Yarn feed assembly

Information

  • Patent Grant
  • 5144817
  • Patent Number
    5,144,817
  • Date Filed
    Wednesday, February 6, 1991
    33 years ago
  • Date Issued
    Tuesday, September 8, 1992
    32 years ago
Abstract
A yarn feed assembly for circular knitting machines for presenting one or more yarns chosen from a plurality of available yarns into the needle path under the control of a microprocessor. An arcuately movable sector-shaped yarn guide includes a plurality of openings therein for positioning a plurality of yarns in spaced parallel position with each other. A toggle clamp for each yarn located downstream from the yarn guide keeps the yarns taut in their normal stored position. To select a yarn for feeding to the feed station, a transfer arm selects the yarn positioned in a pickup position by the yarn guide. As the transfer arm begins to move, the corresponding toggle clamp releases, and the yarn is then fed onto its yarn feed location.
Description

BACKGROUND AND SUMMARY OF THE INVENTION
This invention relates to circular knitting machines and, more particularly, to an improved yarn feed system capable of presenting one or more of a plurality of yarns for selected utilization at each of a plurality of yarn feed locations.
Circular weft knitting machines of the general type herein of interest are both old and well-known in the art. The basic precepts determinative of the circular weft knitting operation extend back over 70 years and the intervening period has been characterized by a progression of generally relatively minor and essentially unitary component improvements. One area of such improvements is the manner in which one or more yarns may be selected from a plurality of available yarns and delivered to the appropriate feed station at the correct time. The specification and drawings of the aforesaid U.S. Pat. No. 4,796,444 are hereby incorporated in the filed present case by reference and in their entirety.
The present invention is directed to a novel and improved yarn feed system employing yarn selecting, directing, inserting and cutting elements to provide for more selective utilization and incorporation of one or more yarns into the product being fabricated, in response to preprogrammed control, from an available reservoir of a plurality of yarns at each operating sector.
More specifically, the present invention is directed to a yarn feed assembly for circular weft knitting machines in which a displaceable yarn supply includes a sector member and plurality of clamping devices that cooperate to tautly position the free ends of a plurality of yarns in spaced apart relation. The yarns extend from a reservoir through the movable sector member and into one of the clamping devices that keeps the yarns taut as they await selection and movement to a yarn feed location. A slotted guide is disposed at the yarn feed location as defined by the path of knitting needle displacement. The sector member is movable to position a single selected yarn at a pickup position. At the pickup position, a rotatable transfer arm engages the selected yarn and transports it into operative engagement with the slotted guide.
It is therefore an object of the present invention to provide an improved yarn feed system.
It is another object of the present invention to provide a yarn feed system of the type described which presents a plurality of yarns for selected utilization at a yarn feed location.
Yet another object of the present invention is to provide a yarn feed system of the type described including means for monitoring yarn consumption and effecting adjustments in actual stitch length and in response thereto.
To the above ends, other objects and advantages of the subject invention will be pointed out herein or will become apparent to those skilled in this art from the following portions of this specification and from the appended drawings which set forth, pursuant to the mandate of the patent statutes, the general structure and mode of operation of a circular weft knitting machine incorporating the principles of this invention and presently deemed to be the best mode for carrying out such invention. In conjunction therewith, it should be specifically noted that while the hereinafter described embodiment is particularly directed to a circular weft knitting machine adapted for sock fabrication, the principles of this invention are equally applicable to larger diameter knitting machines for general knit fabrics production and also to knitting machines for ladies hosiery and like articles.





Referring to the drawings:
FIG. 1 is an oblique view schematically illustrative of the assembled machine and partially cutaway to show the relative positioning and general structural interrelationship of certain of the major components thereof:
FIG. 2 is a vertical section of the upper portion of the machine illustrated in FIG. 1.
FIG. 3 is a side elevation, partially in section, of a presently preferred construction for a yarn feed assembly;
FIG. 4 is a plan view, partially in section, of the yarn feed assembly components illustrated in FIG. 3;
FIG. 5 is a section taken on the line 5--5 of FIG. 4;
FIG. 5A is a typical section as taken on the line A--A of FIG. 5.
FIG. 6 is a section taken on the line 6--6 of FIG. 4;
FIG. 7 is a developed view of the track control cam taken on the line 7--7 of FIG. 4;
FIG. 8 is a section taken on the line 8--8 of FIG. 4;
FIG. 9 is a schematic sectional view of the yarn clamping members included in the yarn feed assembly;
FIG. 9B is a schematic elevation view of the moveable jaw member support element included in the yarn feed assembly as viewed from line B--B in FIG. 9A.
FIG. 9C is a schematic plan view as viewed from line C--C on FIG. 9A showing the surface configuration of the clamping members;
FIG. 10 is a top view, partially in section, of the body yarn use monitor assembly;
FIG. 11 is a section taken on the line 11--11 of FIG. 4;
FIG. 12 is a section taken on the line 12--12 of FIG. 4;
FIG. 12A is a plan view of the yarn selection carrier arm showing details thereof omitted from FIG. 4 in the interests of clarity.
FIG. 12B is a section taken on the line B--B of FIG. 12;
FIG. 12C is an enlarged view, partially in section of the yarn engaging jaw components at the end of the yarn selection carrier arm;
FIG. 12D is an enlarged elevation, partially in section, as generally taken on the line D--D of FIG. 12C;
FIGS. 12E and F are details showing the two position detent control elements for jaw positioning;
FIG. 12G is a detail as generally taken on the line G--G of FIG. 12;
FIG. 13 is a simplified block diagram of a knitting system in which a plurality of knitting machine units are controlled from a central system computer;
FIGS. 14A and B are a composite simplified block diagram of a knitting machine unit of FIG. 13.





