Yarn color placement system

Information

  • Patent Grant
  • 8776703
  • Patent Number
    8,776,703
  • Date Filed
    Friday, March 16, 2012
    12 years ago
  • Date Issued
    Tuesday, July 15, 2014
    10 years ago
Abstract
A yarn color placement system for a tufting machine including a series of different color yarns being fed to the needles of the tufting machine by yarn feed mechanisms. A backing material is fed through the tufting machine at an increased stitch rate as the needles are shifted according to the programmed pattern steps. A series of level cut loop loopers or hooks engage and pick loops of yarns from the needles, with the clips of the level cut loop loopers or hooks being selectively actuated to form cut pile tufts, while the remaining loops of yarns can be back-robbed so as to be hidden from view in the finished patterned tufted article.
Description
FIELD OF THE INVENTION

The present invention generally relates to tufting machines, and in particular, to a system for controlling the feeding and placement of yarns of different colors within a backing material passing through a tufting machine to enable formation of free-flowing patterns within a tufted article.


BACKGROUND OF THE INVENTION

In the tufting of carpets and other, similar articles, there is considerable emphasis placed upon development of new, more eye-catching patterns in order to try to keep up with changing consumer tastes and increased competition in the marketplace. In particular, there has been emphasis over the years on the formation of carpets that replicate the look and feel of fabrics formed on a loom. With the introduction of computer controls for tufting machines such as disclosed in the U.S. Pat. No. 4,867,080, greater precision and variety in designing and producing tufted pattern carpets, as well as enhanced production speeds, have been possible. In addition, computerized design centers have been developed to help designers design and create wider varieties of patterns, with requirements such as yarn feeds, pile heights, etc., being automatically calculated and generated by the design center computer.


Additionally, attempts have been made to develop tufting machines in which a variety of different color yarns can be inserted into a backing material to try to create more free-flowing patterns. For example, specialty machines have been developed that include a moving head that carries a single hollow needle in which the ends of the different color yarns are individually fed to the needle for insertion into the backing material at a selected location. Other machines having multiple needles in a more conventional tufting machine configuration and which move the backing material forwardly and rearwardly to place multiple colors in the backing material also have been developed. A problem exists, however, with such specialty tufting machines for individually placing yarns, in that the production rates of such machines generally are restricted as the yarns are placed individually in the backing material by the single needle or as the backing feed direction is changed. As a consequence, such specialized color patterning machines typically are limited to special applications such as formation of patterned rugs or carpets of limited or reduced sizes.


Accordingly, it can be seen that a need exists for a system and method that addresses these and other related and unrelated problems in the art.


SUMMARY OF THE INVENTION

Briefly described, the present invention generally relates to a yarn color placement system for a tufting machine for use in forming patterned tufted articles, such as carpets, including the formation of substantially free-flowing patterns and/or carpets with a woven or loom formed appearance. The tufting machine with the yarn color placement system of the present invention typically will include a tufting machine control system for controlling the operative elements of this tufting machine, and one or more shifting needle bars having a series of needles spaced therealong. A tufting zone is defined along the reciprocating path of the needles through which a backing material is fed at a programmed or prescribed rate of feeding or desired stitch rate. As the backing material is fed through the tufting zone, the needles are reciprocated into and out of the backing material to form loops of yarns therein.


A shift mechanism is provided for shifting the needle bar(s) transversely across the tufting zone, and multiple shift mechanisms typically will be utilized where the tufting machine includes more than one shifting needle bar. The shift mechanism(s) can include one or more cams, servo motor controlled shifters, or other shifters such as a “SmartStep” shift mechanism as manufactured by Card-Monroe Corp., which shift the needle bar in accordance with the designed pattern shift steps. The shift steps for the needle bar(s) will be accomplished in accordance with a cam or shift profile calculated or designed into the pattern when the pattern is created, or in accordance with pre-designed or pre-loaded patterns in the tufting machine controller. The cam or shift profile further can be varied depending on the number of colors to be used in the pattern being formed. For example, for three or four colors, a three or four color cam or cam profile can be utilized for shifting each needle bar.


The yarn color placement system further generally will include a pattern yarn feed mechanism or attachment for controlling the feeding of the yarns to their respective needles. The pattern yarn feed pattern mechanism can include various roll, scroll, servo-scroll, single end, or double end yarn feed attachments, such as, for example, a Yarntronics™ or Infinity™ or Infinity IIE™ yarn feed attachment as manufactured by Card-Monroe Corp. Other types of yarn feed control mechanisms also can be used to control the feeding of the yarns to their selected needles according to the programmed pattern instructions so as to pull low or backrob from the backing material those yarns to be hidden in the pattern fields being sewn at that time. The system control of the tufting machine further typically will control the operative functions of the tufting machine, including the operation of the shift mechanism(s) and yarn feed mechanism(s) according to the programmed pattern instructions.


Additionally, a looper or hook assembly including gauge parts such as cut-pile hooks, loop pile loopers, and/or level cut loopers or hooks generally will be provided below the tufting zone in a position so as to engage the needles as the needles penetrate the backing material so as to pick and/or pull loops of yarns therefrom. In one embodiment, a series of the level cut loop loopers are individually controlled by the system control of the tufting machine during each stitch, based on the pattern stitch being formed and shift profile step therefore, so as to be actuated or fired selectively for each stitch according to whether the loops of yarn being formed thereby are to be pulled back or backrobbed, and thus hidden upon the formation of each stitch in the pattern, kept as loop pile tufts, or retained on the level cut loop looper to form a cut pile tuft.


