The present description relates to agricultural machines, forestry machines, construction machines and turf management machines.
There are a wide variety of different types of agricultural machines. Some agricultural machines include harvesters, such as combine harvesters, sugar cane harvesters, cotton harvesters, self-propelled forage harvesters, and windrowers. Some harvester can also be fitted with different types of heads to harvest different types of crops.
Agricultural harvesters may operate differently in areas of varying yield in fields unless the settings in the agricultural harvester are changed. For instance, when a harvester transitions from an area in a field with a first yield to an area in the field with a second yield, where the second yield is higher than the first yield, the change from a reduced amount of grain being harvested to an increased amount of grain may degrade the performance of the harvester if operating settings are not changed. Therefore, an operator may attempt to modify control of the harvester upon transitioning between an area of increased or reduced yield during the harvesting operation.
The discussion above is merely provided for general background information and is not intended to be used as an aid in determining the scope of the claimed subject matter.
One or more information maps are obtained by an agricultural work machine. The one or more information maps map one or more agricultural characteristic values at different geographic locations of a field. An in-situ sensor on the agricultural work machine senses an agricultural characteristic as the agricultural work machine moves through the field. A predictive map generator generates a predictive map that predicts a predictive agricultural characteristic at different locations in the field based on a relationship between the values in the one or more information maps and the agricultural characteristic sensed by the in-situ sensor. The predictive map can be output and used in automated machine control.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. The claimed subject matter is not limited to examples that solve any or all disadvantages noted in the background.
For the purposes of promoting an understanding of the principles of the present disclosure, reference will now be made to the examples illustrated in the drawings, and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the disclosure is intended. Any alterations and further modifications to the described devices, systems, methods, and any further application of the principles of the present disclosure are fully contemplated as would normally occur to one skilled in the art to which the disclosure relates. In particular, it is fully contemplated that the features, components, steps, or a combination thereof described with respect to one example may be combined with the features, components, steps, or a combination thereof described with respect to other examples of the present disclosure.
The present description relates to using in-situ data taken concurrently with an agricultural operation, in combination with prior data, to generate a functional predictive map and, more particularly, a functional predictive yield map. In some examples, the functional predictive yield map can be used to control an agricultural work machine, such as an agricultural harvester. As discussed above, performance of an agricultural harvester may be degraded when the agricultural harvester engages areas of varying yield unless machine settings are also changed. For instance, in an area of reduced yield, the agricultural harvester may move over the ground quickly and move material through the machine at an increased feed rate. When encountering an area of increased yield, the speed of the agricultural harvester over the ground may decrease, thereby decreasing the feed rate into the agricultural harvester, or the agricultural harvester may plug, lose grain, or face other problems. For example, areas of a field having increased yield may have crop plants with different physical structures than in areas of the field having reduced yield. For instance, in areas of increased yield, some plants may have thicker stalks, broader leaves, larger, or more heads, etc. These variations in plant structure in areas of varying yield may also cause the performance of the agricultural harvester to vary when the agricultural harvester moves through areas of varying yield.
A vegetative index map illustratively maps vegetative index values, which may be indicative of vegetative growth, across different geographic locations in a field of interest. One example of a vegetative index includes a normalized difference vegetation index (NDVI). There are many other vegetative indices, and all of these vegetative indices are within the scope of the present disclosure. In some examples, a vegetative index may be derived from sensor readings of one or more bands of electromagnetic radiation reflected by the plants. Without limitations, these bands may be in the microwave, infrared, visible, or ultraviolet portions of the electromagnetic spectrum.
A vegetative index map can thus be used to identify the presence and location of vegetation. In some examples, a vegetative index map enables crops to be identified and georeferenced in the presence of bare soil, crop residue, or other plants, including crop or weeds. For instance, towards the beginning of a growing season, when a crop is in a growing state, the vegetative index may show the progress of the crop development. Therefore, if a vegetative index map is generated early in the growing season or midway through the growing season, the vegetative index map may be indicative of the progress of the development of the crop plants. For instance, the vegetative index map may indicate whether the plant is stunted, establishing a sufficient canopy, or other plant attributes that are indicative of plant development.