As will become equally apparent, while the hereinafter described embodiment is in the nature of a circular weft knitting machine that is primarily adapted for sock fabrication, the principle of the invention are broadly adaptable, with certain machine modifications, to circular weft knitting machines that are more primarily adapted to the fabrication of knitted fabrics and to ladies hosiery.
GENERAL MACHINE ORGANIZATION
Referring initially to FIGS. 1 and 2, the subject machine includes a generally circular but selectively shaped lower housing plate member 10 having a central bore, generally designated 12, as also defined in part by the dependent cylindrical hub portion 14 thereof. The lower housing plate 10 generally serves as the basic motor and drive system mounting member and the cylindrical hub portion 14 serves as the basic support member for the presser cam sleeve member 364.
Disposed in superposed spaced relation with the lower plate member 10 is an annularly shaped upper housing plate member 16, which serves as the base plate for the subject machine and incorporates an enlarged central bore 18 coaxially aligned with, but spaced from, the aforesaid bore 12 in the lower housing plate member 10. Disposed in elevated spaced relation above the upper housing member 16 and supported by a pair of vertical columns, generally designated 20 and 22, is a terry instrument (or terry bit) dial support frame or beam member 24.
Disposed with the coaxially aligned bores 12 and 18 of the lower and upper housing plate members 10 and 16 respectively and disposed perpendicular thereto is the knitting needle support cylinder assembly, generally designated 26, having a sinker member assembly, generally designated 28, coaxially disposed at the upper end thereof. Disposed above the sinker member assembly 28 and in coaxial relation therewith is a terry loop dial and instrument assembly, generally designated 30, mounted on and suspended from the underside of the terry bit dial support beam or frame 24. Disposed essentially coplanar with the sinker member assembly 28 but located radially outwardly thereof is a rake member assembly, generally designated 32.
Yarn Feed Assembly
Each of the 60.degree. operating sectors around the inner and outer cam track sleeves is bounded by and disposed within a pair of yarn feed locations, that is, there is a yarn feed location intermediate each operating sector. At each such yarn feed location there is provided an individual yarn feed assembly adapted to present, in the path of a downwardly moving open needle at each sector dividing line at least one body yarn, one elastic yarn and one terry yarn. Each of such yarn feed assemblies has the capability of presenting one or more yarns chosen from a plurality of available yarns in the needle path under control of the microprocessor.
While the herein disclosed knitting machine includes six discrete yarn feed assemblies, the construction and mode of operation of only one will be hereinafter described in detail, with the understanding that the other yarn feed assemblies are of similar construction.
Referring initially to FIGS. 2, 3 and 4 there is provided a housing 1010 mounted on an elevated pad 1011 in spaced relation above upper housing plate member 16 and in such manner as to properly position the hereinafter described operating elements of the yarn feed assembly in proper relation to effect introduction of selected yarns in the path of downwardly moving needle elements at the dividing line between adjacent operating sectors on the cam track sleeves.
Mounted within the housing 1010 is a yarn selection stepping motor 1012 having an extended pinion drive shaft 1014. Disposed in offset spaced relation with the pinion drive shaft 1014 and supported by an antifriction bearing 1017 mounted in housing 1010 is one terminal end of a cantilevered drive shaft 1016. Additional support for the drive shaft 1016 is provided by a second antifriction bearing 1019 mounted in housing extension 1021. Mounted on the shaft 1016 adjacent to support bearing 1017 is the hub of the sector gear 1018 whose arcuate toothed periphery is drivingly engaged by the pinion drive shaft 1014, whereby rotation of the stepping motor 1012 and of the drive shaft 1014 is converted into concurrent arcuate stepped displacement of the drive shaft 1016. Mounted adjacent to sector gear 1018 in such manner as to be freely rotatable on the shaft 1016 is the hub of a downwardly extending photocell blade member 1020. The photocell blade member 1020 is normally biased in one limiting position by a suitable spring member, not shown, and is displaceable in the opposite direction in accordance with the displacement of the sector gear 1018 by action of an extending pin member 1022 on sector gear 1018 that is sized to engage the marginal edge of the blade member 1020. Disposed adjacent the lower defining edge 1024 of the photocell blade member and appropriately located adjacent one marginal side edge thereof is an aperture 1026 that is displaceable into the path of a light beam emitted by a photocell assembly generally designated 1028, so as to provide an electrical signal indicative of one limiting position of the sector gear 1018 and accordingly of one limiting position for the shaft 1016.
In operation of the above described yarn selection assembly drive components, stepped rotation of the pinion drive shaft 1014 of the stepping motor 1012 effects a controlled stepped displacement of sector gear 1018 and the cantilevered drive 1016. Such stepped arcuate displacement of the sector gear 1018 is transmitted through extending pin member 1012 into commensurate stepped displacement of photocell blade member 1020 against the action of its biasing spring. At one limit of desired sector gear displacement the aperture 1026 in the blade member 1020 will be positioned in the path of the light beam traversing the photocell assembly 1028 to produce an electrical signal indicative of such limiting position of the sector gear 1018 and the cantilevered mounted drive shaft 1016.
Mounted on the outboard end of the housing 1010 is a fixed yarn guide sector element 1034 having a plurality, suitably 12 in the illustrated embodiment, of ceramic guide sleeves 1036 (see FIGS. 1, 2 and 3) mounted in radially spaced relation in an arcuate array adjacent the upper marginal end thereof Such spacing and arcuate disposition of the ceramic sleeves 1036 provides for discrete separation of up to twelve separate yarns deliverable into the knitting machine from remotely located sources thereof as well as providing a fixed base location for the entry thereof into the operative machine environment.