The yarn color placement system according to the principles of the present invention further generally will be operated at increased or denser stitch rates than conventional tufting processes. Typically, the operative or effective stitch rate run by the yarn placement system will be approximately equivalent to a desired or prescribed number of stitches per inch at which the backing material is fed, multiplied by the number of colors being run in the programmed pattern. As a consequence, as the needle bar(s) is shifted during the formation of the pattern stitches, for each color to be taken out or back-robbed and thus hidden in the finished patterned article, the increased number of stitches per inch will provide sufficient enhanced density to the finished patterned tufted article to avoid a missing color or gap being shown or otherwise appearing in the patterned article.


Various objects, features and advantages of the present invention will become apparent to those skilled in the art upon a review of the following detailed description when taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side elevational view of a tufting machine incorporating the yarn color placement system of the present invention.



FIG. 2 is a side elevational view of the tufting machine of FIG. 1, illustrating the needles and level cut loopers.



FIG. 3 is a perspective illustration of the yarn color placement system of FIG. 1.



FIG. 4 is a perspective illustration, with parts broken away, illustrating the operation of the level cut loop loopers and shifting of the needle bars in the yarn color placement system of FIG. 1.



FIG. 5 is a perspective view illustrating a portion of the tufting zone of the tufting machine according to the embodiment of FIG. 1



FIGS. 6A-6D are schematic illustrations of example shift/step patterns for tufting patterns having different numbers of colors using the method of the present invention.



FIG. 7 is a flow diagram illustrating the operation of the yarn color placement system according to the present invention.





DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawings in which like numerals indicate like parts throughout the several views, in accordance with one example embodiment of the yarn color placement system of the present invention, as generally illustrated in FIGS. 1-5, a tufting machine 10 is provided for controlling placement of yarns Y1-Y4, etc., of different colors at desired locations in a backing material B to form a tufted article having a variety of varying or free-flowing colored pattern effects therein. While four yarns/colors are indicated, it will be understood that more or fewer different color yarns (i.e., two color, three color, five color, six colors, etc., as illustrated in FIGS. 6A-6D) also can be utilized in the yarn color placement system of the present invention.


As generally illustrated in FIG. 1, the tufting machine 10 generally includes a frame 11, including a head portion 12 housing a needle bar drive mechanism 13 and defining a tufting zone T. The needle bar drive mechanism 13 (FIGS. 1, 3 and 4) typically includes a series of push rods 14 connected to a gear box drive 16 or similar mechanism, by connector rods 17. The gear box drive 16 in turn is connected to and driven off a main drive shaft 18 (FIGS. 1 and 4) for the tufting machine by one or more drive belts or drive chains 19, with the main drive shaft 18 itself being driven by a motor, such as a servo motor. Alternatively, the push rods 14 of the needle bar drive mechanism 13 can be directly connected via connector rods 17 to the main drive shaft 18 so as to be driven directly off the main drive shaft to control operation of the main drive shaft motor (not shown).


An encoder additionally can be provided for monitoring the rotation of the main drive shaft and reporting the position of the main drive shaft to a tufting machine control system 25 (FIG. 1). The tufting machine control system 25 generally will comprise a tufting machine control such as a “Command-Performance™” tufting machine control system as manufactured by Card-Monroe Corp. The control system also typically includes a computer/processor or controller 26 that can be programmed with various pattern information and which monitors and controls the operative elements of the tufting machine 10, such as the needle bar drive mechanism 13, yarn feed attachments 27/28, backing feed rolls 29, the main drive shaft 18, a needle bar shift mechanism 31 (FIGS. 3 and 4) and a looper or hook assembly 32 mounted beneath the tufting zone T of the tufting machine, as discussed more fully below. The tufting machine control system 25 (FIG. 1) further can receive and execute or store pattern information directly from a design center (not shown) that can be separate and apart from the tufting machine control system, or which can be included as part of the tufting machine control system. In response to such programmed pattern instructions, the tufting machine control system 25 will control the operative elements of the tufting machine 10 in order to form the desired tufted patterns in the backing material B as the backing material is passed through the tufting zone T in the direction of arrow 33 by the backing feed rolls 29.


As indicated in FIGS. 1-5, the needle bar drive mechanism 13 of the tufting machine 10 also will include one or more shiftable needle bars 35 attached to and driven by the push rods 14 and carrying a series of needles 36 arranged in in-line or offset rows spaced transversely along the length of the needle bar and across the tufting zone of the tufting machine. While only a single shifting needle bar 35, with an inline row of needles 36 arranged therealong is shown in the figures, it will be understood by those skilled in the art that additional arrangements of dual shifting needle bars having spaced rows of needles 36 arranged in-line or in a staggered or offset configuration also can be utilized in the tufting machine 10 incorporating the yarn control placement system according to the present invention.


During operation of the needle bar drive mechanism, the needles are reciprocated, as indicated by arrows 37 and 37′ (FIG. 2), into and out of the backing material B, carrying the yarns Y1-Y4 so as to insert or place loops of yarn in the backing material for forming loop pile and cut pile tufts 38 in the backing material. Additionally, as illustrated in the embodiments shown in FIGS. 3 and 4, shift mechanism 31 generally will be linked to the needle bar 35 for shifting the needle bar in the direction of arrows 41 and 41′, transversely across the tufting zone according to programmed pattern instructions. The shift mechanism 31 can include a Smart Step™ type shifter as manufactured by Card-Monroe Corp., or alternatively can include various other types of shift mechanisms including servo motor or hydraulically controlled shifters, and/or pattern cam shifters as are conventionally used.


