The invention relates to a texturing apparatus for draw texturing a synthetic multifilament yarn. A conventional texturing machine of this general type is disclosed, for example, in EP 0 879 907 A1 and corresponding U.S. Pat. No. 6,026,636.
Texturing machines of this type are used for texturing one or more yarns, from a melt spun, flat yarn to produce a bulked and crimped yarn, which is suited for further processing to form a knit or woven fabric. To this end, the spun, flat yarn is withdrawn from a feed yarn package, textured and drawn within a texturing zone that includes a heating device, a cooling device, and a texturing unit, and wound to a package after having been textured.
For improving the cooling effect, the texturing zone may accommodate between the heating device and the cooling device a wetting device, which is used to apply a cooling fluid to the yarn. To this end, the yarn advances over a wetted surface in contact therewith, which causes an additional yarn friction within the texturing zone. This influences in the yarn the return of the false twist that has been imparted to the yarn by the texturing unit. Depending on the yarn type, this effect can initially be positive for preventing, for example, a so-called searching. However, in the case of yarn types, which distinguish themselves by a fine denier, this effect becomes so negative that the yarn is inadequately twisted within the heating device while undergoing thermal treatment.
It is therefore an object of the invention to further develop a standard texturing machine of the initially described type in such a manner that the yarn can be wetted between the heating device and the cooling device with as little friction as possible.
A further object of the invention is to improve the wetting of the yarn between the heating device and the cooling device such that desired yarn friction conditions are adjustable as a function of yarn speeds and yarn types.
The above and other objects and advantages of the invention are achieved by the provision of a yarn wetting device positioned between the heating device and the cooling device, with the wetting device comprising a rotatable cooling cylinder which carries a cooling fluid on a circumferential yarn track. The cooling cylinder is positioned so that the advancing yarn is guided into contact with the yarn track.
The invention distinguishes itself in that when the yarn contacts the wetting yarn track, a yarn friction develops, which depends on the relative speed between the yarn and the yarn track. The yarn track on the circumference of the cooling cylinder contains a cooling fluid that can be transferred to the yarn, when being contacted by it. On the one hand, the rotational movement of the cooling cylinder causes only a defined friction to be operative as a result of the relative movement between the yarn and the yarn track. On the other hand, it accomplishes a continuous, uniformly metered wetting of the yarn. The advancing yarn is in constant contact with a surface of the yarn track that is wetted with a metered amount of fluid. The positive effects resulting from wetting the yarn, such as washing out residues of a yarn lubricant and precooling the yarn remain unchanged.
The metering of the cooling fluid by the rotatable cooling cylinder is preferably determined such that the cooling fluid fully evaporates when the yarn comes into contact with the cooling device. This ensures that the yarn advances into the downstream cooling device in an absolutely dry state, so that, for example, cooling rails or cooling tubes do not soil when the yarn advances over their surface. However, it is also possible to select the wetting of the yarn such that certain residual moisture remains in the yarn. This variant is applicable in particular in the case of cooling devices, which cool the yarn in a free cooling zone without contacting it. With that, it is possible to adjust on the yarn any degree of drying.
Further advantageous developments of the invention provide the advantage that the yarn friction is adjustable when the yarn is wetted. To this end, the cooling cylinder is operated by a drive unit that is preferably an electric motor. In this case, the cooling cylinder can be driven to rotate both in the direction of the advancing yarn and in the direction opposite to the advancing yarn. To obtain yarn frictions that are as low as possible, the cooling cylinder is driven to rotate in the same direction as the advancing yarn. This permits minimizing the yarn friction in a condition, in which the yarn and the yarn track of the cooling cylinder have the same speeds. To produce in other yarn types, for example, a higher yarn friction, it is also possible to drive the cooling cylinder to rotate in the opposite direction to the advancing yarn. The yarn and the yarn track thus move in opposite directions, which leads to a high friction in the yarn while being wetted. With the use of a controllable electric motor it is possible to realize irrespective of its wound direction of rotation, an adaptation of the circumferential speed of the cooling cylinder to any speed of the advancing yarn that is adjusted within the texturing zone.
To have available in the yarn track an adequate quantity of cooling fluid in the case of yarn speeds above 1,000 m/min., an advantageous further development provides for arranging the yarn track on the circumference of the cooling cylinder preferably as a groove. With that, the yarn advances for purposes of being wetted, inside the groove on the circumference of the cooling cylinder. The cross section of the groove is formed such as to ensure that the cooling fluid continues to adhere to the groove bottom even at higher circumferential speeds of the cooling cylinder.