Referring now to FIGS. 2 and 3 and 22 et seq. mounted on the extending end portion of cantilever mounted rotatable drive shaft 1016 and rotatably displaceable in stepped increments in conjunction therewith is the hub 1042 of a generally sector shape yarn guide member 1038. This sector shaped yarn guide member 1038 has an equal number, suitably 12, of ceramic sleeve members 1040 mounted in spaced arcuate relation adjacent the periphery thereof with said sleeve members 1040 being generally disposed in the same positional arrangement as that heretofore described for the sleeves 1036 in the fixed guide member 1034.
As best shown in FIGS. 1 and 4, the hub 1042 is of elongate character and the remote end thereof serves to support a plurality of radially and longitudinally offset toggle clamp assemblies, generally designated 1044, with one toggle clamp assembly being provided for each path of yarn advance as delineated by the number and positioning of the ceramic sleeve members 1040 in the rotatably displaceable sector guide member 1038.
As will later become apparent and as best shown in FIGS. 9A, B and C, each toggle clamp assembly 1044 includes an individual toggle clamp subassembly for each of the identical yarn feed paths and, in the illustrated embodiment, there are 12 individual toggle clamp subassemblies mounted on the hub 1042 in progressive radially and longitudianlly offset relation. Each of the toggle clamp subassemblies includes a fixed jaw member 1050 mounted at the terminal end of a radially extended support member 1052 Disposed adjacent to each extended support member 1052 as elongate selectively shaped flexible spring member, generally designated 1054 As best shown in FIG. 26B, each flexible spring member 1054 includes a rectangularly shaped perimetric frame portion 1056 having the moveable jaw member 1058 of a clamp subassembly mounted at the upper end thereof and disposed for operative interfacial engagement with the fixed jaw member 1050. Disposed within the central aperture of the illustrate perimetric rectangular frame portion 1056 is an independently flexible and axially located tongue member 1060 integral at one end with the frame 1056 and having the other end thereof 1061 disposed in free spaced relation with the other end of the perimetric frame 1056. Mounted intermediate the free terminal end of the tongue member 1060 and the upper end of the perimetric rectangular framed 1056 is a generally C-shaped and normally compressively biased toggle spring member 1062 When so mounted in compressed relation, the C-shaped toggle spring member 1062 is operative to maintain, in stable condition, the clamping jaws 1050 and 1058 in either the open or closed relation but in no position intermediate thereof.
As best shown in FIG. 9C, both the fixed and moveable jaw members 1050 and 1058 are provided with complementally shaped serpentine facial configurations which, when disposed in interfacial proximinity, result in a firm compressive frictional capstan wrap engagement with a yarn disposed therebetween with such engagement creating a considerable friction resistance in the line of yarn advance but which, if desired, permits yarn displacement and removal therefrom in a direction perpendicular to that of normal yarn advance with application of only a small amount of force.
As will be hereinafter pointed out, the moveable and fixed jaw members 1050 and 1058 of each toggle clamp assembly are brought into closed interfacial relation by a rising rotative displacement of the ball plate 1076 of the cutter assembly solenoid 1078 which also acts to sever the particular yarns downstream of the above described clamping assembly. As will also later become apparent, the individual toggle clamps are opened by the yarn carrier arm 1134 as it engages and displaces a severed yarn end from a location intermediate the rotatable yarn guide 1038 and its respective clamp assembly 1044 longitudinally into the paths of the advancing needle elements for eventual engagement therewith.
Disposed immediately downstream of the above described toggle clamp assembly that serves to clamp and hold the individual yarns is a yarn cutting assembly, generally designated 1070. In contradistinction to the above described toggle clamping assembly which is compositely constituted of a plurality of individual clamping subassemblies, only a single yarn cutting assembly is provided to effect severance of a particular yarn element when the latter is appropriately positioned in the path of advance of the cutting element. As necessitated thereby, the operative elements of the yarn cutting assembly are of a generally retractable nature so as to be positionable out of the path of yarn advance, when the cutting elements are not operative to effect a yarn cutting operation. To the above ends and best shown in FIGS. 3, 4 and 8, there is provided a first cutting element 1072 mounted in offset relation at the end of an arm member 1074 that is secured to, and is rotatable through a predetermined arc in conjunction with, the rotatable displacement of the ball plate 1076 of the cutting element rotary solenoid 1078. As will be apparent to those skilled in the art, such mounting of the cutting edge 1072 on the solenoid ball plate 1076 effectively results in a helical displacement of such cutting edge with both rotational and lineal motion components attendant thereto in response to rotation of the shaft of the rotary solenoid 1078. The second cutting edge 1082 of the cutting assembly is mounted in offset relation adjacent one end of a rocker arm 1084 The remote end of the rocker arm 1084 is pivotally mounted on a base member supported clevis, generally designated 1086 As best shown in FIG. 8, the bifurcated end portion 1083 of the rocker arm 1084 is secured to the frame of the rotary solenoid 1078 at two diametrically opposed locations designated 1088. The rotating shaft 1090 of the rotary solenoid 1078 is pivotally secured to one end of a crank arm 1092. The remote end of crank arm 1092 is pivotally secured to the upper end of a generally vertically disposed link member 1094 and whose other and dependent end is pivotally secured to a clevis type mounting generally designated 1096.
In the operation of the above described unit, rotation of the shaft 1090 of the solenoid 1078 effects a concomitant rotation of the ball plate 1076 relative to the frame thereof. As the ball plate 1076 and the shaft 1090 of the cutting assembly solenoid 1078 rotate relative to the frame of the solenoid 1078, such motion, because of the above securement of the solenoid frame to the rocker arm 1084 effects a rotation of crank arm 1092 and a concomitant vertical elevation and slight rotative displacement of the second cutting edge 1082 mounted on the rocker arm 1084. Such elevation and rotative displacement of the second cutting edge 1082 is operative to elevate such cutting edge from a position beneath the path of yarn advance upwardly into the path of the yarn advance Concurrently therewith, the conjoint rotation of the ball plate 1076 effects a conjoint helical displacement of the first cutting edge 1072 in both the upward and transverse direction relative to the first cutting edge 1072. As will now be apparent the combined elevation and rotative displacement of the two cutting edges serve to elevate the cutting assembly from a location below and remote from the line of yarn advance, upwardly into the path of advance of the yarn and to concurrently effect severance of a yarn disposed in the path thereof by the scissor-like action of the approaching cutting edges.