As part of the pattern information/instructions programmed into the tufting machine control system 25 (FIG. 1), there typically will be a cam profile or shift profile of the shift steps calculated for the pattern when it is created, such as at a design center, for controlling the shifting of the needle bar(s) as necessary to form the desired pattern. The pattern shift steps or cam profile further can be varied depending on the number of colors used in the pattern being run. FIGS. 6A-6D illustrate various shift or stepping patterns for the needle bar, reflecting the shifting of the needle bar where three, four, five or six different color yarns are utilized in the pattern, and illustrate single and double step or jump segments followed to avoid oversewing prior sewn tufts. For example, for running a stepping pattern utilizing three different colors of yarns, as indicated in FIG. 6A, an initial step or shift can be made to the right, which would then be followed by a double gauge shift or jump, ending with a single gauge shift. Similarly, for four, five and/or six colors, shown in FIGS. 6B-6D, after an initial shift to the right of a single or double gauge jump, the pattern then shifts back to the left using single and double gauge jumps or shifts in order to avoid sewing over or over-tufting previously sewn tufts. Additionally, while the initial shift or jump is shown as going to the right in FIGS. 6A-6B, it is also possible to start the shift steps to the left. Still further, as the needle bar is shifted, the backing material also is generally fed through the tufting machine at an increased or denser stitch rate to achieve a denser pattern or fill-in of the selected colors for the particular field of the pattern.


In some conventional tufting systems, the stitch rate for tufting patterns run thereby generally has been matched to the gauge of the tufting machine, i.e., for a tenth gauge tufting machine, the stitch rate typically will be approximately ten stitches per inch, while for an eighth gauge machine, the stitch rate will be approximately eight stitches per inch. In the present invention, the operative or effective stitch rate run by the yarn color placement system will be substantially higher or faster, and thus more dense than typical desired stitch rates. Typically, with the yarn color placement system of the invention, this enhanced effective stitch rate will be approximately equivalent to the desired stitch rate multiplied by the number of different colors being run in the pattern. Thus, with yarn color placement system of the present invention, for a tenth gauge machine generally run using a desired stitch rate of approximately ten stitches per inch, if there are three colors in the pattern, the operative or effective stitch rate run by the yarn color placement system will be determined by the desired stitch rate (10 stitches per inch), multiplied by the number of colors (3), for an effective stitch rate of approximately thirty stitches per inch, for four colors, while the operative or effective stitch rate for a four color pattern can be approximately forty stitches per inch, fifty stitches per inch for five colors, etc.


As additionally indicated in FIGS. 1, 3 and 4, one or more yarn feed attachments 27 and/or 28 also generally can be mounted to the frame 11 of the tufting machine 10 for controlling the feeding of the different color yarns Y1-Y4, etc., to each of the needles during operation of the tufting machine, including pulling back or back-robbing yarns that are to be hidden in particular color fields of the pattern. There are variety of yarn feed attachments that are utilized in the yarn color placement system of the present invention for controlling the feeding of the different color yarns Y1-Y4, etc. to various ones of the needles 36. For example, the pattern yarn feed attachments or mechanisms can include conventional yarn feed/drive mechanisms such as roll or scroll pattern attachments, as indicated at 28 in FIGS. 1 and 3, having a series of rolls 45 extending at least partially along the tufting machine and driven by motors 46 under direction of the system control 25 (FIG. 1), for controlling the feeding of all of the yarns across the tufting machine to form pattern repeats across the width of the backing material, and including Quick Thread™, Enhanced Graphics™, and/or Multi Pile Height Scroll yarn feed controls/attachments as manufactured by Card-Monroe Corp. Alternatively, other types of pattern yarn feed attachments can be used, as indicated at 27, which have multiple yarn feed drives 47 (FIG. 3), each including a motor 48 and feed rolls 49, for controlling the feeding of specific sets of repeats of yarns to selected needles, including the use of individual yarn feed rolls or drives 48 for controlling the feeding of single yarns or pairs of yarns to each of the needles 36, such as single end/servo-scroll attachments, and/or the Infinity™ and Infinity IIE™ systems as manufactured by Card-Monroe Corp.


For example, U.S. Pat. Nos. 6,009,818; 5,983,815; and 7,096,806 disclose pattern yarn feed mechanisms or attachments for controlling feeding or distribution of yarns to the needles of a tufting machine. U.S. Pat. No. 5,979,344 further discloses a precision drive system for driving various operative elements of the tufting machine. All of these systems can be utilized with the present invention and are incorporated herein by reference in their entireties. Additionally, while in FIG. 1 a roll or scroll-type pattern attachment is shown at 28 as being used in conjunction with a single or double end type yarn feed mechanism 27, it also will be understood by those skilled in the art all of the pattern yarn feed mechanisms 27/28 utilized to control the yarn feed in the yarn color placement system of the present invention can include only single or double end yarn feed controls, or only scroll, roll, or similar attachments, and can be mounted along one or both sides of the tufting machine.


As indicated in FIGS. 1-4, the backing material B is fed through the tufting zone along a feed or path in the direction of arrow 33 by the backing rolls 29 (FIGS. 1 and 2) by the operation of drive motors 51 that are linked to and controlled by the machine control system 25. The backing material B is fed at the effective stitch rate for the pattern being formed by the yarn color placement system of the present invention (i.e., the desired rate multiplied by the number of colors of the pattern), and is engaged by the needles 36 that insert the yarns Y1-Y4 (to form the tufts 38 in the backing material. As the needles penetrate the backing material, they are engaged by the looper/hook assembly 32 so as to form loops of yarns that then can be cut to form cut-pile tufts, or can be remain as loops according to each pattern step. The released loops of yarns can be back-robbed or pulled low or out of the backing by the operation of the pattern yarn feed attachment(s) 27/28 as needed to vary the height of the loops of the additional colored yarns that are not to be shown or visually present in the color field of the pattern being sewn at that step.


