This invention concerns improvements to the construction of so-called Yankee cylinders for drying paper in wet paper producing systems.
For paper production a wet process is most commonly used, in which a slurry of cellulose fibers and water, with possible additives of a varying nature, is distributed through one or more headboxes on a formation wire, which moves along a direction of advancement. A small amount of water is drained through the wire to increase the dry content of the layer of slurry, which forms on the wire itself. With subsequent passages between more wires and/or wires and felts, a gradual reduction in the water content is achieved from the cellulose fiber layer to reach a suitable consistency, in other words a suitable dry content which allows the passage of the sheet of paper through a drying system.
Usually, the drying system includes a so-called Yankee cylinder. This is a large cylinder, typically with a 2-6 m diameter, internally heated for example by steam, and around which the sheet of wet paper is guided. The paper dries due to the heat from inside the Yankee cylinder and is then removed from the cylindrical surface of the cylinder itself, for example using a doctor blade or simply by tension. Removal by scraping is typically used in the production of crepe paper, as the blade in addition to removing the sheet of dried fibers from the Yankee cylinder, introduces a certain level of crepe which makes the paper elastic. Removal through tension is used for the production of smooth paper.
Usually the Yankee cylinders are produced in cast iron. These cylinders are of heavy weight and therefore present a considerable thermal inertia and a poor performance due to the features of thermal transmission through the cylinder wall towards the paper to be dried.
Therefore systems for producing steel Yankee cylinders have been researched.
U.S. Pat. No. 3,911,595 and U.S. Pat. No. 4,320,582 disclose construction systems of Yankee cylinders through assembly by bolting a cylindrical shell and so-called ends or end walls which close the surfaces at the ends the cylinder itself and to which are fixed journals, through which the cylinder is supported in appropriate roller bearings and through which the thermal carrier fluid, usually steam, is circulated, to heat the Yankee cylinder.
U.S. Pat. No. 3,224,084 describes a Yankee cylinder obtained through welding of a band or strip of steel wound helicoidally. The construction of this cylinder is extremely complex and the presence of helicoidal welding lines on the surface of the cylinder makes this difficult to produce as well as critical from the point of view of the integrity of the welding and therefore of the safety of the cylinder, due to the high pressure of steam which can occur inside it during normal operation.
Actually, one of the most critical aspects of the construction of Yankee cylinders is the elevated stress (some of a fatigue nature) to which this machinery is submitted due to the conditions in which it has to work. The stress is due to the pressure of the internal steam, the weight, the centrifugal force, the differentials in the thermal expansions due to the non-uniform thermal distribution. Furthermore the cylinder, rotating, is submitted to the fatigue action of one or two presses, whose function is in itself known, which exert elevated values of linear pressure on the shell of the cylinder itself.
An object of this invention is to provide a Yankee cylinder, more specifically a steel Yankee cylinder, using a simple and safe construction system.
According to a first aspect, the invention provides a steel Yankee cylinder including a cylindrical shell joined to two ends, to which are fixed support journals, characterized in that the cylindrical shell is secured to the ends through a circumferential welding produced between contact surfaces of each end and the cylindrical shell respectively.
According to a preferred embodiment the cylinder has a welding including a circular bead on one surface, preferably the external surface of the cylinder, and a back bead, i.e. a secondary welding bead, on the other surface, preferably the internal face of the cylinder. This guarantees a greater integrity of the welding and greater safety.
Advantageously, the welding bead and, if present, the back weld, are in a position to allow radiographic testing. For this purpose it is preferable for the back weld of the bead to be arranged on an exposed surface of the cylinder structure, within the cylinder itself. It is therefore possible to lay out the radiographic appliance on the internal and external faces of the cylinder welding zone and therefore control the quality of the welding itself, verifying that this fulfils the requirements of resistance to the elevated mechanical stress to which it is submitted.
Further preferable features and embodiments of the invention are indicated below with reference to examples of embodiment that are not limiting and in the dependent claims at the end of this description.
The invention is better understood following the description and the drawing, which shows practical non limiting embodiments of the invention. More specifically in the drawing:
With initial reference to
The final cylindrical shell can also be manufactured through jointing of two or more cylinders obtained by rolling and welding metal sheets. In this case the jointing between two adjacent cylindrical shells can be realized through circumferential welding, if the contact occurs on a line orthogonal to the axis of the shell, or elliptical welding, if the contact occurs on a sloping plane with respect to the axis of the shell. The shell Ills joined to the ends 13 and 15 to which are in turn fixed, in a way which will be described below, the journals 3.
In a preferable embodiment, each journal 3 has a flanged portion 3A joined for example through bolts 16 to respective end sides 13. The screws 16 are arranged in a circular lay out around the holes 13A and 15A realized in the ends 13 and 15.
