Embodiments relate to systems and methods for sorting yarn packages.
In manufacturing carpet, such as carpet tiles that together form a floor covering, different yarn types and colors are often used. Including more colors and more complicated patterns in carpet designs increases the number of different yarns and otherwise complicates the manufacturing process. This is especially true when a carpet is customized based on a particular customer's requirements because such customized orders tend to require specialized yarns that are not used as frequently.
Yarn wound onto a cardboard or plastic cylindrical core or “bobbin” or a conical “cone” is referred to as a “yarn package.”
Conventionally, after a job/order is run to manufacture carpet, the leftover yarn in a yarn package is removed from the existing package bobbin or cone and rewound with other yarn to create a new package of yarn. It is generally necessary to reprocess the yarn package in such a manner before it can be reused, because there has otherwise been no way of knowing how much yarn is left in the package. However, these backwinding and re-coning processes are time consuming, relatively labor intensive, and imprecise. In some cases, there is enough yarn remaining in a package to be reused in some jobs without reprocessing. Thus, there is a need to be able to determine how much yarn remains in a package to determine whether reprocessing is required, or whether there is enough yarn to be used in another job. Such information would be especially useful when dealing with small orders or yarn packages of a small size, such as those weighing under one pound, because it is particularly difficult to determine whether sufficient yarn is left on yarn packages that are relatively small in size.
The terms “invention,” “the invention,” “this invention” and “the present invention” used in this patent are intended to refer broadly to all of the subject matter of this patent and the patent claims below. Statements containing these terms should not be understood to limit the subject matter described herein or to limit the meaning or scope of the patent claims below. Embodiments of the invention covered by this patent are defined by the claims below, not this summary. This summary is a high-level overview of various aspects of the invention and introduces some of the concepts that are further described in the Detailed Description section below. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in isolation to determine the scope of the claimed subject matter. The subject matter should be understood by reference to the entire specification of this patent, all drawings and each claim.
This invention is a yarn sorting conveyer system that comprises multiple conveyers for yarn packages or partial packages. In some embodiments, the system includes a first conveyer, a second conveyer, and a third conveyer. In other embodiments, the system uses more or less than three conveyers. In some embodiments, the conveyers are controlled by programmable logic controllers (PLCs) with touch screen interfaces. Also disclosed are systems and methods of sorting yarn packages based on the weights of the packages or other physical characteristics of the yarn, including color, denier, type (e.g., yarn chemistry, number of plies, etc.).
In certain embodiments, each yarn sorting conveyer system 10 runs independently of another yarn sorting conveyer system. Each conveyer system 10 may include more or less than the three conveyers described and illustrated.
In some embodiments, the yarn sorting conveyer system 10 includes three light based sensors, referred to herein as “eyes.” As illustrated in
The first and third eyes work together to make sure that the second conveyer 14 is ready to receive an additional yarn package 18. Specifically, a first yarn package 18 must clear the third eye before a second yarn package 18 is permitted to move from the first conveyer 12 to the second conveyer 14. In this way, if a yarn package 18 does not exit from second conveyer 16 (the yarn package 18 does not clear the third eye), then a new yarn package 18 is not permitted to enter second conveyer 16 because the first eye will not activate. In some embodiments, if a yarn package does not clear the third eye (does not exit second conveyer 16), the progress of one or more of the conveyers can be slowed or halted to allow the problem to be automatically and/or manually diagnosed and remedied.
The third conveyer 16 includes a number of yarn package pusher assemblies 24 (shown in
In the embodiment shown in
Based on the weight of the yarn package 18, the length of the yarn remaining on the package can be estimated. Such estimates may be improved using the weight of the tube or core on which the yarn is wound (without the yarn) and/or the type of yarn on the package (i.e., whether 1 ply or 2 ply). Other information may be used to further refine the yarn length estimate as may be appropriate.
In one embodiment, the yarn sorting conveyer system includes two independently controlled conveyer sequences that each process a set number of doff points. For instance, such a system can include five doff points. Each of the doff points can be programmed using a touch screen PLC interface to correspond to a selected weight range. The PLCs also can be used to control the timing and the speed of the three conveyers and the range of weights for each doff point. Information about each yarn type (i.e., whether 1 ply or 2 ply, etc.) can be entered into the touch screen PLC.