Some current systems provide historical yield maps. A historical yield map illustratively maps yield values across different geographic locations in one or more field(s) of interest. These historical yield maps are collected from past harvesting operations on the field(s). A yield map may show yield in yield value units. One example of a yield value unit includes dry bushels per acre. In some examples, a historical yield map may be derived from sensor readings of one or more yield sensors. Without limitation, these yield sensors may include a radiation sensor, such as a gamma ray attenuation sensor; impact plate sensors; load cells; cameras; or other optical sensors and ultrasonic sensors, among others.
The present discussion thus proceeds with respect to examples in which a system receives one or more of a vegetative index map, a historical yield map of a field, or a map generated during a prior operation and also uses an in-situ sensor to detect a characteristic or variable indicative of yield during a harvesting operation. The system generates a model that models a relationship between the vegetative index values or historical yield values from one or more of the maps and the in-situ data from the in-situ sensor. The model is used to generate a functional predictive yield map that predicts an anticipated crop yield in the field. The functional predictive yield map, generated during the harvesting operation, can be presented to an operator or other user or used in automatically controlling an agricultural harvester during the harvesting operation or both.
As shown in
Thresher 110 illustratively includes a threshing rotor 112 and a set of concaves 114. Further, agricultural harvester 100 also includes a separator 116. Agricultural harvester 100 also includes a cleaning subsystem or cleaning shoe (collectively referred to as cleaning subsystem 118) that includes a cleaning fan 120, chaffer 122, and sieve 124. The material handling subsystem 125 also includes discharge beater 126, tailings elevator 128, clean grain elevator 130, as well as unloading auger 134 and spout 136. The clean grain elevator moves clean grain into clean grain tank 132. Agricultural harvester 100 also includes a residue subsystem 138 that can include chopper 140 and spreader 142. Agricultural harvester 100 also includes a propulsion subsystem that includes an engine that drives ground engaging components 144, such as wheels or tracks. In some examples, a combine harvester within the scope of the present disclosure may have more than one of any of the subsystems mentioned above. In some examples, agricultural harvester 100 may have left and right cleaning subsystems, separators, etc., which are not shown in
In operation, and by way of overview, agricultural harvester 100 illustratively moves through a field in the direction indicated by arrow 147. As agricultural harvester 100 moves, header 102 (and the associated reel 164) engages the crop to be harvested and gathers the crop toward cutter 104. An operator of agricultural harvester 100 can be a local human operator, a remote human operator, or an automated system. An operator command is a command by an operator. The operator of agricultural harvester 100 may determine one or more of a height setting, a tilt angle setting, or a roll angle setting for header 102. For example, the operator inputs a setting or settings to a control system, described in more detail below, that controls actuator 107. The control system may also receive a setting from the operator for establishing the tilt angle and roll angle of the header 102 and implement the inputted settings by controlling associated actuators, not shown, that operate to change the tilt angle and roll angle of the header 102. The actuator 107 maintains header 102 at a height above ground 111 based on a height setting and, where applicable, at desired tilt and roll angles. Each of the height, roll, and tilt settings may be implemented independently of the others. The control system responds to header error (e.g., the difference between the height setting and measured height of header 104 above ground 111 and, in some examples, tilt angle and roll angle errors) with a responsiveness that is determined based on a selected sensitivity level. If the sensitivity level is set at a greater level of sensitivity, the control system responds to smaller header position errors, and attempts to reduce the detected errors more quickly than when the sensitivity is at a lower level of sensitivity.
Returning to the description of the operation of agricultural harvester 100, after crops are cut by cutter 104, the severed crop material is moved through a conveyor in feeder house 106 toward feed accelerator 108, which accelerates the crop material into thresher 110. The crop material is threshed by rotor 112 rotating the crop against concaves 114. The threshed crop material is moved by a separator rotor in separator 116 where a portion of the residue is moved by discharge beater 126 toward the residue subsystem 138. The portion of residue transferred to the residue subsystem 138 is chopped by residue chopper 140 and spread on the field by spreader 142. In other configurations, the residue is released from the agricultural harvester 100 in a windrow. In other examples, the residue subsystem 138 can include weed seed eliminators (not shown) such as seed baggers or other seed collectors, or seed crushers or other seed destroyers.