The internal surface of the rolled sheet metal forming the cylindrical shell 11 is provided with circular grooves 11A within which the condensate is collected that forms by the release of thermal energy from the steam fed into the internal chamber of the body 1 of the Yankee cylinder towards the circumference. In a way that is known and not shown here the condensate is extracted from the bottom of the circular grooves 11A and re-cycled.
According to a preferable embodiment the cylindrical shell 11 is joined to the ends 13 and 15 through a welding produced with circular welding beads.
With reference to
The weld bead is preferably of a flat type, its external surface is flush with the external surface of the cylindrical shell 11. If the latter is provided with a hard facing, for example applied with an arc, the coating forms a continuous layer on the cylindrical surface of the shell 11 and the weld bead.
To make the weld bead C1, formed by the material placed in the space defined between the bevels 21 and 23, accessible to a radiographic system, according to an advantageous embodiment the end 13 is provided with a circular depression 25 which develops around the axis A-A of the Yankee cylinder, adjacent to the position in which the weld bead C1 is formed. In an advantageous embodiment (see in particular
Furthermore, according to an advantageous embodiment of the invention, the depression 25 has a circular connection 25E arranged radially to the outside with respect to the position of maximum depth 25B of the cavity or circular depression 25, which develops towards the inside of the chamber of the Yankee cylinder defining a circular edge 25F forming at least part of the wall of the bottom of the U-shaped volume in which the weld bead C1 is formed. An opposing edge 25F circular in shape is formed on the front wall of the cylindrical shell 11. The two opposing circular edges 25F are abutting to limit the volume of the bead C. According to a preferred embodiment of the invention, on the internal face of the edges 25F is a back weld is provided, indicated with R. The back weld can be in provided in correspondence of two bevels formed on the opposing circular edges 25F that guide the formation of the back weld itself.
In a modified embodiment, the weld bead C1 can be on the inside of the cylinder and the back weld R on the outside.
It is understood from
According to an advantageous embodiment, also the position of the cylindrical shell 11 directly adjacent to the weld bead C1 presents a structure designed specifically to improve the conditions of loading of the weld bead and to increase the thickness of the bead C1 in a radial direction. According to an advantageous embodiment, shown in particular in
In this embodiment, therefore, the ends 13 and 15 are butt joined to the front edges of the cylindrical shell 11 with a U shaped bead with internal back weld. According to a different embodiment, the possibility of realizing the junction by welding ends 13, 15 to the cylindrical shell 11 by inserting the ends into the inside of the cylindrical shell is not excluded.
Preferably, also in this case within the end 13 is a depression, indicated with 25, having a circular shape and arranged adjacent to the weld bead C1 and its back weld R made on the internal surface of the unit 11, 13. In this case the depression 25, again characterized by a particularly gentle profile of its cross section and with large curvature radii, optimizes the shape of the lines of force in the area of the weld itself, reducing the stress to which this is subjected by effect of the internal pressure of the Yankee cylinder.
In a modified embodiment, the weld bead C1 can be on the inside of the cylinder and the back weld R on the outside.
In a modified embodiment, the joining weld of each end to the cylindrical shell can have a V shape, a ½V shape, preferably with a back weld, or a K or X shape, with an internal and external bead. It is not excluded that the weld is a double U, rather than U with opposing back weld. The illustrated weld, nonetheless, presents greater resistance for the kind of stresses to which it is subjected.
The two ends 13 and 15 of the Yankee cylinder are joined not only by the cylindrical shell 11, but also by an internal tie indicated as 31. In an advantageous embodiment, the internal tie 31 is coaxial to the cylinder and is in the form of a tubular structure. In an advantageous embodiment the internal tie 31 can be pre-taut, to compensate for the thermal stress due to the differential expansions between the various parts of the Yankee cylinder.
In an advantageous embodiment the tubular structure of the tie 31, indicated by 31A, is provided with suitable holes 33 for the passage of the ducts of the condensate extraction system (not shown in the drawing), as well as holes 34 of a smaller diameter for the circulation and distribution of the steam. The tie 31 are furthermore provided with suitable human passages 36 for access and maintenance within the circular crown-shaped volume. The tubular structure of the tie 31 is butt joined to two respective annular bodies 35 and 37, one of which is shown in particular in
Through suitable elements it is possible, during assembly, to submit the structure 31A and the annular bodies 35, 37 to traction stress.
Within each annular body 35, 37 is provided a reinforcement ring 41 welded in 43 and 45 with a double weld bead around the opening 13A, 15A, of the end 13 or 15 respectively.
