The present invention relates to tubes supporting textile fibers and yarns, and particularly to plastic yarn tubes having opposite ends adapted for end-to-end stacking of the
Textile fibers such as yarns are wound onto molded plastic tubes to facilitate handling of the yarn, for coloring the yarn with dye for example. In a yarn dyeing process, tubes carrying packages of wound yarn are received on spindles of a dye kettle to receive a dyes for coloring the tube-supported yarn. Known plastic yarn tubes include interfitting male and female elements at opposite ends to facilitate end-to-end stacking of multiple tubes on a spindle. To provide for a constant outer diameter across the nested interface between adjacent tubes, the male element of known tubes is reduced in diameter for contact with the female element at an inward radial location.
To secure the plastic yarn tubes to one of the spindles of the dye kettle, axial load is applied to the stack of tubes. Axial loading may also be induced in the stacked tubes as a result of differential thermal expansion between the plastic tubes and the dye kettle, typically made of metal. The axial load that is applied to, or induced in, the stack of tubes is transferred between the nested ends of adjacent tubes at the inwardly located contact surfaces. The axial loading of the tubes at the inwardly located contact surfaces tends to drive the female end portion outwardly, potentially leading to a bursting-type failure of the female end.
According to the present invention, there is provided a stackable yarn dye tube. The stackable dye tube includes a hollow, cylindrical, central body having opposite ends and a plurality of perforating openings for passage of a coloring dye through the central body. The stackable dye tube includes first and second end portions connected to the opposite ends of the central body. Each of the first and second end portions includes a substantially cylindrical ring connected to one of central body ends. The first and second end portions respectively include female and male elements for nested engagement of adjacent tubes in a stack of aligned tubes.
The ring of the first end portion includes inner and outer surfaces defining a wall thickness and a plurality of recesses extending inwardly from the outer surface thereof and arranged in multiple rows extending circumferentially about the ring. Each of the recesses defines a reduced wall portion having a thickness that is at least one-half of the wall thickness of the first end portion ring. Each of the recesses is also substantially oval in shape having arcuate ends for reducing stress concentrations in adjacent areas of the ring.
The female element includes a cylinder extending from a terminal end of the first end portion ring. The female element cylinder includes opposite inner and outer surfaces. The inner surface of the female element cylinder has a diameter that is greater than a diameter of the inner surface of the first end portion ring such that an annular distance is defined therebetween. The terminal end of the first end portion ring defines a radially extending shoulder that is adapted for contact with the male element of an adjacent tube in a stack of aligned tubes. The first end portion further includes a fillet at the terminal end of the first end portion ring. The fillet extends inwardly from the female element cylinder over a substantial portion of the annular distance for reducing stress concentrations in adjacent portions of the first portion end ring and the female element cylinder.
Referring to the drawings, where like numerals identify like elements, there is shown in
The tube 10 includes a central body 14 on which packages of yarn, or other textile fibers are wound to facilitate handling of the yarn, during color treatment with dye for example. The central body 14 is a tubular cylinder having rows of closely spaced elongated openings 16 extending through the wall of the central body 14 to form a lattice-like perforated construction. The perforating openings 16 facilitate flow of a dye through the central body 14 thereby promoting uniform coloring of yarn packages wound onto the central body.
The ruggedized dye tube 10 of the present invention includes first and second end portions 18, 20 at opposite ends of the central body 14. To provide for stacking of multiple tubes in an aligned, end-to-end fashion, the end portions 18, 20 are adapted to provide nested interfit between adjacent tubes as shown in FIG. 2. This arrangement provides for receipt of multiple yarn tubes on a spindle of a dye kettle for example. The end portions 18, 20 respectively include end rings 22, 24 attached to the central body 14 at opposite ends thereof. Each end ring 22, 24 includes a tubular cylinder having inner and outer surfaces 23, 25 with diameters substantially matching those of inner and outer surfaces 23, 25 respectively defined by the central body 14. The walls of the end rings 22, 24, however, are not perforated with openings like the central body 14. Instead, the end rings 22, 24 include rows of elongated recesses 26, 27, respectively. The recesses 26, 27 extend into the end rings 22, 24 from outer surfaces thereof to form portions of the tube 10 having reduced thickness with respect to a tube thickness defined by the inner and outer surfaces 23, 25.
