(Not applicable)
(Not applicable)
This application relates to structural engineering, particularly lateral bracing systems to resist earthquakes or similar episodic forces.
Structural engineers must often design structural members to resist large forces that may occur infrequently (such as earthquake forces) but whose failure would be catastrophic. Economy and reliability are both important considerations.
Many existing buildings throughout the world were constructed before the actions of earthquakes were understood and such understanding was applied to construction methods. The replacement value of existing buildings that are exposed to earthquakes in the city of San Francisco alone is 190 billion dollars. This includes over $100 billion in replacement value for wood-frame residential buildings that were built before construction methods provided adequate protection from earthquakes. Worldwide, the replacement value of buildings vulnerable to earthquakes is likely in the trillions of dollars.
One prominent vulnerability in existing buildings is the “soft, weak, or open-front” (hereinafter referred to as “SWOF”) condition. A common cause of SWOF condition is a large storefront window or garage door opening that substantially reduces the availability of bracing elements in a building to resist horizontal earthquake forces. Maintaining the door opening or display space precludes certain types of strengthening measures such as diagonal braces or shear walls, which account for significant prior art in the general category of lateral force resisting systems.
The two most common methods used to brace existing buildings with SWOF conditions are “moment-frames” and “moment-columns” (also called “cantilevered columns”). A moment-frame comprises two vertical members (usually one on each side of the large door or window opening) with a horizontal member rigidly connected to the tops of the vertical members. Moment-frames are almost always made of commonly available structural steel components. The members may be welded together in place—which presents the risk of fire—or bolted together. In almost all cases welding is required—which even if it is done in a fabrication shop adds substantial expense to the process.
Moment-frames are very difficult to fit into an existing building without first removing or relocating existing utilities such as water and gas piping, electrical wiring or conduits, sewer lines, ventilating ducts, etc. Sometimes the configuration of the building makes installation of a moment-frame impossible without making the garage door opening narrower or lower, or both.
Modern moment-frames have been tested fairly extensively and their performance in earthquakes is expected to be fairly predictable.
Moment-columns essentially act as very stiff flag-pole-like elements: the base of the moment-column is attached to, or embedded in, a solid foundation. The top of the column attaches to the structural framing above the SWOF condition to provide stability for the structure above. Like moment-frames, moment-columns are usually constructed using standard steel members. A moment-column generally consists of a single length of steel wide-flange or a hollow structural steel tube. One advantage that moment-columns have over moment-frames for strengthening existing residential constructions is that a single column location is often all that is needed to sufficiently strengthen the construction.
Moment-columns are not considered to perform as reliably in earthquakes as moment frames, especially when the structural system relies on only a single moment-column. Moment-frames also provide more structural redundancy; at least two regions of the moment-frame must yield before it fails catastrophically, versus a moment-column that would fail when the base of the column yields. Therefore the building codes in the US require that a moment-column system be designed for much greater earthquake forces than a moment-frame system, all other things being equal. This requirement is intended to create a safety factor which will assure that moment-columns will be no more prone to failure than moment-frames.
Moment-columns have two major drawbacks. First, they require large safety factors under the current building codes. Second, they are very difficult to replace once they have deformed during an earthquake—especially if they are embedded into a concrete foundation, which is the easiest way to install them.
Model building codes determine required safety factors based in part on the redundancy of a structural system. One such “safety factor” is known as the response modification factor, symbolized as R. The model building code used in the US tabulates values of R for various building systems: Moment-frames, cantilevered (moment) columns, light-frame construction with wood-panel shear walls, etc. Depending on the value of R assigned to a particular structural system, structural engineers must design for much greater forces for some systems.
Consider two buildings that are identical except for the bracing systems; one building is braced with wood-panel shear walls and the other is braced with moment-columns. The seismic force that must be considered when designing the building braced with moment-columns will be from 2.6 to 5.2 times greater than the force for the shear-wall-braced structure. Compared to a structure braced with moment-frames, the design force for moment-column bracing may be as much as 6.2 times greater.
The weight required for a moment-column member is very closely related to the force it must resist. When a moment-column is being installed in an existing building it is generally impossible to lift members into place with an overhead crane. Reducing the weight of members to the point that workers can install them without using hoists would result in substantial reduction of construction costs.