Disposed downstream of the above described yarn cutting assembly and positioned in the path of advance of a body yarn, is a yarn usage monitoring-assembly generally designated 1104. As best shown in FIGS. 1, 3 and 10, the yarn usage monitoring assembly 1104 basically includes a low inertia and freely rotatable wheel element 1106 having its periphery disposed for frictional engagement with the advancing yarn so as to be driven thereby and rotated in direct accord with the amount of yarn advance. Disposed within the web-like body portion of the wheel element 1106 are a plurality of transverse apertures 1108 which are rotatably displaceable into and through the path of a light beam defined by a light emitter 1112 and an associated light responsive photocell 1110. As will be apparent, every time one of such apertures 1108 passes through the light path, an electrical pulse will be generated. The number of such electrical pulses that are generated per unit of time is proportional to the rate of yarn advance and from which cumulative yarn advance over an extended period of tim can readily be determined. Associated with the housing for the yarn usage monitor assembly 1104 is a guide track 1114 which is suitably located to selectively receive and guide the measured body yarn in its displacement path from its remote source thereof to the needle elements on the knitting cylinder.
Disposed downstream of the body yarn usage monitor 1104 and positioned directly adjacent to the needle elements at the line of demarcation between adjacent sectors on the knitting cylinder 80 is a yarn director assembly generally designated 1120. The illustrated and disclosed yarn director assembly 1120 is a selectively shaped two-channel guide element having a first channel 1122 adapted to guide the paths of the body yarn into the path of the advancing needle for engagement thereby and a second selectively located channel 1124 for guiding the path of advance of the terry yarn. Such channels are suitably located so as to properly dispose the body yarn and terry yarn in the path of advance of the needle elements and the terry bit elements as described earlier.
Referring now to FIGS. 2, 3, 4 and 12, the selective introduction of individual yarns and transport thereof from a location remote from the knitting cylinder into the path of advance of a downwardly moving open needle element and/or terry bit at the sector dividing line of the knitting cylinder is generally effected by means of a yarn insertion carrier arm assembly, generally designated 1130 on FIG. 4. As best shown in FIGS. 4 and 12, such yarn insertion assembly broadly includes an elongate carrier arm 1134 of somewhat triangular configuration having the base end 1135 thereof secured to the rotatable ball plate of a yarn insertion drive solenoid 1132 As best shown in FIG. 4, the rotary drive solenoid 1132 for a given yarn insertion carrier arm assembly is mounted on the housing of the adjacent yarn feed assembly and the elongate carrier arm member 1134 extends from said location a sufficient distance as to properly locate its remote end in appropriate operative positional relationship with the yarn feed assembly component of the adjacent unit wherein the selected yarn is to be introduced into position for engagement by the appropriate knitting needle and/or terry bit.
As best shown in FIGS. 4 and 12A, the base end 1135 of the elongate carrier arm 1134 is provided with a clevis type mounting 1136 on the ball plate of the solenoid 1132. Such clevis type mounting 1136 serves to permit rotative displacement of the carrier arm 1134 in conjunction with rotation of the solenoid ball plate 1038 and to concurrently permit an independent pivotal displacement of the carrier arm 1134 about the clevis pin 1137 to thus permit a controlled vertical displacement of the free apex end of the carrier arm 1134 in the vertical plane independent of its rotative orientation.
Mounted on the free apex terminal end of the extending carrier arm 1134 is a yarn engaging jaw assembly, generally designated 1140, which is adapted to selectively grasp, transport and release selected yarns in accordance with carrier arm displacement as will be described in detail hereinafter. As noted above the rotative position of the free or apex end of the carrier arm 1134 is effected by rotation of the drive solenoid 1132. Controlled elevation of the jaw assembly bearing free end of the extending carrier arm 1134, as well as the timed opening and closing of the jaw members in the jaw assembly supported thereby is effected through means of a dual channel arcuate cam track member generally designated 1141 in association with a pair of cam follower assemblies mounted generally at about the midlength of the extending arm 1134.
In more particularity, and as best shown in FIGS. 6, 7, 12 and 12A and 12B, there is provided a first flanged cam follower roller 1142 which, in operative association with the elevation control cam track slot 1146 in the cam track member 1141, serves to control the elevation of the free and yarn engaging jaw bearing end of the carrier arm 1134. Disposed closely adjacent thereto is a second cam follower roller assembly generally designated 1144 which, in association with the jaw control cam track 1148 in cam track 1141, serves to control the timed opening and closing of jaw members of the jaw assembly 1140 necessary to effect yarn grasping, transport and release. As best shown in FIG. 12B, the first flanged cam follower roller 1142 is mounted at the dependent end of a dual clevis type mounting member 1150 which, through shaft 1152, is connected to and serves to support the extending carrier arm 1134 intermediate its base mounted terminal end on a solenoid 1132; see FIGS. 12 and 12A, and its extending free apex end. The lower clevis portion is sized to straddle the wall 1147 and to thus locate the roller 1142 within the cam track slot 1146. The structure and operation of the second cam follower roller assembly 1144 will be later discussed in conjunction with the operation of the jaw members mounted at the free end of the extending carrier arm 1134.