Grain falls to cleaning subsystem 118. Chaffer 122 separates some larger pieces of material from the grain, and sieve 124 separates some of finer pieces of material from the clean grain. Clean grain falls to an auger that moves the grain to an inlet end of clean grain elevator 130, and the clean grain elevator 130 moves the clean grain upwards, depositing the clean grain in clean grain tank 132. Residue is removed from the cleaning subsystem 118 by airflow generated by cleaning fan 120. Cleaning fan 120 directs air along an airflow path upwardly through the sieves and chaffers. The airflow carries residue rearwardly in agricultural harvester 100 toward the residue handling subsystem 138.
Tailings elevator 128 returns tailings to thresher 110 where the tailings are re-threshed. Alternatively, the tailings also may be passed to a separate re-threshing mechanism by a tailings elevator or another transport device where the tailings are re-threshed as well.
Ground speed sensor 146 senses the travel speed of agricultural harvester 100 over the ground. Ground speed sensor 146 may sense the travel speed of the agricultural harvester 100 by sensing the speed of rotation of the ground engaging components (such as wheels or tracks), a drive shaft, an axel, or other components. In some instances, the travel speed may be sensed using a positioning system, such as a global positioning system (GPS), a dead reckoning system, a long range navigation (LORAN) system, or a wide variety of other systems or sensors that provide an indication of travel speed.
Loss sensors 152 illustratively provide an output signal indicative of the quantity of grain loss occurring in both the right and left sides of the cleaning subsystem 118. In some examples, sensors 152 are strike sensors which count grain strikes per unit of time or per unit of distance traveled to provide an indication of the grain loss occurring at the cleaning subsystem 118. The strike sensors for the right and left sides of the cleaning subsystem 118 may provide individual signals or a combined or aggregated signal. In some examples, sensors 152 may include a single sensor as opposed to separate sensors provided for each cleaning subsystem 118.
Separator loss sensor 148 provides a signal indicative of grain loss in the left and right separators, not separately shown in
Agricultural harvester 100 may also include other sensors and measurement mechanisms. For instance, agricultural harvester 100 may include one or more of the following sensors: a header height sensor that senses a height of header 102 above ground 111; stability sensors that sense oscillation or bouncing motion (and amplitude) of agricultural harvester 100; a residue setting sensor that is configured to sense whether agricultural harvester 100 is configured to chop the residue, produce a windrow, etc.; a cleaning shoe fan speed sensor to sense the speed of cleaning fan 120; a concave clearance sensor that senses clearance between the rotor 112 and concaves 114; a threshing rotor speed sensor that senses a rotor speed of rotor 112; a chaffer clearance sensor that senses the size of openings in chaffer 122; a sieve clearance sensor that senses the size of openings in sieve 124; a material other than grain (MOG) moisture sensor that senses a moisture level of the MOG passing through agricultural harvester 100; one or more machine setting sensors configured to sense various configurable settings of agricultural harvester 100; a machine orientation sensor that senses the orientation of agricultural harvester 100; and crop property sensors that sense a variety of different types of crop properties, such as crop type, crop moisture, and other crop properties. Crop property sensors may also be configured to sense characteristics of the severed crop material as the crop material is being processed by agricultural harvester 100. For example, in some instances, the crop property sensors may sense grain quality such as broken grain, MOG levels; grain constituents such as starches and protein; and grain feed rate as the grain travels through the feeder house 106, clean grain elevator 130, or elsewhere in the agricultural harvester 100. The crop property sensors may also sense the feed rate of biomass through feeder house 106, through the separator 116 or elsewhere in agricultural harvester 100. The crop property sensors may also sense the feed rate as a mass flow rate of grain through elevator 130 or through other portions of the agricultural harvester 100 or provide other output signals indicative of other sensed variables. Crop property sensors can include one or more yield sensors that sense crop yield being harvested by agricultural harvester.
