGCGTGAGCTCCCTGCAGGGATATCGGTACCG CGGCCGC-3′) was inserted between the R1 and R3/R2 regions by assembly using overlapping PCR. All primers used in above reactions are shown in Table 14. Overlapping PCR products were then ligated in one reaction and result in rDNA integration plasmid named pYDABOO8 rDNA (FIG. 6).









TABLE 14







Primers Used in pYDAB008 rDNA vector construction









Primer
SEQ ID NO:
Sequence (Pac I restriction site is underlined)





Pac I-rDNA(R1)-R
221
CACCATTAATTAACCCGGGGCACCTGTCACTTTGGAA





rDNA (R1)-over-R
222
CGCGTAAGCTTTCTAGAGGCGCGCCAAGCTTTTACAC




TCTTGACCAGCGCA





AB vector-MCS-R
223
CCGCTGGTGGGTACCGATATCCCTGCAGGGAGCTCAC




GCGTAAGCTTTCTAGAGGCG





rDNA(R3)-over-R
224
CTGCAGGGATATCGGTACCCACCAGCGGCCGCAGGC




CTTGGGTGCTTGCTGGCGAA





rDNA(R3)-over-R
225
ACCTCTGCATGCGAATTCTTAAGACAAATAAAATTTA




TAGAGACTTGT





rDNA(R2)-over-R
226
GTCTTAAGAATTCGCATGCAGAGGTAGTTTCAAGGT





Pac I-rDNA(R2)-R
227
CACCATTAATTAATACGTATTTCTCGCCGAGAAAAAC




TT









pYDABF 0015 (comprising a nucleic acid encoding a xylose isomerase of SEQ ID NO:78) and pYDABF-0026 (comprising a nucleic acid encoding a xylose isomerase of SEQ ID NO:96) (both described in Example 11) were digested with Asc I and Kpn I restriction enzymes (New England Biolabs Inc., MA, USA) and ligated to pYDAB008 rDNA integration vector described above (FIG. 6). The resulting plasmids were named pYDABF-0033 (SEQ ID NO:78) and pYDABF-0036 (SEQ ID NO:96).


The rDNA integration cassette was linearized by Pac I restriction enzyme digestion (New England Biolabs Inc., MA, USA) and purified with DNA column purification kit (Zymo Research, Irvine, Calif., USA). The integration cassette was transformed into modified haploid S. cerevisiae strain pBPB007 (MATa::ura3) and pBPB008 (MAT alpha::ura3) using the standard protocol described in previous examples. Transformants were plated on SC-xylose (SC complete +2% xylose) agar plates, about 2-3 days at about 30° C. Colonies that grew on SC-xylose agar plates were then checked by colony PCR analysis with primer sets shown in Table 15 (SEQ ID NOs:228, 229, 230 and 231) to confirm the presence of xylose isomerase in the genome.









TABLE 15







Primers Used in Integration Verification









Primer
SEQ ID NO:
Sequence





N16PCR_F
228
CCCCATCGACAACTACGAGCTCACT





N16PCR_R
229
CAACTTGCCGTCCTCGAAGTCCTTG





N05PCR_F
230
CGAGCCTGAGAAGGTCGTGATGGGA





N05PCR_R
231
TACGTCGAAGTCGGGGTTGGTAGAA









Confirmed haploid strains were BD31328 (MATa), BD31336 (MATalpha), BD31526 (MATa) and BD31527 (MATalpha). Diploid strains BD31378 (expressing a xylose isomerase of SEQ ID NO:96) and BD31365 (expressing a xylose isomerase of SEQ ID NO:78) were generated by conventional plate mating on YPXylose (YP+2% xylose) agar plates, about 2 days at about 30° C. Colony PCR with specific primers checking mating types were performed (shown in Table 14) and a single colony, which has both MATa and MATalpha were picked as diploid strains BD 31378 (SEQ ID NO:96) and BD31365 (SEQ ID NO:78).