Referring now to FIGS. 12C, D, E and F, which depict in much more detail the nature of the yarn engaging jaw assembly 1140, the free terminal end of the extending carrier arm 1134 is in the form of a clevis 1158 having a moveable jaw member 1160 and a detent position jaw member 1162 mounted on a common pivotal mounting 1170 therein to permit both independent opening and closing of the jaw members as well as a conjoint selective location of the entire jaw assembly at either one of two angular positions relative to the plane of the carrier arm 1134. The terminal end of the moveable jaw member 1160 includes a pair of extending tooth members 1164 sized to extend beyond the yarn engaging surface of jaw member 1162 when the jaws are in open condition in order to effectively limit the depth of introduction of the yarn to be transported therewithin. As more clearly shown in FIGS. 12C and D, the yarn engaging terminal end portion of the jaw member 1160 is of a serpentine configuration and the terminal end of the detent positioned jaw member 1162 includes a complementally shaped replaceable facing of relatively high friction material, suitably urethane, which effectively insures yarn retention within the closed jaws of the carrier arm during yarn transport displacement thereof.
As pointed out above, jaw members 1162 and 1160 respectively have a common pivotal mounting 1170 and are normally biased into closed position by a circular biasing spring 1172 having its ends disposed in suitable notches on the outer jaw surfaces. Conjoint pivotal displacement of both jaw members as a unit into either one of two limiting positions is attained through a two-position detent system. Such two-position detent system includes a transverse bore 1178 through fixed jaw member 1162 having a biasing spring 1180 disposed therein and operative to outwardly bias ball detents 1182 and 1184 located at the terminal ends thereof. Disposed in each of the facing walls of the clevis end 1158 of the arm 1134 are a pair of spaced ball detent receiving recesses 1186 and 1188 connected by an arcuate channel 1192 of lesser depth than the terminal recesses 1186 and 1188 but of sufficient depth to limit and guide the displacement of the ball detent elements when the latter are being displaced from one of the terminal recesses to the other. As will be apparent, the above described construction permits positioning of both jaw members as a unit at either one angular relation to the arm 1134 as determined by disposition of the detent balls in terminal recesses 1186 or at a second angular relation to the arm 1134 as determined by disposition of the detent ball in the second pair of terminal recesses 1188. As will hereinafter be pointed out such two positions provide for selective pickup of either a terry yarn or a body yarn by the jaw members and the proper positioning thereof at the knitting cylinder for engagement by the terry bits or by a downwardly moving needle as the case may be.
The opening and closing of the jaw members 1160 and 1162 against the action of the biasing spring 1172 in either one of the two above described detent controlled limiting positions is effected through manipulation of a pair of extending tapered tangs 1194 and 1196 on the remote ends of the jaw members. As most clearly shown in FIGS. 12C and 12G the extending tangs 1194 and 1196 define a tapered channel 1197 therebetween within which is disposed the terminal end of an elongate control rod 1198 which passes through a slotted aperture 1200 in a plate extending upwardly from the carrier arm 1134. The remote terminal end of the control rod 1198 is pivotally connected to one end of a vertically disposed link member 1202 and is biased in the retracted position by spring 1199. The link member 1202 is pivotally mounted above its midlength, as at 1204 within a suitable aperture 1206 in the carrier arm 1134. As best shown in FIG. 12G the dependent end of the link member is also hingedly connected to the body portion thereof, as at 1205, so as to permit displacement of the lower portion in a direction perpendicular to the axis of the link member so as to permit dual track operation of the cam roller 1144 mounted at the dependent end thereof. The remote dependent end of the link member 1202 supports, as noted above, a spherical cam roller 1144 which is sized to be contained and run within cam track 1148 in the control cam assembly member 1141. As will now be apparent, longitudinal displacement of the control rod 1198 in response to rotative displacement of the link member 1202 about its pivotal mounting 1204 effects a displacement of the terminal end thereof within the tapered channel 1197 defined by the extending tangs 1194 and 1196 on the jaw members. Such displacement of the rod 1198 against the action of its biasing spring will serve to effect a rotative displacement of the jaw member 1160 relative to the detent position jaw member 1162 against the action of the biasing spring 1172 to effect an opening of the normally closed jaw.
Selective positioning of the jaw assembly as a unit in either of the two detent determined limiting positions is effected by means of a plurality of selectively positionable cam elements 1210 mounted on the rotatable yarn guide member 1038. As shown in FIGS. 5 and 5A, a cam element 1210 is provided for each yarn and is located in radial alignment with each of the yarn guiding ceramic sleeves 1040 thereon. Each of such cams 1210 includes a terminal selectively shaped cam surface positioned and contoured to engage and to rotatably shift the jaw members as a unit as the jaw members are moved downwardly therepast after engaging a yarn positioned in the related ceramic sleeve 1040. As shown in FIG. 5A each of the positioning cams 1210 is pivotably mounted within a recess 1218 in the rotatable yarn guide member 1038 and are selectively positionable either in a stable retracted position within such recess by a spring detent 1216 or in a manually displaced stable outwardly extending position as indicated by the dotted lines in FIG. 5A. Displacement of the positioning cams from their retracted or nonoperative position to their extended or operative position is effected by a machine operator during machine setup operation prior to the making of a knitting run.
Operation
In the operation of the above described yarn feeding system the machine operator, during the initial setup and prior to initiation of knitting operations, will selectively and individually thread up to 12 separate yarns through the respective ceramic sleeves 1036 in the fixed yarn guide 1034 and through the respective ceramic sleeves 1040 in the rotatable sector shaped yarn guide element 1038 Following such threading the operator will secure the extending and free end of each of said threaded yarns in its respective and aligned toggle clamp in the toggle clamp assembly 1044.