As shown in FIGS. 1 and 2, the looper/hook assembly 32 generally is mounted below the bed and tufting zone T of the tufting machine 10. In one example embodiment of the yarn color placement system according to the present invention, the looper/hook assembly 32 generally includes a series of level cut loop loopers 55 (FIG. 2) mounted on a support block or holder 56 that is attached to a hook or looper bar 57 that is itself mounted on a reciprocating drive arm 58. The drive arm 58 reciprocates the level cut loop loopers 55 toward and away from the needles 36 in the direction of arrows 59 and 59′, as the needles penetrate the backing material so that the level cut loop loopers engage the needles to pick and pull the loops of yarns therefrom. It also will be understood by those skilled in the art, however, that while the present invention as disclosed herein is for use with level cut loopers or hooks, it also could be possible to utilize loop pile loopers and/or cut pile hooks, as well as combinations of level cut loop loopers, cut pile hooks and/or loop pile loopers in the yarn placement system of the present invention in order to form the desired patterned articles.


As indicated in FIG. 2, each of the level cut loop loopers 55 generally includes a looper body 61, the rear portion of which is received in the support or hook block 56, and a hooked front or bill portion 62 that extends forwardly therefrom. A series of slots (not shown) generally are formed within the support block 56 adjacent each looper body 61, through which clips 63 are slidably received so as to be moveable from a retracted position rearward of the front portion 62 of each looper 55, to an extended position, projecting adjacent or in contact with the front bill portion 62, as indicated in FIG. 2. In its extended position, each clip prevents a loop of yarn engaged by its associated level cut looper 55 from being captured and held behind the hooked front or bill portion 62 and thereafter being cut. Each of the clips generally includes an elongated body typically formed from metal, plastic, composite or other similar material having a first proximal end that is adapted to extend adjacent the front bill portion of each associated level cut looper, and a rear portion (not shown) that extends through the support block 56.


The clips further each are linked to an associated actuator 66 by a connector or gate 67 which itself is connected to one or more output or drive shafts 68 of its associated actuator(s) 66. The actuators 66 are mounted in spaced, vertically offset rows, along an actuator block and generally can include hydraulic or other similar type cylinders or can include servo motors, solenoids or other similar type mechanisms for driving the clips between their extended and retracted positions.


Each connector or gate 67 further includes an actuator connector portion configured to be connected to an output shaft of an actuator, an extension portion extending forwardly from and at an angle with respect to the actuator connector portion along a direction transverse to the axial direction and a slot portion connected to the extension portion and defining a connector slot extending from the extension portion. The connector slot is configured to engage an associated clip 63, with the connector slot further including laterally spaced side walls defining the slot in which the clip is received. Additionally, each connector slot can be about 0.001 inches-0.003 inches greater in width than the width of the clip that is received therein to enable seating of the clips therein while preventing twisting of the clips during movement thereof, as the lateral side walls generally will prevent substantial lateral movement of the clips relative to their connectors and thus will prevent rotation of the clips about the longitudinal axis of the clips.


As further illustrated in FIGS. 2 and 5, a series of knife assemblies 71 typically are provided adjacent the level cut loopers 55 of the hook or looper/hook assembly 32. The knife assembly 71 generally include a knife or cutting blade 72 mounted within the holder 73 connected to a reciprocating drive mechanism 74. The knives are reciprocated into engagement with the level cut loopers 55 so as to cut any loops of yarns selectively captured thereon in order to form the cut pile tufts 38 in the backing material as the backing material B is passed through the tufting zone in the direction of arrow 33, as indicated in FIG. 2.



FIG. 7 generally illustrates one embodiment of the operation of the yarn color placement system according to the principles of the present invention. As an initial step 100, the pattern generally will be designed, such as at a design center, with various parameters, such as the number of colors, desired stitch rate, and shifts or jumps of the pattern generally inputted or calculated to create the desired pattern, including the use of a variety of different colored yarns. Thereafter, as indicated at step 101, the pattern will be transferred to the tufting machine 10 (FIG. 1) generally by being loaded into the system control 25 for the tufting machine by disk or network connection to the design center. Once the desired pattern(s) has been loaded, the tufting machine will be started, as indicated at 102 (FIG. 7), to start the tufting operation.


As the pattern is sewn, the backing material B (FIG. 2) is fed through the tufting zone T at the prescribed or effective stitch rate, as indicated in block 103 (FIG. 7). As discussed above, this effective stitch rate is substantially faster than conventional stitch rates (i.e., by a factor approximately equivalent to the number of colors being tufted) in order to provide sufficient density for the tufts being formed in the pattern fields to hide those color yarns not to be shown. As indicated at step 104, as the pattern is formed in the backing material, the needle bars are generally shifted per the cam profile or shift profile of the pattern. For example, as indicated in FIGS. 6A-6D, the needle bar will be shifted using a combination of single and/or double jumps or shifts, based on the number of colors being run in the pattern and the area of the pattern field being formed by each specific color. Such a combination of single and double shift jumps or steps will be utilized in order to avoid over-tufting or engaging previously sewn tufts as the needle bar is shifted transversely and the backing material advances at its effective or operative stitch rate. Additionally, as the needles penetrate the backing material, the level cut loop loopers 55 (FIG. 2) of the looper/hook assembly 32 positioned below the tufting zone T, also are reciprocated toward the tufting zone so as to engage and pick or pull loops of yarns from each of the needles.


As indicated in FIG. 7 at step 106, as the level cut loop loopers are being moved into engagement with the needles, they are selectively actuated, as needed to form loops of yarns that either will be released from the level cut loop loopers, or retained thereon for forming cut pile tufts. The level cut loop loopers each will be individually controlled by the control system 25 (FIG. 1) of the tufting machine so as to be selectively fired, as needed, according to the movement of the stepping or shifting needle bar. As a result, for each step or shift of the needle bar according to the pattern, each level cut looper actuator will be controlled individually so as to selectively engage or retract its clip to enable selected loops of yarns to be picked from the needles by the level cut loop loopers and held for cutting, thus forming cut pile tufts. In their extended positions, the clips will cause the loops of yarns engaged by the level cut loop loopers to be released to form either loop pile tufts, or which will be pulled low or back-robbed by operation of the pattern yarn feed attachment controlling the feeding of such yarns, to hide or bury the non-selected ends of these yarns within a particular color field being formed according to the pattern instructions.