A hopper feed belt can feed the yarn packages to the first conveyer 12 at timed intervals. Alternatively, an operator can manually place the packages on the conveyer 12, and numerous other techniques and devices can be used for such placement. In some embodiments, the bins into which the packages are placed include a mechanism to ensure that the packages land into the bin at a particular orientation. For example, a bin may include an upright stick or pole that receives the yarn package and ensures that the package is oriented upright in the bin after it slides down the stick/pole. Bar code labels can be created for the yarn packages that are collected in a particular bin using information stored in the PLC. The PLCs may be connected to the system wirelessly, which enables the information to be downloaded and used in other applications.
The system can also include additional sensors. For example, the system may include sensors for detecting and sorting packages based on color. In these sensor-containing embodiments, the sensor may read the color of yarn associated with the yarn package and the system may assign a doff point at which the particular yarn package will exit the system. In this way, the yarn packages can be sorted by color into appropriate bins.
Determining the length of yarn in the package by weighing the package can eliminate the need to unwind the yarn and rewind the yarn into a new package, because the length of yarn remaining in the package can be estimated based on the weight of the package. The yarn may still be unwound and rewound if, for example, it is determined that the amount of yarn remaining in the package is not sufficient to use in another job. Yarn packages that have sufficient yarn, however, can be re-used without additional processing or rewinding/re-coning.
The yarn sorting systems of this invention can thus provide a faster, more efficient, and more accurate system than hand sorting and other conventional re-coning systems. In some instances, yarn sorting by weighing a package may be five times or more faster than unwinding and rewinding a yarn package. Thus, increased efficiencies and reduced labor reduce expenses. Costs may be further reduced if a yarn package can be reused without having to be reprocessed through rewinding. By not rewinding a yarn package, the yarn may retain higher quality, and thus result in higher quality carpet with fewer stops on a tufting machine
Moreover, this yarn sorting system may allow for the use of yarn at a narrower tolerance than if rewinding was used to determine the amount of yarn on the package.
Because measuring the amount of yarn remaining in a yarn packaging by rewinding is not very precise, more yarn than is needed is included in the package to reduce the risk of running out of yarn during a job (in some cases, the yarn packages have 0.1 pounds more yarn than needed to account for variances in the winding process). It is particularly important to be precise when dealing with yarn packages having relatively small weights. Because the disclosed yarn sorting system is more accurate than traditional sorting methods, extra yarn need not be added as a buffer. This further reduces costs associated with wasted yarn.
In addition, information collected while using the sorting yarn conveyer system can be analyzed to determine trends in yarn type distribution and usage, which can be used to optimize the carpet construction process, including portions using the yarn originally on the packages being re-processed
Yarn sorting using the yarn sorting conveyer system described above may involve placing yarn packages having unknown lengths of yarn on a first conveyer that transports the yarn packages to a second conveyer having a load cell. The load cell weighs each yarn package and uses this weight to assign the package with a doff kick off point. The second conveyer then transports the yarn packages to a third conveyer where the yarn package is kicked off when it reaches its assigned doff kick off point. In this way, the yarn packages are sorted by their weights. The weight of the yarn package can then be used to determine the amount of yarn remaining on the package and thus whether the yarn package can be re-used in another job or whether reprocessing is required before the yarn package can be reused. This method may be particularly advantageous when dealing with yarn packages that are not utilized as often, or that have relatively small weights.
Numerous modifications of the structures and methods described above and shown in the drawings may be made without departing from the scope or spirit of the invention. For instance, different conveying systems can be used for moving the partial yarn packages through the weighing and sorting process. As alternatives to conveyor belt systems, conveyor chains, robot arms, pick and place mechanisms, and other suitable systems may be used to weight and sort the packages. Similarly, color sorting or other sorting functionality could be included. For instance, cameras or other color detectors could be appropriately positioned along one of the conveyors to collect color information for use in further sorting the partial packages. As another example, packages could be identified by RFID and/or barcode to facilitate sorting packages of different types of yarns, which could also serve as individual package identifiers for a data collection system. The conveyor system could also be used in conjunction with yarn disposal or yarn/cardboard separation equipment. Yarn packages of different types, colors or other attributes could be purposely mixed to create kits for remote assembly areas or use by others. This process could be performed with or without sorting.
This application claims the benefit of U.S. Provisional Application Ser. No. 61/396,697 filed Jun. 1, 2010 titled “Yarn Sorting System,” the contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61396697 | Jun 2010 | US |