With the desired yarns so threaded, positioned and clamped the operator will then manipulate the appropriate carrier arm jaw positioning cam 1210 on the rotatable yarn guide element 1038 to its operative position to assure the ultimate proper positioning of the carrier arm yarn engaging jaws in accord with the fact that if the initial yarn that is programmed to be picked up and engaged thereby is a selected body yarn or a terry yarn. As of this time and before knitting machine operation has started, there will be no yarns engaged by the needles in the knitting cylinder 80. To effect introduction of a selected yarn into the knitting cylinder, the yarn guide 1038 is displaced to locate the yarn to be selected and transported and introduced into the knitting cylinder into the path of the jaw elements on the carrier arm 1134, which carrier arm 1134 will be initially positioned in its counterclockwise limiting position as illustrated by the dotted line depiction of FIG. 4. As there shown and as depicted in FIG. 3 initial counter clockwise position the jaw-bearing end thereof is disposed upstream of the yarn guide 1038 as indicated by the terminal end of the dotted line 1039 as positioned at 1039a in FIG. 3. Initial clockwise displacement of the carrier arm 1134 is attended by a concomitant upward displacement thereof sufficient to permit clearance of the yarn guide member 1038 After appropriate displacement past the yarn guide member 1038 the jaw-bearing end of the carrier arm 1134, with the jaws 1160 and 1162 thereof in their open condition, will be moved downwardly without interruption of rotative displacement thereof to receive the selected yarn between the jaw elements at a depth determined by the teeth 1164 thereon at which time the jaws will close to grasp the selected yarn in a serpentine configuration as determined by the shape of the jaw member. The downward movement of the carrier arm 1134 with the now closed jaw members 1160 and 1162 will continue and, if the selected yarn is to be a body yarn, engagement of the closed jaws with the displaced cam 1210 disposed in the path of advance thereof will effect a pivotal displacement of the closed jaw assembly as a unit to the appropriate detent controlled limiting position for the handling of a body yarn. The continued downward movement of the jaw-bearing end of the carrier arm 1134 is also operative to effect an opening of the toggle clamp jaws 1050 and 1058 that had previously been in compressive engagement with the selected yarn that has now been picked up, thus freeing the loose end thereof. Such toggle clamp opening is effected by engagement with an extended link 1066 that is fixedly mounted at one end 1063 thereof to effect a displacement of the free end thereof 1067 in an arcuate downward path to contact the C-shaped toggle spring 1062. Engagement of the displaced link 1066 effects a reversal of the toggle action and in a consequent opening of the clamp to the open position as shown at 1069. As there shown, the base extending teeth 1048 thereof serve in the open position as an available yarn guide channel. The general path of travel of the free end of the carrier arm 1134 is, as previously noted, illustrated by the dotted line starting and finishing positions on FIG. 4. As will be apparent therefrom and as indicated on FIG. 3 the pickup point for the selected yarn is at the location where the jaws are tangent to the yarn advance line at a location roughly midway between the moveable sector guide 1038 and the toggle clamp assembly 1044 as generally illustrated by the reference number 1039b, see FIG. 3.
Following the opening of the toggle clamp and release of the free end of the selected yarn, the jaw-bearing free end of the carrier arm 1134 having the selected yarn now firmly grasped thereby is then moved upwardly in the vertical direction while at the same time it is continuously being arcuately displaced toward the knitting cylinder 80 as it is moved toward the dotted line depiction in FIG. 2 Such motion will continue until the yarn engaging closed jaw members 1160 and 1162 are moved over the knitting needles and disposed behind the path of the raised needle elements in the knitting cylinder 80. At such time the yarn grasped thereby will be positioned in the path of advance of the knitting needle ready for engagement thereby. In general, the grasped end of the selected yarn when so positioned will be located in front of the retracted shedding element, immediately above the terry bit and so positioned that the downward movement of an advancing open needle member will engage the selected yarn at a location adjacent to the closed jaws 1160 and 1162 on the carrier arm 1134 The continued downward and advancing movement of such needle elements will cause the selected yarn to be introduced into the body yarn channel 1122 on the yarn director member 1120 and, at the same time, will effect a reintroduction of the selected and now advancing yarn into its respective open toggle clamp. In such manner, the open toggle clamp is available to serve as a yarn guide and will properly orient the advancing yarn so as to effect the coordinate introduction thereof into operating engagement with the rotating wheel 1106 in yarn usage monitor assembly 1104 As will be apparent, continued rotative advance of the knitting cylinder 80 will result in successive yarn engagement by the advancing and downwardly moving needle elements and in a positive drawing of the selected yarn from a remote supply thereof through its ceramic sleeve 1038 in the fixed yarn guide 1036, through its ceramic sleeve 1040 on the moveable yarn guide 1038, through the yarn usage monitor 1104, through the yarn director 1120 and into the fabric being formed on the knitting cylinder. The introduction of such selected yarn to the fabric being formed and the continual displacement of the knitting cylinder 80 will also effect a withdrawal of the tail of the previously selected and transferred yarn from the carrier arm jaw assembly by displacement thereof in a path generally normal to that of the serpentine engagement between the clamping jaw ends. The carrier arm 1134 will be rotated back to its starting position in front of the moveable yarn guide 1038 in response to solenoid actuation for subsequent repetitive action in accordance with preprogrammed instruction.
The above described operation of effecting selected yarn transfer and introduction thereof into the fabric being formed on the knitting cylinder can be effected at any desired time in accordance with preprogrammed instruction and accompanying programmed displacement of the rotating guide element 1038 to place a newly selected yarn in the path of displacement of the carrier arm jaw assembly as described above.
Removal of a previously engaged yarn currently being drawn into the fabric being knit is effected by selective rotation of yarn guide 1038 to introduce the yarn to be cut into the path of the cutter and the selective operation of the yarn cutting assembly 1070 through operation of the solenoid 1078 in the manner described above. The cutting action of the yarn cutting assembly 1070 is also operative to effect a closure of the otherwise open toggle clamp associated with the advancing yarn that is being subjected to the cutting action through the engagement of the extending trip arm 1067 mounted on rocker arm 1084 with the toggle clamp related to the yarn. The closure of the associated toggle results in a regrasping of the severed yarn at a location upstream from the cut end thereof. Subsequent to severing of the yarn in the manner described above rerotation of the moveable yarn guide 1038 will place a newly selectable yarn in the path of advance of the jaw-bearing end of the carrier arm 1134 for introduction into the knitting machine in the manner described above.