A linear fragment encoding the URA3 sequence (SEQ ID NO:237; TTAATTAAGTTAATTACCTTTTTTGCGAGGCATATTTATGGTGAAGAATAAGTT TTGACCATCAAAGAAGGTTAATGTGGCTGTGGTTTCAGGGTCCATAAAGCTTT TCAATTCATCATTTTTTTTTATTCTTTTTTTGATTCCGGTTTTCCTGAAATTTT TTTGATTCGGTAATCTCCGAACAGAAGGAAGAACGAAGGAAGGAGCACAGAC TTAGATTGGTATATATACGCATATGTAGTGTTGAAGAAACATGAAATTGCCCA GTATTCTTAACCCAACTGCACAGAACAAAAACCTGCAGGAAACGAAGATAAA TCATGTCGAAAGCTACATATAAGGAACGTGCTGCTACTCATCCTAGTCCTGTT GCTGCCAAGCTATTTAATATCATGCACGAAAAGCAAACAAACTTGTGTGCTTC ATTGGATGTTCGTACCACCAAGGAATTACTGGAGTTAGTTGAAGCATTAGGTC CCAAAATTTGTTTACTAAAAACACATGTGGATATCTTGACTGATTTTTCCATGG AGGGCACAGTTAAGCCGCTAAAGGCATTATCCGCCAAGTACAATTTTTTACTC TTCGAAGACAGAAAATTTGCTGACATTGGTAATACAGTCAAATTGCAGTACTC TGCGGGTGTATACAGAATAGCAGAATGGGCAGACATTACGAATGCACACGGT GTGGTGGGCCCAGGTATTGTTAGCGGTTTGAAGCAGGCGGCAGAAGAAGTAA CAAAGGAACCTAGAGGCCTITTGATGTTAGCAGAATTGTCATGCAAGGGCTCC CTAGCTACTGGAGAATATACTAAGGGTACTGTTGACATTGCGAAGAGCGACA AAGATTTTGTTATCGGCTTTATTGCTCAAAGAGACATGGGTGGAAGAGATGAA GGTTACGATTGGTTGATTATGACACCCGGTGTGGGTTTAGATGACAAGGGAGA CGCATTGGGTCAACAGTATAGAACCGTGGATGATGTGGTCTCTACAGGATCTG ACATTATTATTGTTGGAAGAGGACTATTTGCAAAGGGAAGGGATGCTAAGGTA GAGGGTGAACGTTACAGAAAAGCAGGCTGGGAAGCATATTTGAGAAGATGCG GCCAGCAAAACTAAAAAACTGTATTATAAGTAAATGCATGTATACTAAACTCA CAAATTAGAGCTTCAATTTAATTATATCAGTTATTACCCGGGAATCTCGGTCGT AATGATTTTTATAATGACGAAAAAAAAAAAATTGGAAAGAAAAAGCTTCATG GCCTTTATAAAAAGGAACCATCCAATACCTCGCCAGAACCAAGTAACAGTATT TTACGGTTAATTAA) was transformed into BD 31378 (SEQ ID NO:96) and BD31365 (SEQ ID NO:78) by a conventional transformation protocol, and transformants were plated on SCXylose-URA (Synthetic Complete, Uracil dropout) for selection. Colonies were checked by PCR with primers shown in Table 16, SEQ ID NO:235, SEQ ID NO:236). Confirmed strains are BD31446 (SEQ ID NO:78) and BD31448 (SEQ ID NO:96).









TABLE 16







Primers Used in Mating Type Verification









Primer
SEQ ID NO:
Sequence





1-mating
232
AGTCACATCAAGATCGTTTAT


type-R





2-mating
233
GCACGGAATATGGGACTACTT


type


alpha-F





3-mating
234
ACTCCACTTCAAGTAAGAGTT


type a-F





Ura
235
GAACAAAAACCTGCAGGAAACGAAGAT


fix-F





Ura
236
GCTCTAATTTGTGAGTTTAGTATACATGCAT


fix-R









Table 17 below shows the genotypes of the resulting yeast strains:









TABLE 17







Strain Construction









Name
Parent Strain
Description





pBPB007
yBPA130
MATa, ura3, adh2:: TAL1-XKS1, pho13::




TKL1-XKS1, gre3:: RPE1-RKI1 and




YLR388.5:: GAL2


pEPB008
yBPA136
MATalpha, ura3, adh2:: TAL1-XKS1,




pho13:: TKL1-XKS1, gre3:: RPE1-RKI1 and




YLR388.5:: GAL2


BD31328
pBPB007
MATa, ura3, adh2:: TAL1-XKS1, pho13::




TKL1-XKS1, gre3:: RPE1-RKI1 and




YLR388.5:: GAL2, rDNA:: XI (SEQ ID




NO: 96)


BD31336
pBPB008
MATalpha, ura3, adh2:: TAL1-XKS1,




pho13:: TKL1-XKS1, gre3:: RPE1-RKI1 and




YLR388.5:: GAL2, rDNA:: XI (SEQ ID




NO: 96)


BD31526
pBPB007
MATa, ura3, adh2:: TAL1-XKS1, pho13::




TKL1-XKS1, gre3:: RPE1-RKI1 and




YLR388.5:: GAL2, rDNA:: XI (SEQ ID




NO: 78)


BD31527
pBPB008
MATalpha, ura3, adh2:: TAL1-XKS1,




pho13:: TKL1-XKS1, gre3:: RPE1-RKI1 and




YLR388.5:: GAL2, rDNA:: XI (SEQ ID




NO: 78)