It is preferred to use a metering device for supplying the cooling fluid to the yarn track on the circumference of the cooling cylinder. The metering device may be constructed as a dip bath, which contains a supply of cooling fluid and into which the circumference of the cooling cylinder immerses in part.
However, it is also possible to form the metering device by a nozzle, which is arranged in the interior of the cooling cylinder or outside of the cooling cylinder for supplying the cooling fluid to the yarn track.
A particularly advantageous development of the invention provides for arranging the heating device, the cooling cylinder, and the cooling device to form a substantially straight yarn path. With that, it is possible to form a texturing zone, in which additional yarn guide elements and thus frictions of the yarn are avoided.
However, such low-friction texturing zones can also advantageously be realized in the case of a yarn path that is bent between the heating device and the cooling device, in that the yarn is deflected by the cooling cylinder. This type of further development of the invention is thus especially suited for realizing a compact machine construction. To this end, the heating device and the cooling device are mounted in a machine frame preferably in an inverted V-shape, with the apex of the V-shaped arrangement mounting the cooling cylinder for deflecting the yarn.
For purposes of simultaneously wetting as much as possible a plurality of parallel advancing yarns, an advantageous further development of the invention provides for constructing the cooling cylinder on its circumference with a plurality of parallel extending yarn tracks. In this instance, it is possible to associate to each yarn track a separate or a common metering device.
Since an intensive cooling of the yarn by a cooling fluid proceeds directly at the outlet of the heater along with the evaporation of a cooling fluid, a further development provides for arranging the cooling cylinder inside a collection chamber, so that the produced vapors are removable by a suction device that connects to the collection chamber.
In the following, further advantages and positive effects of the invention are described in greater detail by means of some embodiments of the texturing machine according to the invention and with reference to the attached drawings, in which:
A creel frame 3 mounts a feed yarn package 1. The feed yarn package 1 holds a yarn 2, which is withdrawn from the feed yarn package 1 by a first feed system 4. Arranged in the path of the yarn downstream of the first feed system 4 are a heating device 5, a wetting device 6, a cooling device 9, a texturing unit 10, as well as a second feed system 11. From the second feed system 11, the yarn 2 advances to a takeup device 12, where the yarn 2 is wound to a package 15. The takeup device 12 comprises a drive roll 13, a yarn traversing device 14, and a package holder 16. The package 15 is driven by the drive roll 13 at a substantially constant peripheral speed.
Within a texturing zone formed between the first feed system 4 and the second feed system 11, the wetting device 6 is positioned between the heating device 5 and the cooling device 9. The wetting device 6 comprises a rotatably supported cooling cylinder 7, which is described in greater detail below. The cooling cylinder 7 is housed in a collection chamber 8, and the collection chamber 8 connects to a suction device as indicated by the vertical arrow.
In the texturing machine of the invention as shown in
After its heat treatment, the yarn advances into the wetting device 6. To this end, the yarn 2 enters the collection chamber 8 through a yarn inlet end, and contacts the cooling cylinder 7 that is driven at a circumferential speed. On the circumference of the cooling cylinder 7, a yarn track contains a cooling fluid, which wets the heated yarn 2. The quantity of the cooling fluid that is applied to the yarn 2 is metered such that after leaving the collection chamber 8, the yarn holds no residues of the cooling fluid, since these have been evaporated inside the collection chamber 8. The developing vapor is removed by the suction device.
After its precooling, the yarn 2 undergoes a final cooling within the cooling device 9. To this end, the cooling device 9 could be constructed as a cooling rail or a cooling tube, with the yarn advancing along it in contact with its surface. However, it is also possible to form the cooling device by a free cooling zone, in which the yarn is cooled without contact by external or ambient air.
After its cooling, the yarn 2 advances through the texturing unit 10, and is guided by the second feed system 11 to the takeup device 12. The first feed system 4 and the second feed system 11 are driven at different speeds, so that the yarn 2 is simultaneously drawn.