Data Processor Control System
As will be now apparent to those skilled in this art, the symmetry of the vertical and horizontal displacement paths of the yarn engaging knitting elements within each operating sector bounded by yarn feed locations when coupled with the operability of knitting, tucking or floating on each needle at each yarn feed location independent of the direction of knitting cylinder rotation is particularly well adapted to preprogrammed control of machine operations by a data processor or computer. Likewise the electrical signals emanating from the stitch length control system, the yarn consumption measuring system and from the various stepping drive motors are all functionally adapted to such data processor control.
To the above ends the mechanical functions described hereinabove are electrically and electronically controlled in the general manner illustrated in FIG. 14. Since all knitting machine units are contemplated to be substantially identical from a functional viewpoint, the subscript employed to identify a specific knitting machine unit in FIG. 13 is omitted in FIG. 14 whereby description of knitting machine unit 802 is intended to also describe any one of knitting machine units 802.sub.1, 802.sub.2 . . . 802.sub.N of FIG. 13.
Referring now to FIG. 14, knitting machine block 816 generally includes all of the mechanical, electrical and electromechanical components previously described and receives a selectable set of yarn strands from a yarn feeder designated by 818. A remote yarn supply creel 820 contains all of the yarns which may be called for by yarn feeder 818 and feeds them through a set of auxiliary yarn use sensors 822 to yarn feeders 818. Since knitting machine 816, yarn feeders 818, remote yarn supply creel 820 and yarn use sensors 822 are either conventional or have been fully described herein, further description of these elements will be omitted here.
All functions performed within knitting machine unit 802 are controlled by a unit CPU 824 which receives its style and production quantity instructions from, and provides data to, system data bus 804. Unit CPU 824 is the sole link between the outside world and a knitting machine unit 802. All data coming in and passing out from and to system data bus 804 is communicated on a bus 826. Internal to knitting machine unit 802, the CPU 824 communicates either directly or through a unit data bus 828. A unit random access memory (RAM) 830 communicates with unit CPU 824 solely through unit data bus 828. Unit RAM 830 stores the data and operating instructions for unit CPU 824. Certain of the required data and instructions are retrieved from unit RAM 830 by unit CPU 824 prior to the need for such data and these are stored in a scratch pad RAM 832 using a bus 834 directly connected between scratch pad RAM 832 and unit CPU 824 without passing through the intermediate communication path of unit data bus 828. As is conventional, scratch pad RAM 832 has relatively limited capacity but is extremely fast compared to unit RAM 830 Thus, data can be retrieved from unit RAM 830 by unit CPU 824 at convenient times and temporarily stored in scratch pad RAM 832 prior to the need therefor. Once the need for such data does arise, it can be very rapidly retrieved from scratch pad RAM 832. Scratch pad RAM 832 may contain, for example, the knitting program for the next stitch in each sector as well as yarn feeder instructions for the next stage Alternately, scratch pad RAM 832 may contain some or all of the instructions for knitting machine unit 802 operations for one set of sectors.
At appropriate times, unit CPU 824 produces sets of six needle and six closing element control signals on a set of lines 836 which are applied to bipolar coil drivers 838. Bipolar coil driver 838 thereupon produces six needle control signals and six closing element signals which are applied, respectively, to the appropriate control electromagnets 452 in knitting machine 816. As was previously described, electromagnet 452 requires a reinforcing pulse to retain the needle and closing element magnetic containment pads in interfacial abutment with the wear plates as they pass the gap between electromagnets 710 and 712 (not shown in FIG. 13). In a preferred embodiment, in the absence of a command to retain the magnetic containment pads in abutment with the wearplates, a flux negating pulse is applied by bipolar coil driver 838 to the appropriate electromagnet 714 to positively overcome the effect of the permanent magnet retention flux as the magnetic retention pads pass in front of control electromagnet 452 and thereby release the magnetic containment pads to permit the potential energy stored therein by virtue of their prior mechanical biasing into their flexed positions to initiate the return thereof to their normally biased and unflexed condition. As has been previously explained, the three valid conditions of needle and closing element signals to each sector determine whether the resulting operation is a knit, tuck or float.
Referring again to FIG. 14, a unit I/O 844 communicates with unit CPU 824 via lines 846 for providing signals to an output isolator and wave shaper 848 and receiving signals from input isolators 850. The isolator portion of output isolators and wave shapers 848 are preferably optical isolators in order to isolate unit I/O 844 and unit CPU 824 from electrical noises likely to exist in the factory environment of the electrical and electromagnetic components of knitting machine unit 802 and other equipment nearby. In response to signals from unit I/O 844, output isolators and wave shapers 848 provide a tail air blowoff signal, six yarn inserter control signals and six yarn cutter signals to yarn feeders 818. In addition, output isolators and wave shapers 848 provide a sock transport signal, a presser cam control signal and a terry cam control signal to knitting machine 816. In order to speed the response of yarn feeders 818 and knitting machine 816 to the control signals, the wave shaper portions of output isolators and wave shapers 848 respond to the step input signal by producing an output having a high initial spike which is much higher than the actuators in yarn feeders 818 and knitting machine 816 can survive on a continuous basis, followed by a rapid decay to a quiescent level 854 to complete the actuation. By essentially overdriving the actuators in this way during the initial spike, more rapid response to the control signal is achieved.
A main drive motor controller 856, a stitch length motor controller 858 and a yarn feed motor controller 860 receive input signals from unit data bus 828 which they employ to drive respective stepping motors 52, 130 and 862. All of these motors and their controllers are identical except that yarn feed motor controller 860 contains six motor controllers individually feeding six yarn feed stepping motors.