BD31378
BD31328
MATa/alpha, ura3, adh2:: TAL1-XKS1,



BD31336
pho13:: TKL1-XKS1, gre3:: RPE1-RKI1 and




YLR388.5:: GAL2, rDNA:: XI (SEQ ID




NO: 96)


BD31365
BD31526
MATa/alpha, ura3, adh2:: TAL1-XKS1,



BD31527
pho13:: TKL1-XKS1, gre3:: RPE1-RKI1 and




YLR388.5:: GAL2, rDNA:: XI (SEQ ID




NO: 78)


BD31448
BD31378
MATa/alpha, adh2:: TAL1-XKS1, pho13::




TKL1-XKS1, gre3:: RPE1-RKI1 and




YLR388.5:: GAL2, rDNA:: XI (SEQ ID




NO: 96)


BD31446
BD31365
MATa/alpha, adh2:: TAL1-XKS1, pho13::




TKL1-XKS1, gre3:: RPE1-RKI1 and




YLR388.5:: GAL2, rDNA:: XI (SEQ ID




NO: 78









Example 13
Fermentation Performance of Yeast Strain Expressing Different Xylose-Isomerases

Fermentation performances of two different XI-expressing yeast strains were evaluated using the DasGip fermentation systems (Eppendorf, Inc.). DasGip fermenters allowed close control over agitation, pH, and temperature ensuring consistency of the environment during fermentation. DasGip fermenters were used to test performance of the yeast strains expressing the XI genes on hydrolysate (Hz) (neutralized with magnesium bases) as a primary carbon source. Prior to the start of fermentation strains were subjected to propagation testing consisting of two steps as described below.


SEED 1:


About 1 ml of strain glycerol stock was inoculated into about 100 ml of YP (Yeast extract, Peptone) medium containing about 2% glucose and about 1% xylose in the 250 ml bellco baffled flask (Bellco, Inc.). Strains were cultivated at about 30° C. with about 200 rpm agitation for at least 18 hours until at full saturation. Optical density was assessed by measuring light absorbance at wavelength of 600 nm.


SEED 2:


About 20 ml of saturated SEED 1 (see preceding paragraph) was inoculated into 3 L Bioflo unit (New Brunswick, Inc.) containing about 2.1 L of basal medium at pH 6.0 (1% v/v inoculation). Cultivation was conducted at about 30° C. in a fed batch mode with constant air flow of about 2 L/min. Agitation ramp (rpm) was about 200-626 rpm over about 15 hours starting at about 5 hours of elapsed fermentation time (EFT). Feeding profile was about 0-4.8 ml/min over 20 hours. The basal medium contained (per 1 L): about 20% of neutralized hydrolysate (Hz); about 20 g/L sucrose (from cane juice); about 35 ml of nutrients mixture (Table 18), about 1 ml of vitamin mixture (Table 19); about 0.4 ml of antifoam 1410 (Dow Corning, Inc.) and water. Feed medium contained (per IL): about 20% neutralized hydrolysate (Hz), about 110 g/L sucrose (from cane juice), about 35 ml of nutrient mixture; about 1 ml of vitamin mixture, about 0.4 ml of antifoam 1410 (Dow Corning, Inc.) and water.









TABLE 18







Nutrients mixture









Component
FW g/mol
Conc.












KH2PO4 H2O
154.1
99.1 g/L


Urea
60.06
65.6 g/L


MgSO4—7H2O
192.4
14.6 g/L


DI Water
NA
To 1.0 L
















TABLE 19







Vitamin mixture (1000x)










Components
mM














ZnSO4
100



H3BO3
24



KI
1.8



MnSO4
20



CuSO4
10



Na2MoO4
1.5



CoCl2
1.5



FeCl3
1.23










DasGip Fermentation:


Strains were tested in small scale fermentation using the DasGip system in the industrially relevant medium containing detoxified hydrolysate and sucrose. Strains were propagated as described above; DasGip inoculation was performed using the following protocol:


Cell dry weight of SEED 2 was assessed based on the final optical density. Cell dry weight and optical density (600 nm) correlation was used to estimate the volume of the SEED 2 culture needed for fermentation. Targeted inoculation level was about 7% v/v; about 1.5 g/L cell dry weight. Appropriate volume of SEED 2 culture was harvested by centrifugation (about 5000 rpm for 10 min) to pellet the cells and resuspended in about 17.5 ml of PBS. Resuspended cell solution was used to inoculate a 500 ml DasGip unit containing about 250 ml of detoxified hydrolysate and nutrient solution (about 3.5 ml/100 ml of medium). Fermentation was performed at about 32° C. at pH 6.3 with about 200 rpm. The duration of fermentation was about 92 hours with regular sampling. Sampling was conducted by a 25 ml steriological pipette through the port in the head plate of the DasGip unit. About 3 ml of culture were taken out, harvested by centrifugation (about 5000 rpm for 10 min) to pellet the cells and the supernatant was submitted for analysis. Standard analytical techniques such as high-pressure liquid chromatography (HPLC) were used to determine concentration of sugars and ethanol in the medium. Fermentation performances for yeast strains BD31378 (expressing a xylose isomerase of SEQ ID NO:96) and BD31365 (expressing a xylose isomerase of SEQ ID NO:78) are presented in FIG. 7A and FIG. 7B, respectively.