Using a smaller safety factor would result in construction cost savings throughout the structural system, not just in the moment-column itself. The current model building code requires applying the safety factor for a moment column not just to the column itself, but also to all structural elements throughout the building that resist forces in the same direction as those resisted by the moment-column. This requirement implies at the very least doubling the strength of all components of the earthquake-force-resisting-system over what would be required for other systems.
Bracing methods for buildings must be strong enough to resist the imposed loads. They must also provide sufficient stiffness to keep the structure from deforming under the imposed loads, otherwise excessive damage results. In some cases structural elements that are not part of the bracing system can fail if too much movement is allowed.
A moment-column fixed at its base will deflect laterally when a lateral load is imposed at the top. The amount of deflection depends largely on the height of the column, magnitude of the imposed load, column material, structural properties of the column, and the rigidity of the base connection and foundation. Structural connections that allow the column to lean, even slightly, before developing full resistance to the imposed load are not desirable. Base connections that allow any slip or yielding lead to the deflection being magnified by the height of the column. For example, consider a column of completely rigid material in the shape of a rectangular prism with sides one foot wide, and a height of eight feet. If the column is allowed to rock slightly before its base connection fully engages, the slight rocking is magnified by the ratio of the column's height to its width. In this case a yield link at the base of the column that elongates by ⅛ inch would result in the top of the column deflecting 1 inch. Placing a yield link as close to the top of the column as possible will reduce movement of the braced structure, thus reducing damage.
Back-up elements in a structural system that provide secondary load resistance increase the reliability of the system. Such elements are sometimes called “fail safe” mechanisms. In many existing buildings, back-up elements are provided by ignoring the strength of “non-structural” materials such as plaster and wall-board. Providing more reliable and purposefully designed elements would be beneficial.
Many existing constructions are built of “light-frame” materials, typically lumber framing members. These materials can provide adequate bracing when lateral loads are distributed over a sufficient number of members. Building materials used in most light-frame constructions do not lend themselves to bracing against highly concentrated lateral forces.
Structural steel members are well-suited to resisting concentrated forces that may be presented during earthquakes. Structural steel members and connections are common-place in larger constructions such as high-rise buildings. Connections and members that resist hundreds of thousands of pounds or more are commonly made using various fabrication methods including bolting and welding. The great expense of such connections is justified in large buildings because relatively few of them are needed on a per-square-foot basis of building size. U.S. Pat. No. 7,874,120 B2 to Ohata et al (2011) and U.S. Pat. No. 6,681,538 B1 to Sarkisian (2004) claim connections that provide controlled yielding properties, but are prohibitively expensive for light-frame structures.
Light framed constructions such as dwellings have included a number of bracing systems in the past. The method most frequently used in current light-framed construction is use of structural elements known as “shear walls.” Shear walls are generally built on site using ordinary construction materials such as lumber, plywood, and nails. Shear walls require significant length along the sides of a construction to provide adequate lateral bracing. Large window or door openings are the very reason a SWOF condition exists in the first place; encroaching into the width of existing windows or doors to install shear walls changes the functionality of a building and is not an acceptable solution. Prior art has attempted to reduce the required bracing length of shear walls by introducing inventions of greater strength than could be achieved using ordinary construction materials. Even these improved systems do not have the strength required to resist high loads within the narrow confines of SWOF buildings. For example, commercially available products are manufactured under patent US20050126105 A1 to Leek, Perez, and Gridley (2005). The narrowest dimension manufactured is 12 inches. This product is rated to resist a lateral load of less than 1,000 pounds; demand can easily be 10 times this amount, making this product inadequate for bracing many existing constructions.
Besides relatively low strength, the products currently in production are generally available only in incremental sizes intended for new constructions. Existing buildings often require sizes that must be specially manufactured at greater expense, often resulting in construction scheduling delays.
As discussed earlier, moment-frames have features that make them completely unacceptable for use in many existing constructions and therefore are not considered as applicable prior art. One exception is the patent to Pryor and Hiriyur (2011) described in the following section.
Yield links are purposely designed to focus earthquake or other environmental forces into structural components specifically intended to absorb energy through the yielding of a ductile material such a steel. Ideally the yield links would be easily-replaceable structural components.