Yield sensor(s) can include a grain flow sensor that detects a flow of crop, such as grain, in material handling subsystem 125 or other portions of agricultural harvester 100. For example, a yield sensor can include a gamma ray attenuation sensor that measures flow rate of harvested grain or another type of radiation sensor utilizing a characteristic of radiation to determine the yield. In another example, a yield sensor includes an impact plate sensor that detects impact of grain against a sensing plate or surface so as to measure mass flow rate of harvested grain. In another example, a yield sensor includes one or more load cells which measure or detect a load or mass of harvested grain. For example, one or more load cells may be located at a bottom of grain tank 132, wherein changes in the weight or mass of grain within grain tank 132 during a measurement interval indicates the aggregate yield during the measurement interval. The measurement interval may be increased for averaging or decreased for more instantaneous measurements. In another example, a yield sensor includes cameras or optical sensing devices that detect the size or shape of an aggregated mass of harvested grain, such as the shape of the mound or height of a mound of grain in grain tank 132. The change in shape or height of the mound during the measurement interval indicates an aggregate yield during the measurement interval. In other examples, other yield sensing technologies are employed. For instance, in one example, a yield sensor includes two or more of the above described sensors, and the yield for a measurement interval is determined from signals output by each of the multiple different types of sensors. For example, yield is determined based upon signals from a gamma ray attenuation sensor, an impact plate sensor, load cells within grain tank 132, and optical sensors along grain tank 132.
Prior to describing how agricultural harvester 100 generates a functional predictive yield map and uses the functional predictive yield map for presentation or control, a brief description of some of the items on agricultural harvester 100, and their operation, will first be described. The description of
After the general approach is described with respect to
Prior information map 258 may be downloaded onto agricultural harvester 100 and stored in data store 202, using communication system 206 or in other ways. In some examples, communication system 206 may be a cellular communication system, a system for communicating over a wide area network or a local area network, a system for communicating over a near field communication network, or a communication system configured to communicate over any of a variety of other networks or combinations of networks. Communication system 206 may also include a system that facilitates downloads or transfers of information to and from a secure digital (SD) card or a universal serial bus (USB) card, or both.
Geographic position sensor 204 illustratively senses or detects the geographic position or location of agricultural harvester 100. Geographic position sensor 204 can include, but is not limited to, a global navigation satellite system (GNSS) receiver that receives signals from a GNSS satellite transmitter. Geographic position sensor 204 can also include a real-time kinematic (RTK) component that is configured to enhance the precision of position data derived from the GNSS signal. Geographic position sensor 204 can include a dead reckoning system, a cellular triangulation system, or any of a variety of other geographic position sensors.
In-situ sensors 208 may be any of the sensors described above with respect to
After being retrieved by agricultural harvester 100, prior information map selector 209 can filter or select one or more specific prior information map(s) 258 for usage by predictive model generator 210. In one example, prior information map selector 209 selects a map based on a comparison of the contextual information in the prior information map versus the present contextual information. For example, a historical yield map may be selected from one of the past years where weather conditions over the growing season were similar to the present year's weather conditions. Or, for example, a historical yield map may be selected from one of the past years when the context information is not similar. For example, a historical yield map may be selected for a prior year that was “dry” (i.e., had drought conditions or reduced precipitation), while the present year is “wet” (i.e., had increased precipitation or flood conditions). There still may be a useful historical relationship, but the relationship may be inverse. For instance, areas that are flooded in a wet year may be areas of higher yield in a dry year because these areas may retain more water in dry years. Present contextual information may include contextual information beyond immediate contextual information. For instance, present contextual information can include, but not by limitation, a set of information corresponding to the present growing season, a set of data corresponding to a winter before the current growing season, or a set of data corresponding to several past years, amongst others.