To provide for nested interfit between adjacent tubes of a stack, the first and second end portions 18, 20 of each tube 10 respectively include female and male elements 28, 30 extending from the end ring 22, 24 opposite the central body 14. Referring to
The male element 30 of the second end portion 20 includes a tubular cylinder portion 34 extending from the end ring 24. The male element 30 further includes an annular portion 36 at a terminal end of the cylindrical portion 34 opposite the end ring 24. As will be described in greater detail, the annular portion 36 defines an end surface 37 that contacts the shoulder 32 of the first end portion 18 of an adjacent tube.
As shown in
The above-described inward location of the male element 30, while providing the benefit of flush outer tube surfaces, creates a radially shifting load path through the nested end portions 18, 20. Referring again to
In response to axial load applied to, or induced in, a stack of nested tubes, the shifting load path causes the second end portion to drive the first end portion outwardly. Stress concentrations in the female elements of prior art yarn tubes have resulted in burstingtype failures of the female end portions of nesting yarn dye tubes of the prior art.
Referring to
The prior art tube 40 further includes a first (female) end portion 44 at one end of the perforated central body 42. The first end portion 44 of the prior art tube 40 includes an end ring 46 having rows of non-perforating recesses 48. As shown in
As described above, axial load applied to nested dye tubes causes the male element to drive the female element outwardly. Stresses generated in the end ring 46 of prior art tube 40 can result in bursting or rupturing of the end ring 46. Referring to
To further ruggedize the dye tube 10 against bursting failure, the opposite ends of each recess 26 of end ring 22 have been rounded such that the recesses are substantially oval in shape. The replacement of the rectangular recesses 48 with the ovalized recesses 26 eliminates stress concentrations in the areas of the end ring 22 adjacent to the opposite ends of the recesses 26.
Referring to
The present invention is not limited to any particular radius for fillet 56. There is also no direct correlation between the dimensions of the female element 28 and end ring 22 and a preferred size for the radius of fillet 56. As a practical limitation, however, it is preferable that the radius of fillet 56 not be increased to the point where the fillet will encroach on the region of the shoulder 32 that is contacted by the annular portion 36 of the male element 30.
Comparing
An example dye tube 10 constructed according to the present invention includes a female element 28 having an inner diameter of 74 mm and an adjacent end ring 22 having an inner diameter of 68.8 mm. The radial distance between the inner diameters, therefore, is 2.6 mm (i.e., 0.5×(74 mm−68.8 mm). This radial dimension represents the maximum potential width for shoulder 32 without accounting for the fillet 56 at the juncture between the female element 28 and the end ring 22. The fillet 56 included in the example dye tube 10 has a radius of approximately 0.75 mm. In a corresponding dye tube 40, a fillet having a radius of 0.38 mm was included at the juncture between the female element 52 and the end ring 46. In terms of the percentage of the maximum shoulder width, the size of the fillet increased from less than 15 percent for the prior art tube 40 (0.38 mm/2.8 mm) to more than 25 percent for the ruggedized dye tube 10 of the present invention (0.75 mm/2.8 mm).
The above-described improvements in the dye tube 10 serve to increase hoop strength and limit stress concentrations in the first (female) end portion 18. The result of the improvements is a more robust first (female) end portion 18 under lateral loading, such as that imposed on the first end portion 18 by the second (male) end portion 20 of an adjacent nested tube. Referring to
The foregoing describes the invention in terms of embodiments foreseen by the inventor for which an enabling description was available, notwithstanding that insubstantial modifications of the invention, not presently foreseen, may nonetheless represent equivalents thereto.
The present application is related to and claims priority from U.S. Provisional Application Ser. No. 60/394,635, filed Jul. 9, 2002, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4811917 | Nielsen et al. | Mar 1989 | A |
5169087 | Romagnoli | Dec 1992 | A |
6487881 | Adele | Dec 2002 | B1 |
6719230 | Baranov et al. | Apr 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20040016842 A1 | Jan 2004 | US |
Number | Date | Country | |
---|---|---|---|
60394635 | Jul 2002 | US |