Ductile materials will yield in three ways: in shear, bending, or axially (due to tensile or compressive forces). Yield links using each of these principles exist in prior art.
U.S. Pat. No. 5,533,307 A to Tsai and Li (1996) uses triangular plates rigidly fixed along one edge and loaded at the opposite apex, orthogonally to the plane of the plate. This causes the plate to yield under bending stresses generally uniformly over the entire area of plate; bending stresses in the steel increase uniformly as distance increases from the point of applied load, as does the strength of the ever-widening plate section. This is known as the “Triangular-plate Added Damping and Stiffness” (TADAS) concept. Background for U.S. Pat. No. 5,533,307 A describes the original concept as “having significant drawbacks” in that it is difficult to fabricate and assemble; however, the system illustrated under that patent still requires expensive fabrication and welding, and would only be suited to bracing very large constructions.
A lateral bracing system under U.S. Pat. No. 3,963,099 A to Skinner and Heine (1976) uses a ductile member rigidly attached to a building foundation. The member extends vertically from a fixed base (foundation) to the underside of the superstructure of the building. The top of the member engages a bracket attached to the superstructure to transmit lateral forces to the foundation. This system is meant for situations where the superstructure and foundation are separated by only inches, and is thus not suitable where the superstructure that needs bracing is several feet above the foundation.
U.S. Pat. No. 5,630,298 A to Tsai and Wang (1997) uses plates configured to yield in shear, with various welded stiffeners and end plates. This system is also exceedingly complex for economical use in all but very large constructions.
Patent US20110308190 A1 to Pryor and Hiriyur (2011) shows a moment-frame connection that includes a yield link described as yielding in tension or compression. This link is used to connect a beam to a column in a moment-frame, and requires the use of a restraining member to prevent the link from buckling during compression loading. The buckling restraint and yield link configuration would be difficult to access if the yield link needed to be replaced.
Engineers have learned the importance of inducing yielding of structural members at specific locations as a way to keep maximum bending stresses from occurring at vulnerable connections. One method of inducing yielding is the “reduced beam section” (RBS) method. In the RBS method, sections of flanges are cut away from a beam to reduce its strength by a predetermined amount. This method is described in U.S. Pat. No. 6,412,237 B1 to Sahai (2002) and U.S. Pat. No. 5,595,040 A to Chen (1997). A similar method is used in the patent to Pryor and Hiriyur (2011) cited above, wherein their yield link is created in the commercially available embodiment of their invention by reducing the stem in section of a “wide tee” shaped steel structural member or similar.
U.S. Pat. No. 6,012,256 A to Aschheim (2000) describes a method to reduce structural sections of members such that their webs will yield in shear at a predetermined loading level to protect more vulnerable structural components. This method does not expressly consider local buckling effects of the thin web elements that would remain adjacent to the voids in the modified member. Such buckling, if it occurred, could lead to sudden and possibly catastrophic failure of the member. Bracing the web elements would typically be done with welded stiffeners, which increases cost of fabrication.
In accordance with one embodiment, a cantilevered connection method that includes a structural member modified by removal of portions of the member in such a manner as to induce yielding under predetermined loads, said structural member(s) being mounted to a second structural member and the superstructure of a building in a manner that provides bracing during an earthquake.
Accordingly several advantages of one or more aspects are as follows: an economical and easy-to-fabricate connection, requiring no welding, providing an easily-replaceable yield link, improving the ductility and redundancy of the bracing system, providing for hysteretic damping, allowing bracing of structures with minimal disturbance to existing utilities or encroachment into wall openings, and a method to retrofit previously-strengthened buildings to provide some or all of the preceding advantages. Other advantages of one or more aspects will be apparent upon considering the drawings and description.
Placement of column connection holes 13 and framing connection hole 14 are not important to the present invention, and their location and number will vary. Connection requirements can be determined by those possessing ordinary skill in the arts.
Length of yield link 11, along with the shape and location of web cutout 12 are very important to proper performance. These properties are subject to the brace loading, geometry and dimensions of the particular construction in which the present invention is installed, based on further explanation that follows.