In the embodiment of the texturing machine according to
The rotation of the cooling cylinder 7 causes a quantity of the cooling fluid 23 that is constantly contained in the groove 17 to be removed from the dip bath 22 and to be transported to a contact point between the advancing yarn 2 and the cooling cylinder 7. Thus, the cooling fluid 23 that the yarn 2 takes up from the groove 17 for its wetting is constantly renewed, with a yarn friction that develops between the groove 17 and the yarn 2 being dependent on the relative speed between the yarn 2 and the groove 17. In this connection, the electric motor 21 may drive the cooling cylinder 7 at such a circumferential speed that as little friction as possible acts upon the yarn 2. On the other hand, this also ensures that upon contact with the heated yarn, no mechanical damage occurs, such as filament breaks in the yarn.
However, the embodiment of the wetting device as shown in
In
For accommodating the processing units, the texturing machine comprises a machine frame 28. The description of the processing units mounted to the machine frame 28 proceeds with reference to the path of a yarn 2 that is withdrawn from a feed yarn package 1. As shown in
The wetting device 6 is arranged between the heating device 5 and the cooling device 9. It is constructed in accordance with the embodiment of
Despite the bent yarn path within the texturing zone, also this embodiment essentially requires no additional yarn guide elements. Thus, it is possible to influence the yarn tension within the texturing zone advantageously by the drive unit 21 of the cooling cylinder 7. For example, the drive unit of the cooling cylinder 7 could connect to a control unit, which is coupled with a yarn tension sensor. With that, the drive unit 21 of the cooling cylinder 7 could be used to control not only the wetting of the yarn, but also at the same time a predetermined yarn tension within the texturing zone.
In the direction of the advancing yarn, downstream of the cooling device 9, the machine frame 28 mounts the texturing unit 10, a second feed system 11, and a third feed system 30. In this arrangement, the yarn 2 advances from the outlet of the cooling device 9 which is preferably a cooling tube, to the texturing unit 10. The texturing unit 10 which may be formed, for example, by a plurality of overlapping friction disks, is driven by a drive unit 36, preferably an electric motor.
The third feed system 30 delivers the yarn 2 directly into a set heater 31. To this end, the set heater 31 is supported on the underside of the machine frame 28. A fourth feed system 32 removes the yarn 2 from the set heater 31 and advances it to the takeup device 12. The third feed system 30 and the fourth feed system 32 are driven at different speeds so as to enable a shrinkage treatment of the yarn 2 inside the set heater 31.
In the present embodiment, an identical construction has been selected for the feed systems 4, 11, 30, and 32, which is therefore described in the following with reference to the embodiment of the first feed system 4. Each feed system comprises a godet 34 and a guide roll 35. The godet 34 is driven by a drive unit 33. The guide roll 35 is supported for free rotation, so that the yarn 2 advances with several loopings over the godet 34 and the guide roll 35.
In the present embodiment, the takeup device 12 is likewise schematically identified by a yarn traversing device 14, a drive roll 13, and a package 15. A package holder causes the package 15 to lie against the circumference of the drive roll 13.
In the foregoing embodiments, the cooling cylinder 7 is driven by an individual drive unit. Since texturing machines of the described type normally comprise a plurality of juxtaposed processing stations, it is also possible to drive a cooling cylinder with a plurality of yarn tracks by a common drive unit, or a plurality of cooling cylinders associated to the processing stations by group drive units. Likewise, the superstructures of the illustrated embodiments of the texturing machine according to the invention are exemplary. The number and design of the processing units upstream and downstream of the wetting device are arbitrary and can be replaced with similar assemblies. Essential in this connection is the intensive precooling by a contact wetting of the yarn in the manner of the invention.
Number | Date | Country | Kind |
---|---|---|---|
102 18 748 | Apr 2002 | DE | national |
The present application is a continuation of international application PCT/EP03/04045, filed 17 Apr. 2003, and which designates the U.S. The disclosure of the referenced application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4020196 | Guillermin et al. | Apr 1977 | A |
4115985 | Venot | Sep 1978 | A |
6026636 | Lorenz et al. | Feb 2000 | A |
6209302 | Wortmann et al. | Apr 2001 | B1 |
6258406 | Enders et al. | Jul 2001 | B1 |
6543580 | Gathmann et al. | Apr 2003 | B1 |
Number | Date | Country |
---|---|---|
29 39 281 | Apr 1981 | DE |
197 53 806 | Jun 1998 | DE |
0 879 907 | Nov 1998 | EP |
2 717 505 | Sep 1995 | FR |
Number | Date | Country | |
---|---|---|---|
20050055998 A1 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP03/04045 | Apr 2003 | US |
Child | 10972601 | US |