As the needles are retracted from the backing material during their reciprocal movement in the direction of arrow 37′ (FIG. 2), the feeding of the yarns by the pattern yarn feed attachments or yarn feed mechanisms 27/28 (FIG. 1) also will be controlled as indicated at step 107 (FIG. 7). The feeding of the yarns of the non-selected colors (i.e., the colors that are to be hidden and thus not visible in the particular color fields of the pattern being sewn at that step) will be controlled so that these yarns will be back-robbed or pulled low, or even pulled out of the backing material by the yarn feed mechanisms feeding each of these yarns. The effective stitch rate being run by the yarn color placement system of the present invention further provides for a denser field of stitches or tufts, so that the yarns being pulled low or backrobbed are effectively hidden by the remaining cut and/or loop pile tufts formed in the backing material.


The control of the yarn feed by the yarn feed pattern attachments for the control of the feeding of yarns of a variety of different colors, in conjunction with the operation of each shift mechanism and level cut loop loopers or hooks and/or cut pile hooks and loop pile hooks, and with the backing material being run at an effective or operative stitch rate that is substantially increased or denser than stitch rates solely based upon gauge of the machine enables the yarn color placement system of the present invention to provide for a greater variety of free-flowing patterns and/or patterns with a loom-formed appearance to be formed in the backing material. As indicated at step 108 in FIG. 7, the operation of the yarn color placement system continues, and is repeated for each stitch of the pattern until the pattern is complete.


It will be understood by those skilled in the art that while the present invention has been discussed above with reference to particular embodiments, various modifications, additions and changes can be made to the present invention without departing from the spirit and scope of the present invention.