While various specific embodiments have been illustrated and described, it will be appreciated that various changes can be made without departing from the spirit and scope of the invention(s).

Claims
  • 1. A polypeptide comprising a xylose isomerase signature sequence, wherein the xylose isomerase signature sequence is selected from the group consisting of SEQ ID NO: 212, SEQ ID NO: 213 and SEQ ID NO: 214 or a combination thereof.
  • 2. The polypeptide of claim 1, wherein the xylose isomerase signature sequence is located near an active site of the polypeptide.
  • 3. The polypeptide of claim 1, wherein the xylose isomerase signature sequence is a Prevotella xylose isomerase signature sequence.
  • 4. The polypeptide of claim 1, wherein the polypeptide is selected from the group consisting of SEQ ID NO: 78, SEQ ID NO: 96, SEQ ID NO: 84, and SEQ ID NO: 80.
  • 5. A nucleic acid which encodes a polypeptide according to claim 1.
  • 6. A vector comprising the nucleic acid of claim 5.
  • 7. The vector of claim 6, further comprising on origin of replication and/or a promoter operably linked to the nucleic acid.
  • 8. The vector of claim 7, wherein the promoter is operable in yeast and/or filamentous fungi.
  • 9. A host cell transformed with the vector of claim 6.
  • 10. The host cell of claim 9, wherein the cell is selected from the group consisting of a prokaryotic cell, a bacterial cell and a eukaryotic cell.
  • 11. A recombinant cell which expresses the polypeptide of claim 1.
  • 12. The recombinant cell of claim 11, wherein the cell is a eukaryotic, a yeast cell or a filamentous fungi cell.
  • 13. The recombinant cell of claim 12, wherein the yeast cell is Saccharomyces, Kluyveromyces, Candida, Pichia, Schizosaccharomyces, Hansenula, Klockera, Schwanniomyces, Issatchenkia or Yarrowia.
  • 14. The recombinant cell of claim 13, wherein the yeast cell is of the species S. cerevisiae, S. bulderi, S. barnetti, S. exiguus, S. uvarum, S. diastaticus, K. lactis, K. marxianus or K. fragili, or Issatchenkia orientalis.
  • 15. The recombinant cell of claim 12, wherein the filamentous fungal cell is of the genus Aspergillus, Penicillium, Rhizopus, Chrysosporium, Myceliophthora, Trichoderma, Humicola, Acremonium or Fusarium.
  • 16. The recombinant cell of claim 15, wherein the filamentous fungal cell is of the species Aspergillus niger, Aspergillus oryzae, Trichoderma reesei, Penicillium chrysogenum, Myceliophthora thermophila, or Rhizopus oryzae.
  • 17. A method for producing a fermentation product, comprising culturing the recombinant cell of claim 11 in medium containing xylose under conditions in which the fermentation product is expressed.
  • 18. The method of claim 17, wherein the xylose in the medium is provided by lignocellulosic hydrolysate.
  • 19. The method of claim 17, wherein the fermentation product is selected from the group consisting of: ethanol, butanol, diesel, lactic acid, 3-hydroxy-propionic acid, acrylic acid, acetic acid, succinic acid, citric acid, malic acid, fumaric acid, itaconic acid, an amino acid, 1,3-propane-diol, ethylene, glycerol, a β-lactam antibiotic, a cephalosporin and a combination thereof.
  • 20. The method of claim 17, wherein the recombinant cell comprises a genetic modification that results in decreased alcohol dehydrogenase activity.
  • 21. The method of claim 17, wherein the recombinant cell expresses one or more enzymes that confers on the cell the ability to produce said fermentation product.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of U.S. application Ser. No. 13/948,956 filed Jul. 23, 2013, now pending; which claims the benefit under 35 USC §119(e) to U.S. application Ser. No. 61/675,241 filed Jul. 24, 2012, now expired. The disclosure of each of the prior applications is considered part of and is incorporated by reference in the disclosure of this application.

Provisional Applications (1)
Number Date Country
61675241 Jul 2012 US
Divisions (1)
Number Date Country
Parent 13948956 Jul 2013 US
Child 14745202 US