The contextual information can also be used for correlations between areas with similar contextual characteristics, regardless of whether the geographic position corresponds to the same position on prior information map 258. For instance, historical yield values from area with similar soil types in other fields can be used as prior information map 258 to create the predictive yield map. For example, the contextual characteristic information associated with a different location may be applied to the location on the prior information map 258 having similar characteristic information. Predictive model generator 210 generates a model that is indicative of a relationship between the values sensed by the in-situ sensor 208 and a characteristic mapped to the field by the prior information map 258. For example, if the prior information map 258 maps a vegetative index value to different locations in the field, and the in-situ sensor 208 is sensing a value indicative of yield, then prior information variable-to-in-situ variable model generator 228 generates a predictive yield model that models the relationship between the vegetative index values and the yield values. Then, predictive map generator 212 uses the predictive yield model generated by predictive model generator 210 to generate a functional predictive yield map that predicts the value of yield, at different locations in the field, based upon the prior information map 258. Or, for example, if the prior information map 258 maps a historical yield value to different locations in the field and the in-situ sensor 208 is sensing a value indicative of yield, then prior information variable-to-in-situ variable model generator 228 generates a predictive yield model that models the relationship between the historical yield values (with or without contextual information) and the in-situ yield values. Then, predictive map generator 212 uses the predictive yield model generated by predictive model generator 210 to generate a functional predictive yield map that predicts the value of yield that is expected be sensed by the in-situ sensors 208, at different locations in the field, based upon the prior information map 258.
In some examples, the type of data in the functional predictive map 263 may be the same as the in-situ data type sensed by the in-situ sensors 208. In some instances, the type of data in the functional predictive map 263 may have different units from the data sensed by the in-situ sensors 208. In some examples, the type of data in the functional predictive map 263 may be different from the data type sensed by the in-situ sensors 208 but has a relationship to data type sensed by the in-situ sensors 208. For example, in some examples, the in-situ data type may be indicative of the type of data in the functional predictive map 263. In some examples, the type of data in the functional predictive map 263 may be different than the data type in the prior information map 258. In some instances, the type of data in the functional predictive map 263 may have different units from the data in the prior information map 258. In some examples, the type of data in the functional predictive map 263 may be different from the data type in the prior information map 258 but has a relationship to the data type in the prior information map 258. For example, in some examples, the data type in the prior information map 258 may be indicative of the type of data in the functional predictive map 263. In some examples, the type of data in the functional predictive map 263 is different than one of, or both of the in-situ data type sensed by the in-situ sensors 208 and the data type in the prior information map 258. In some examples, the type of data in the functional predictive map 263 is the same as one of, or both of, of the in-situ data type sensed by the in-situ sensors 208 and the data type in prior information map 258. In some examples, the type of data in the functional predictive map 263 is the same as one of the in-situ data type sensed by the in-situ sensors 208 or the data type in the prior information map 258, and different than the other.
Continuing with the preceding vegetative index example, predictive map generator 212 can use the vegetative index values in prior information map 258 and the model generated by predictive model generator 210 to generate a functional predictive map 263 that predicts the yield at different locations in the field. Predictive map generator 212 thus outputs predictive map 264.
As shown in
Some variations in the data types that are mapped in the prior information map 258, the data types sensed by in-situ sensors 208 and the data types predicted on the predictive map 264 will now be described.
In some examples, the data type in the prior information map 258 is different from the data type sensed by in-situ sensors 208, yet the data type in the predictive map 264 is the same as the data type sensed by the in-situ sensors 208. For instance, the prior information map 258 may be a vegetative index map, and the variable sensed by the in-situ sensors 208 may be yield. The predictive map 264 may then be a predictive yield map that maps predicted yield values to different geographic locations in the field. In another example, the prior information map 258 may be a vegetative index map, and the variable sensed by the in-situ sensors 208 may be crop height. The predictive map 264 may then be a predictive crop height map that maps predicted crop height values to different geographic locations in the field.
Also, in some examples, the data type in the prior information map 258 is different from the data type sensed by in-situ sensors 208, and the data type in the predictive map 264 is different from both the data type in the prior information map 258 and the data type sensed by the in-situ sensors 208. For instance, the prior information map 258 may be a vegetative index map, and the variable sensed by the in-situ sensors 208 may be crop height. The predictive map 264 may then be a predictive biomass map that maps predicted biomass values to different geographic locations in the field. In another example, the prior information map 258 may be a vegetative index map, and the variable sensed by the in-situ sensors 208 may be yield. The predictive map 264 may then be a predictive speed map that maps predicted harvester speed values to different geographic locations in the field.