Claims
  • 1. A tufting machine for forming patterned tufted articles including different color yarns therein, comprising: at least one needle bar having a series of needles mounted at a spacing based on a gauge of the tufting machine therealong;backing feed rolls for feeding a backing material through a tufting zone of the tufting machine;a pattern yarn feed mechanism for feeding a series of yarns to said needles;at least one needle bar shifter for shifting said at least one needle bar transversely across the tufting zone;a series of gauge parts mounted below the tufting zone in a position to engage said needles of said at least one needle bar as said needles are reciprocated into and out of the backing material to form tufts of yarns in the backing material; anda control system for controlling said yarn feed mechanism in cooperation with said at least one needle bar shifter shifting the at least one needle bar in accordance with a series of transverse pattern shift steps received by the control system, to control feeding of the yarns to said needles as the needles are reciprocated and as the needle bar is shifted in accordance with the transverse pattern shift steps as needed to form selected tufts of yarns of a desired height and to pull non-selected ones of the yarns low or out of the backing material for each pattern step;wherein the control system is linked to and controls the backing feed rolls for feeding the backing material such that the tufts of yarns are formed in the backing material at an effective stitch rate that is determined by increasing a prescribed stitch rate of the patterned tufted article that is based on the gauge of the tufting machine by a selected amount so as to form the patterned articles with the selected tufts of yarns having an appearance of being formed at the desired stitch rate.
  • 2. The tufting machine of claim 1 and wherein said gauge parts comprise a plurality of level cut loop loopers having a series of extensible clips.
  • 3. The tufting machine of claim 2 further including actuator connector configured to be connected to an output shaft of an actuator for moving one of said clips of said level cut loop loopers between extended and retracted positions for forming loop pile and cut pile tufts, and having an extension portion extending forwardly from and at an angle with respect to said actuator connector portion along a direction transverse to the axial direction, and a connector slot extending from the extension portion and configured to receive one of said clips of one of said level cut loop loopers, the connector slot including lateral walls extending along lateral sides thereof.
  • 4. The tufting machine of claim 3 wherein said lateral walls of said connector slots are spaced a sufficient distance to enable said clips to be received and seated therein while preventing rotation of said clips about a longitudinal axis of each clip and prevent substantial lateral movement of each clip relative to its actuator connector.
  • 5. The tufting machine of claim 1 and wherein said pattern yarn feed mechanism comprises a pattern attachment having a plurality of yarn feed devices each feeding at least one yarn to a selected one of said needles.
  • 6. The tufting machine for claim 1 and wherein said pattern yarn feed mechanism comprises a pattern attachment having a series of yarn feed rolls each feeding at least two yarns per feed roll to selected needles.
  • 7. The tufting machine of claim 1 and wherein said pattern yarn feed mechanism comprises a scroll attachment, roll attachment, a double end yarn feed attachment, or a single end yarn feed attachment.
  • 8. The tufting machine of claim 1 and wherein said gauge parts comprise cut pile hooks, loop pile loopers, level cut loop loopers and/or combinations thereof.
  • 9. The tufting machine of claim 1 and wherein the control system includes program instructions for operation of the yarn feed mechanism to feed the yarns into the backing material at the increased effective stitch rate to form the tufts of yarns in the backing material at an increased density.
  • 10. A method of tufting articles including tufts of multiple different color yarns, comprising: feeding a backing material through a tufting machine at a prescribed stitch rate for a pattern of the tufted article;reciprocating a series of needles to deliver the yarns into the backing material to form tufts of yarns therein;engaging the yarns delivered into the backing material by the needles with a series of gauge parts to pull loops of yarns from the needles for forming the tufts of yarns in the backing material;shifting at least some of the needles transversely according to a desired shift profile of the pattern for the tufted article;controlling feeding of the yarns to the needles in accordance with the shift profile of the pattern for the article to selectively form high tufts of yarns and to selectively pull back loops of yarns to form the pattern;wherein the tufts of yarns are formed in the backing material at an increased effective stitch rate that is equivalent to the prescribed stitch rate for the pattern of the tufted article times a number of colors formed in the pattern so as to form the patterned article with an appearance of an increased density.
  • 11. The method of claim 10 and wherein controlling feeding of the yarns comprises back-robbing yarns to form low tufts to be hidden among the high tufts in the patterned articles.
  • 12. The method of claim 10 and wherein controlling feeding of the yarns comprises controlling each yarn fed to each needle to selectively form tufts of yarns and to pull selected yarns low or out of the backing material.
  • 13. The method of claim 10 and wherein at least two different colors of yarns are used in the pattern and the effective stitch rate is at least two times the prescribed stitch rate for the patterned article for the feeding of the backing material.
  • 14. The method of claim 10 and further comprising forming a number of high tufts in each tuft row that is equivalent to the prescribed stitch rate.
  • 15. The method of claim 10 and further comprising forming an equivalent number of high tufts in each tuft row for each color-step of the pattern.
  • 16. A method of operating a tufting machine to form patterned tufted articles having multiple colors, comprising: feeding a backing material through the tufting machine;feeding a plurality of yarns to a series of needles carried by a shiftable needle bar;shifting the needle bar transversely according to a programmed shift profile for the pattern of the tufted article;controlling the feeding of the yarns to the needles in accordance with programmed pattern instructions so as to feed desired amounts of the yarns to the needles as needed to form rows of high and low tufts of yarns in the backing material;forming the tufts of yarns at an increased effective stitch rate determined by multiplying a number of colors being formed in the patterned tufted article by a desired stitch rate that comprises a number of stitches per inch desired for the patterned tufted articles; andwherein the feeding of the yarns to form the high and low tufts tracks the shifting of the needles so as to maintain a density of the tufts of yarns being formed in the backing material in a direction of the rows of tufts and location of the high tufts of yarns at desired positions across the backing material to form the patterned tufted articles.
  • 17. The method of claim 16 and wherein controlling the feeding of the yarns comprises feeding a first amount of yarn to each needle forming a high tuft, while feeding a second, lesser amount of yarn to each needle forming a low tuft.
  • 18. The method of claim 17 and wherein feeding a second, lesser amount of yarn comprises back-robbing the yarns fed to each needle to an extent sufficient to hide the low tufts from the backing.
  • 19. The method of claim 16 and further comprising forming a number of high tufts in the backing that matches the desired stitch rate.
  • 20. The method of claim 16 and wherein the tufting machine is a 1/10th gauge tufting machine and the desired fabric stitch rate is approximately ten stitches per inch.
  • 21. The method of claim 20 and wherein the patterned tufted article includes two-to six colors, and wherein the effective stitch rate is between about twenty stitches per inch and about sixty stitches per inch.
  • 22. The method of claim 16 and wherein the tufting machine is a ⅛th gauge tufting machine and the desired fabric stitch rate is approximately eight stitches per inch.
  • 23. The method of claim 22 and wherein the patterned tufted article includes two to six colors, and wherein the effective stitch rate is between about sixteen stitches per inch and about forty eight stitches per inch.
  • 24. The method of claim 16 and wherein the tufting machine is a 1/16th gauge tufting machine and the desired fabric stitch rate is approximately sixteen stitches per inch.
  • 25. The method of claim 24 and wherein the patterned tufted article includes two to six colors, and wherein the effective stitch rate is between about thirty two stitches per inch and about ninety six stitches per inch.
  • 26. The method of claim 16 and further comprising repeating an initial shift step in the programmed shift profile of the pattern.
  • 27. The method of claim 16 and further comprising selectively actuating a series of clips of level cut loop loopers for each stitch of the pattern to form cut pile and loop pile tufts.
  • 28. A method of forming tufted articles including tufts of multiple different color yarns, comprising: feeding a backing material through a tufting machine;reciprocating a series of needles to deliver the yarns into the backing material to form tufts of yarns therein;engaging the yarns delivered into the backing material by the needles with a series of gauge parts to pull loops of yarns from the needles for forming the tufts of yarns in the backing material;shifting at least some of the needles transversely, wherein the needles are shifted by single shift steps, double shift steps, or a combination of single and/or double shift steps according to a shift profile based upon a number of colors of yarns of the pattern for the tufted article;controlling feeding of the yarns to the needles in accordance with the shift profile of the pattern for the article to selectively form tufts of yarns of a desired pile height and to selectively pull back loops of yarns to form the pattern;wherein the tufts of yarns are formed in the backing material at an increased effective stitch rate that is at least two times a prescribed stitch rate based upon a gauge of the tufting machine, for the feeding of the backing material for the pattern of the tufted article so as to form the patterned article with an appearance of an increased density.
  • 29. A method of forming tufted articles including tufts of multiple different color yarns, comprising: feeding a backing material through a tufting machine at an effective stitch rate that is increased over a desired stitch rate for the tufted article that is based on a gauge of the tufting machine;reciprocating a series of needles to deliver the yarns into the backing material to form tufts of yarns therein;engaging the yarns delivered into the backing material by the needles with a series of gauge parts to pull loops of yarns from the needles for forming the tufts of yarns in the backing material;shifting at least some of the needles transversely according to a desired shift profile based upon a number of colors of yarns of the pattern for the tufted article;controlling feeding of the yarns to the needles in accordance with the shift profile of the pattern for the article to selectively form a number of high tufts of yarns and to selectively pull back loops of yarns to form the pattern;wherein the tufts of yarns are formed in the backing material at the effective stitch rate, so as to form the patterned article with the number of high tufts formed substantially matching the desired stitch rate of the tufting machine and with the loops of yarns selectively pulled back being substantially hidden by the high tufts of yarns.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of prior U.S. Utility application Ser. No. 12/122,004, filed May 16, 2008, entitled “Yarn Color Placement System,” which application claims the benefit of U.S. Provisional Application No. 61/029,105, filed Feb. 15, 2008, according to the statutes and rules governing provisional patent applications, particularly USC §119(e)(1) and 37 CFR §1.78(a)(4) and (a)(5). The entire disclosures of both U.S. Utility application Ser. No. 12/122,004 and U.S. Provisional Application No. 61/029,105 are incorporated herein by reference as if set forth in their entireties.