The shape and dimensions of web cutout 12 depend on the material of which yield link 11 is made, allowable lateral displacement, and other factors. These determinations can be made by those possessing ordinary skill in the arts, considering at least the following:
Yield link 11 and web cutout 12 must be designed such that yield link 11 will yield prior to yielding occurring in column 10. A conventional cantilevered column would yield at the point of maximum moment as indicated in
(See also
Dimension of web cutout 12 along the longitudinal axis of yield link 11 will depend on the allowable lateral movement of the structure to be braced in accordance with relevant building codes. Lateral movement must also be limited so that bending strain in the material remaining on either side of web cutout 12 does not lead to low-cycle fatigue failure of the material used for yield link 11. Strains will be reduced if the dimension of web cutout 12 is increased along the longitudinal axis of yield link 11. The moment in the overall section increases closer to the fixed attachment point (see
The preceding determinations are more fully described in “Soft Story Retrofits for the Real World: Cantilevered Column Modifications for Increased Ductility and Redundancy” by Thor Matteson, SE and Justin R. Brodowski, MS, EIT, Structural Engineers Association of California, 2014 Convention Proceedings.
Operation:
The operation of the present invention is essentially the same as a conventional moment-column, save for replacement of yield link(s) 11. Referring to
The present invention may be used to strengthen buildings or other structures against forces induced by other than earthquakes, and it may be used in new construction, and/or may include materials other than steel, in alternative embodiments of the invention.
The yield link connection presented allows a versatile method to induce controlled yielding at predetermined loads. Such yielding can absorb large amounts of energy through hysteretic damping, offering protection to the braced structure above.
Additional advantages to the present invention include:
Under current building code requirements, conventional moment columns are severely restricted in practical use. The present invention is expected to provide ductility and redundancy that would allow using column systems to brace a much wider range buildings. Using this method could save substantial construction costs in millions of buildings currently vulnerable to earthquakes.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/965,339, filed Jan. 28, 2014, entitled “Cantilevered Structural Member Modified to Provide Increased Ductility and Redundancy, with Provisions for Dynamic Damping” which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3050831 | Diamond | Aug 1962 | A |
3283464 | Litzka | Nov 1966 | A |
3927499 | Papayoti | Dec 1975 | A |
3963099 | Skinner | Jun 1976 | A |
4038799 | Shanks | Aug 1977 | A |
4047541 | Mercier | Sep 1977 | A |
4263762 | Reed | Apr 1981 | A |
4516874 | Yang | May 1985 | A |
4793113 | Bodnar | Dec 1988 | A |
5519977 | Callahan | May 1996 | A |
5527625 | Bodnar | Jun 1996 | A |
5533307 | Tsai | Jul 1996 | A |
5595040 | Chen | Jan 1997 | A |
5630298 | Tsai | May 1997 | A |
5664380 | Hsueh | Sep 1997 | A |
5749256 | Bodnar | May 1998 | A |
6012256 | Aschheim | Jan 2000 | A |
6138427 | Houghton | Oct 2000 | A |
6199336 | Poliquin | Mar 2001 | B1 |
6301854 | Daudet | Oct 2001 | B1 |
6412237 | Sahai | Jul 2002 | B1 |
6681538 | Sarkisian | Jan 2004 | B1 |
6708459 | Bodnar | Mar 2004 | B2 |
6719481 | Hoffmann | Apr 2004 | B2 |
6739562 | Rice | May 2004 | B2 |
7299593 | diGirolamo | Nov 2007 | B1 |
7739850 | Daudet | Jun 2010 | B2 |
7788878 | diGirolamo | Sep 2010 | B1 |
7874120 | Ohata | Jan 2011 | B2 |
8863477 | Stal | Oct 2014 | B2 |
20050126105 | Leek | Jun 2005 | A1 |
20110308190 | Pryor | Dec 2011 | A1 |
Entry |
---|
Matteson, Thor; “Soft Story Retrofits for the Real World: Cantilevered Column Modifications for Increased Ductility and Redundancy”; SEAOC 2014 83rd Annual Convention Proceedings, Sep. 2014; pp. 285-299; Structural Engineers Association of California; Sacramento, California. |
Number | Date | Country | |
---|---|---|---|
20160208478 A1 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
61965339 | Jan 2014 | US |