Stitch length home-position encoder composed of elements of 178, 180 and 182 applies its output home-position signal to input isolators 850 from whence its isolated signal is applied through unit I/O 844 to unit CPU 824. Similarly, a set of six yarn feeder home-position encoders 906, one encoder for the yarn feeder of each sector, produces a set of six independent yarn feeder home-position signals which are applied on six lines 960 to input isolators 850.
A set of six yarn use encoders 910 measure the amount of yarn being used by each of yarn feeders 818 and apply signals containing this information on six lines 912 to input isolators 850. By keeping track of the yarn actually used in the six sectors, yarn use encoders 910 provide information to CPU 824 and from there to system computer 806 (FIG. 13) which permits system computer 806 to perform inventory evaluation of yarn supply and do other bookkeeping functions. In addition, unit CPU 824 or system computer 806 may be programmed to alert the machine operator to impending depletion of a particular yarn in the remote yarn supply creel 820 prior to the occurrence thereof so that timely substitution of a new supply may be performed.
As is conventional in knitting machines, remote yarn supply creel 820 contains reels of all of the yarns which may be employed in knitting. As is further conventional, a yarn tension sensor is employed on each yarn actually being fed to knitting machine 816 to sense insufficient tension which may be a result of yarn breakage or depletion and yarn excessive tension which may indicate yarn feeding difficulties. Since the knitting machine of the present invention may simultaneously employ six or more strands of yarn, a yarn tension sensor 914 for each yarn end is provided Yarn tension sensors 914 produce a machine stop signal on a line 916 which, applied through input isolators 850 and unit I/O 844 to unit CPU 824 causes unit CPU 824 to stop the operation of knitting machine unit 802 until the cause of improper yarn tension is found and corrected.
Claims
  • 1. A yarn feed assembly for circular weft knitting machines, comprising
  • displaceable yarn supply means for tautly positioning a plurality of yarns in spaced apart relation for selective movement of a single one of said yarns to a pickup position,
  • slotted guide means disposed remote from said yarn supply means and adjacent to a yarn feed location as defined by the path of knitting needle displacement, and
  • displaceable transfer arm means for engaging said selected one yarn at said yarn supply means and transporting said selected one yarn into operative engagement with said slotted guide means and into the path of knitting needle displacement.
  • 2. In a yarn feed assembly as set forth in claim 1,
  • yarn cutting means disposed intermediate said yarn supply means and said slotted guide means for severing a selected yarn being drawn through said slotted guide means by knitting needle displacement.
  • 3. In a yarn feed assembly as set forth in claim 1, including
  • clamping means mounted on the end of said transfer arm means for grasping the selected yarn at said yarn supply means and releasing said yarn after engagement thereof by said knitting needles.
  • 4. The yarn feed assembly as set forth in claim 1 wherein said yarn supply means includes,
  • a sector shaped support plate having a plurality of yarn guide bores in spaced relation adjacent to the arcuate periphery thereof, and
  • an individually operable clamping member disposed in coaligned spaced relation with each of said yarn guide bores for maintaining said yarns in taut arcuate parallel spaced relation therebetween.
  • 5. The yarn feed assembly as set forth in claim 4 further including
  • means for rotatably displacing said sector shaped support plate and said clamping members to position a selected yarn for engagement by said transfer arm means.
  • 6. A yarn feed assembly as set forth in claim 2 wherein said yarn cutting means includes,
  • a rotary drive solenoid,
  • a cutting element mounted on said solenoid for helical displacment thereof into cutting relation with a second cutting element, and
  • means for clamping the yarn to be cut downstream of the cutting element prior to the cutting thereof.
  • 7. A yarn feed assembly as set forth in claim 1 wherein displacement of said yarn supply means to position a selected yarn for engagement by said transfer arm means is responsive to the preprogrammed instruction.
  • 8. A yarn feed assembly as set forth in claim 1 wherein yarn consumption measuring means disposed intermediate said yarn supply means and said slotted guide means for measuring the amount of selected yarn advanced therepast by knitting needle engagement therewith.
  • 9. A yarn feed assembly as set forth in claim 1 wherein
  • said transfer arm means is pivotally mounted and is selectively displaceable in the vertical direction conjointly with the displacement thereof.
  • 10. A yarn feed assembly as set forth in claim 4, further including
  • means responsive to the engagement of a selected yarn by said displaceable transfer arm means for opening the normally closed clamping member associated with said selected yarn to release the free end thereof for transport thereof by said transfer arm means.
  • 11. A yarn feed assembly as set forth in claim 10, further including
  • yarn cutting means disposed intermediate said yarn supply means and said slotted guide means for severing a selected yarn being drawn through said slotted guide mean by knitting needle displacement and
  • means associated with said yarn cutting means for closing the opened clamping member associated with said selected yarn prior to the cutting thereof to restore the taut positioning thereof in said yarn supply means.
  • 12. A yarn feed assembly as set forth in claim 3 wherein
  • said clamping means mounted on the end of said transfer arm means is selectively positionable at one of two locations to accommodate transport and delivery of terry loop yarn to said slotted guide means.
Parent Case Info

This application is a division of application Ser. No. 228,711 filed Aug. 5, 1988 which was a division of application Ser. No. 901,313 filed Aug. 28, 1986 (now U.S. Pat. No. 4,796,444) and which in turn was a division of application Ser. No. 398,303 filed Jul. 14, 1982 (now U.S. Pat. No. 4,608,839).

US Referenced Citations (4)
Number Name Date Kind
3890809 Tenconi Jun 1975
3975926 Tenconi Aug 1976
4121439 Wright Oct 1978
4193274 Gosfelow Mar 1980
Divisions (3)
Number Date Country
Parent 228711 Aug 1988
Parent 901313 Aug 1986
Parent 398303 Jul 1982