US Referenced Citations (150)
Number Name Date Kind
2990792 Nowicki et al. Jul 1961 A
3375797 Gaines Apr 1968 A
3485195 Torrence Dec 1969 A
3618542 Zocher Nov 1971 A
3709173 Greene Jan 1973 A
3757709 Cobble Sep 1973 A
3835797 Franks et al. Sep 1974 A
3847098 Hammel, Jr. Nov 1974 A
3919953 Card et al. Nov 1975 A
3943865 Short et al. Mar 1976 A
4103629 Card Aug 1978 A
4106416 Blackstone, Jr. et al. Aug 1978 A
4134348 Scott Jan 1979 A
4138956 Parsons Feb 1979 A
4155319 Short May 1979 A
4170949 Lund Oct 1979 A
4185569 Inman Jan 1980 A
4193358 Woodcock Mar 1980 A
4195580 Hurst Apr 1980 A
4313388 Biggs et al. Feb 1982 A
4353317 Crumbliss Oct 1982 A
4366761 Card Jan 1983 A
4369720 Beasley Jan 1983 A
4393793 Beasley Jul 1983 A
4397249 Slattery Aug 1983 A
4419944 Passons et al. Dec 1983 A
4440102 Card et al. Apr 1984 A
4466366 Hirotsu Aug 1984 A
4522132 Slattery Jun 1985 A
4549496 Kile Oct 1985 A
4557208 Ingram et al. Dec 1985 A
4574716 Czelusniak, Jr. Mar 1986 A
4619212 Card et al. Oct 1986 A
4630558 Card et al. Dec 1986 A
4637329 Czelusniak, Jr. Jan 1987 A
4667611 Yamamoto et al. May 1987 A
4688497 Card et al. Aug 1987 A
4815403 Card et al. Mar 1989 A
4836118 Card et al. Jun 1989 A
4841886 Watkins Jun 1989 A
4849270 Evans et al. Jul 1989 A
4856441 Kurata Aug 1989 A
4860674 Slattery Aug 1989 A
4864946 Watkins Sep 1989 A
4867080 Taylor et al. Sep 1989 A
4903624 Card et al. Feb 1990 A
4903625 Card et al. Feb 1990 A
4981091 Taylor et al. Jan 1991 A
4991523 Ingram Feb 1991 A
5005498 Taylor et al. Apr 1991 A
5058518 Card et al. Oct 1991 A
5080028 Ingram Jan 1992 A
5094178 Watkins Mar 1992 A
5158027 Ingram Oct 1992 A
5165352 Ingram Nov 1992 A
5182997 Bardsley Feb 1993 A
5224434 Card et al. Jul 1993 A
5383415 Padgett, III Jan 1995 A
5458075 Tice et al. Oct 1995 A
5461996 Kaju Oct 1995 A
5501250 Edwards et al. Mar 1996 A
5526760 Ok Jun 1996 A
5544605 Frost Aug 1996 A
5549064 Padgett, III Aug 1996 A
5566630 Burgess et al. Oct 1996 A
5575228 Padgett, III et al. Nov 1996 A
5588383 Davis et al. Dec 1996 A
5622126 Card et al. Apr 1997 A
5662054 Bardsley Sep 1997 A
5738030 Ok Apr 1998 A
5743201 Card et al. Apr 1998 A
5794551 Morrison et al. Aug 1998 A
5806446 Morrison et al. Sep 1998 A
5899152 Bardsley et al. May 1999 A
5954003 Beyer et al. Sep 1999 A
5979344 Christman, Jr. Nov 1999 A
5983815 Card Nov 1999 A
6009818 Card et al. Jan 2000 A
6155187 Bennett et al. Dec 2000 A
6196145 Burgess Mar 2001 B1
6202580 Samilo Mar 2001 B1
6224203 Wotton May 2001 B1
6228460 Hamilton et al. May 2001 B1
6244203 Morgante et al. Jun 2001 B1
6263811 Crossley Jul 2001 B1
6273011 Amos Aug 2001 B1
6283053 Morgante et al. Sep 2001 B1
6293211 Samilo Sep 2001 B1
6401639 Samilo Jun 2002 B1
6439141 Morgante et al. Aug 2002 B2
6446566 Bennett et al. Sep 2002 B1
6502521 Morgante et al. Jan 2003 B2
6508185 Morgante et al. Jan 2003 B1
6516734 Morgante et al. Feb 2003 B1
6550407 Frost et al. Apr 2003 B1
6758154 Johnston Jul 2004 B2
6782838 Segars et al. Aug 2004 B1
6807917 Christman et al. Oct 2004 B1
6823900 Wildeman et al. Nov 2004 B2
6834601 Card et al. Dec 2004 B2
6834602 Hall Dec 2004 B1
6877447 Frost et al. Apr 2005 B2
6877449 Morgante et al. Apr 2005 B2
6945184 Frost et al. Sep 2005 B2
6971326 Clarke et al. Dec 2005 B1
7033661 Whitten et al. Apr 2006 B2
7083841 Oakey et al. Aug 2006 B2
7089874 Morgante et al. Aug 2006 B2
7096806 Card et al. Aug 2006 B2
7130711 Dabrowa et al. Oct 2006 B2
7216598 Christman, Jr. May 2007 B1
7222576 Kilgore May 2007 B2
7237497 Johnston Jul 2007 B2
7243513 Kohlman Jul 2007 B2
7264854 Stroppiana Sep 2007 B2
7296524 Beverly Nov 2007 B2
7333877 Dabrowa et al. Feb 2008 B2
7347151 Johnston et al. Mar 2008 B1
RE40194 Slattery Apr 2008 E
7350443 Oakey et al. Apr 2008 B2
7356453 Gould Apr 2008 B2
7426895 Smith et al. Sep 2008 B2
7431974 Lovelady et al. Oct 2008 B2
7438007 Hall Oct 2008 B1
7490566 Hall Feb 2009 B2
7490569 Whitten et al. Feb 2009 B2
7634326 Christman, Jr. et al. Dec 2009 B2
7682686 Curro et al. Mar 2010 B2