In an advantageous embodiment (see in particular enlargement of
The structure of the central tie 31 and its junction to the ends 13, 15 can also be made according to different configurations with respect to that illustrated in
In the embodiments described to now the coupling between the cylindrical shell 11 and the ends 13, 15 is obtained exclusively by welding eliminating the use of screws or bolts which, usually used in the configurations known, have multiple drawbacks including the risk of being subjected to high flexural stress to which these mechanical components are unable to resist with adequate safety, and also imply risk of failing to guarantee an adequate seal between the inside and outside of the cylinder due to the flexural deformations, due to the effect of the internal pressure during operation. A flexural deformation of this kind weakens the seal between the surfaces joined by bolts of the cylindrical shell and the ends with consequent leakage of overheated steam from the inside of the cylinder. A second potential problem is the fact that a bolted connection does not protect from the infiltration of oxidizing agents between the connection surfaces. If, for example, following the stress of operation, even a partial separation of the connection surfaces were to occur, humidity possibly mixed with chemical agents present in the process could penetrate between the surfaces. In this condition a layer of oxide could form preventing closure of the connection. This layer of oxide can over time increase in thickness until it compromises the safety of the connection.
In this embodiment, on the internal surface 13B of the end 13 (a similar configuration is provided on the end 15 not shown) a ring 61 is welded for example through a V-shaped weld bead C6 (without with this wanting to exclude other and different forms of weld bead). Ring 61 has an externally cylindrical surface of a diameter substantially equal to the internal diameter of the end portion of the cylindrical shell 11, which is placed around ring 61 and brought to abut with its front surface 11A against the internal front surface 13B of the end 13. A series of screws 63 mechanically connect the end 13 and the cylindrical shell 11. A similar junction is required between end 15 and the other end of the cylindrical shell 11.
With this conformation the flexural stress induced by the internal pressure of the Yankee cylinder on the junction between the components 13,15 and the component 11 is released onto ring 61 and therefore onto the end 13 as well as onto the end 15, while screws 63 are subjected essentially only to tensile stress and only marginally to flexural stresses, or in any case to flexural stresses of no relevance.
This conformation also presents the further advantage of allowing the application of a seal gasket 65 for example a gasket in rubber or copper. This can be lodged in a circular housing in the externally radial surface of the ring 61, i.e. the surface on contact with the cylindrical shell 11. This gasket further guarantees against the leakage of steam under pressure from the Yankee cylinder.
Body 1 of the Yankee cylinder can be manufactured with a single metal sheet of a width equal to the length of the cylinder, shaped and with butt welded opposing edges. Nevertheless, above all in the case of Yankee cylinders of elevated axial length, the cylindrical shell of body 1 can be produced in multiple sections, for example by two sheet metals each shaped to form a cylindrical wall and then welding the two cylinder portions to one another along a circular line. This way of forming body 1 of the Yankee cylinder is shown in
In an advantageous embodiment, the Yankee cylinder can be provided with ends 13,15 having a curved or partially curved cross section, with a concavity turned to the outside and a convexity turned towards the inside of the cylinder. In a possible embodiment the curved portion of the ends is formed by means of a circular wall with a curved cross section (that is a section according to a radial plane). In one embodiment the wall is welded along an external circumference of the shell or to a flat circular portion of the end. In one embodiment this circular wall is welded along an internal circumference to a circular plate, preferably flat, defining the central part of the end, to which the relevant journal is fixed. The curved shape allows greater resistance to the high pressure inside the cylinder, with thinner wall thicknesses than that of a flat wall.
In a modified embodiment (
Along the external circumferential border the portion of curved wall 15X is welded with a double U, double V, ½ V weld, with a weld bead on one face and a back weld on the other, or with any other suitable shape of the weld, to the external ring 15Z (
In a modified embodiment (
In a further embodiment (
Each of the embodiments of the most external radial welds (
Curved ends as in FIG. 11,12A,12B,12C,13A,13B can also be used in a Yankee cylinder of the kind shown in
It is understood that the drawing is an example given only as a practical demonstration of the invention, as this can vary in the shape and layout without getting away from the concept underlying the invention itself. Any reference number in the claims attached has the aim of facilitating reading of the claims with reference to the description and the drawing, and does not limit the scope of the protection represented by the claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IT2007/000147 | 3/1/2007 | WO | 00 | 1/27/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/105005 | 9/4/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3116985 | Kraus | Jan 1964 | A |
3118743 | Malmstrom et al. | Jan 1964 | A |
3224084 | Johnson | Dec 1965 | A |
3911595 | Lande | Oct 1975 | A |
3914875 | Schiel | Oct 1975 | A |
4320582 | Klippstein et al. | Mar 1982 | A |
4520578 | Schiel et al. | Jun 1985 | A |
6325896 | Hultcrantz et al. | Dec 2001 | B1 |
6877246 | Hada et al. | Apr 2005 | B1 |
20070289156 | Kloibhofer et al. | Dec 2007 | A1 |
20100132903 | Mennucci et al. | Jun 2010 | A1 |
20120168106 | Mennucci et al. | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
2707923 | Aug 1978 | DE |
685009 | Dec 1952 | GB |
WO 2006057023 | Jun 2006 | IT |
Number | Date | Country | |
---|---|---|---|
20100132903 A1 | Jun 2010 | US |