7685952 Frost et al. Mar 2010 B2
7707953 Hillenbrand et al. May 2010 B2
7717049 Hillenbrand et al. May 2010 B2
7717051 Hall et al. May 2010 B1
7814850 Beardon Oct 2010 B2
8082861 Lovelady et al. Dec 2011 B2
8127698 Ingram Mar 2012 B1
8141505 Hall et al. Mar 2012 B2
8240263 Frost et al. Aug 2012 B1
20020037388 Morgante et al. Mar 2002 A1
20030164130 Morgante et al. Sep 2003 A1
20040025767 Card et al. Feb 2004 A1
20040187268 Johnston Sep 2004 A1
20040253409 Whitten et al. Dec 2004 A1
20050056197 Card et al. Mar 2005 A1
20050109253 Johnston May 2005 A1
20050188905 Dabrowa et al. Sep 2005 A1
20050204975 Card et al. Sep 2005 A1
20060272564 Card et al. Dec 2006 A1
20070272137 Christman et al. Nov 2007 A1
20080134949 Bearden Jun 2008 A1
20090205547 Hall Aug 2009 A1
Foreign Referenced Citations (29)
Number Date Country
1474354 Jul 2010 EP
2 100 994 Jun 2011 EP
853943 Jan 1957 GB
859761 Jun 1959 GB
920023 Feb 1960 GB
853 943 Nov 1960 GB
853943 Nov 1960 GB
859 761 Jan 1961 GB
859761 Jan 1961 GB
920 023 Mar 1963 GB
920023 Mar 1963 GB
1 039 857 Aug 1966 GB
1039857 Aug 1966 GB
2050447 Jan 1980 GB
2 050 447 Jan 1981 GB
2115025 Sep 1983 GB
2 246 371 Jan 1992 GB
2446371 Jan 1992 GB
2319786 Jun 1998 GB
2392172 Feb 2004 GB
08003859 Jan 1996 JP
2005240199 Sep 2005 JP
WO8400388 Feb 1984 WO
WO9612843 Feb 1985 WO
WO9428225 May 1994 WO
WO 9612843 Feb 1996 WO
WO0159195 Aug 2001 WO
WO2004057084 Jul 2004 WO
WO2006076558 Jul 2006 WO
Non-Patent Literature Citations (22)
Entry
Partial search report for related application, European Search Report, application No. EP 09 15 2848.
Cobble, Blackburn Ltd., Servo Systems Operation Manual—New Software Version—Apr. 1999, Issue 2.11A—pp. 1-16.
Cobble, ST (with Graphical User Interface) Tufting Machine—Operator's Handbook—Revision 1.5, Software build 43—Issue Date: Sep. 2003.
Search report for related application, PCT International Search Report, application No. PCT/US2008/080946, filed Oct. 23, 2008.
Related application, No. WO 96/12843, publication date Feb. 5, 1996.
Related application, No. Wo 2004/057084, publication date Aug. 7, 2004.
CAN with Encore DMC, Operator's Manual, Version 3.6, Tuftco Corporation, Copyright 1995, Chattanooga, TN.
Command Performance 200 Instruction Manual, Version 3.12, CMC #801107-01, Card-Monroe Corp., Copyright 1985-1994, Chattanooga, TN.
Tuft Program, Version 1.20, Nov. 1993, NedGraphics BV.
CMC Yarntronics Brochure, http://www.cardmonroe.com/Products/Yarntronics/yarnt.htm, printed Feb. 21, 2002.
Automation Comes to Paris, Carpet & Rug, Inc., 1987.
Moving Toward Total Automation, Carpet & Rug Industry, Dec. 1990.
International Search Report and Written Opinion for Application No. PCT/US2008/081527, mailed Feb. 18, 2009.
Search report for related application, International Search Report, application No. PCT/US2009/049501, filed Feb. 7, 2009.
Extended European Search Report dated Aug. 7, 2009, European Patent Application No. 09 152 848 .9 (Pub No. 2 100 994).
European Official Communication dated Mar. 25, 2010, European Patent Application No. 09 152 848 .9 (Pub No. 2 100 994).
European Notice of Intention to Grant a European Patent dated Dec. 13, 2010, European Patent Application No. 09 152 848 .9 (Pub No. 2 100 994).
Response submitted Sep. 30, 2010, to the Communication dated Mar. 25, 2010, European Patent Application No. 09 152 848 9 (Pub No. 2 100 994).
Carpet Design, Technology Are on a Roll, Kathryn Sellers, Carpet & Rug Institute, © 2001, Textile World, vol. 151, No. 3.
NedGraphics, Aug. 26, 1994, Carpet & Floor Coverings Review.
Simple or sophisticated: Computers: CAD, Sep. 11, 1992, Carpet & FloorCoverings Review, pp. 32-34.
English translation of Japanese Office Action mailed Mar. 4, 2013, for related application No. JP2009-032036.
Related Publications (1)
Number Date Country
20120174846 A1 Jul 2012 US
Provisional Applications (1)
Number Date Country
61029105 Feb 2008 US
Continuations (1)
Number Date Country
Parent 12122004 May 2008 US
Child 13422238 US