In some examples, the prior information map 258 is from a prior pass through the field during a prior operation and the data type is different from the data type sensed by in-situ sensors 208, yet the data type in the predictive map 264 is the same as the data type sensed by the in-situ sensors 208. For instance, the prior information map 258 may be a seed population map generated during planting, and the variable sensed by the in-situ sensors 208 may be stalk size. The predictive map 264 may then be a predictive stalk size map that maps predicted stalk size values to different geographic locations in the field. In another example, the prior information map 258 may be a seeding hybrid map, and the variable sensed by the in-situ sensors 208 may be crop state such as standing crop or down crop. The predictive map 264 may then be a predictive crop state map that maps predicted crop state values to different geographic locations in the field.
In some examples, the prior information map 258 is from a prior pass through the field during a prior operation and the data type is the same as the data type sensed by in-situ sensors 208, and the data type in the predictive map 264 is also the same as the data type sensed by the in-situ sensors 208. For instance, the prior information map 258 may be a yield map generated during a previous year, and the variable sensed by the in-situ sensors 208 may be yield. The predictive map 264 may then be a predictive yield map that maps predicted yield values to different geographic locations in the field. In such an example, the relative yield differences in the georeferenced prior information map 258 from the prior year can be used by predictive model generator 210 to generate a predictive model that models a relationship between the relative yield differences on the prior information map 258 and the yield values sensed by in-situ sensors 208 during the current harvesting operation. The predictive model is then used by predictive map generator 212 to generate a predictive yield map.
In another example, the prior information map 258 may be a weed intensity map generated during a prior operation, such as from a sprayer, and the variable sensed by the in-situ sensors 208 may be weed intensity. The predictive map 264 may then be a predictive weed intensity map that maps predicted weed intensity values to different geographic locations in the field. In such an example, a map of the weed intensities at time of spraying is geo-referenced recorded and provided to agricultural harvester 100 as a prior information map 258 of weed intensity. In-situ sensors 208 can detect weed intensity at geographic locations in the field and predictive model generator 210 may then build a predictive model that models a relationship between weed intensity at time of harvest and weed intensity at time of spraying. This is because the sprayer will have impacted the weed intensity at time of spraying, but weeds may still crop up in similar areas again by harvest. However, the weed areas at harvest are likely to have different intensity based on timing of the harvest, weather, weed type, among other things.
In some examples, predictive map 264 can be provided to the control zone generator 213. Control zone generator 213 groups adjacent portions of an area into one or more control zones based on data values of predictive map 264 that are associated with those adjacent portions. A control zone may include two or more contiguous portions of an area, such as a field, for which a control parameter corresponding to the control zone for controlling a controllable subsystem is constant. For example, a response time to alter a setting of controllable subsystems 216 may be inadequate to satisfactorily respond to changes in values contained in a map, such as predictive map 264. In that case, control zone generator 213 parses the map and identifies control zones that are of a defined size to accommodate the response time of the controllable subsystems 216. In another example, control zones may be sized to reduce wear from excessive actuator movement resulting from continuous adjustment. In some examples, there may be a different set of control zones for each controllable subsystem 216 or for groups of controllable subsystems 216. The control zones may be added to the predictive map 264 to obtain predictive control zone map 265. Predictive control zone map 265 can thus be similar to predictive map 264 except that predictive control zone map 265 includes control zone information defining the control zones. Thus, a functional predictive map 263, as described herein, may or may not include control zones. Both predictive map 264 and predictive control zone map 265 are functional predictive maps 263. In one example, a functional predictive map 263 does not include control zones, such as predictive map 264. In another example, a functional predictive map 263 does include control zones, such as predictive control zone map 265. In some examples, multiple crops may be simultaneously present in a field if an intercrop production system is implemented. In that case, predictive map generator 212 and control zone generator 213 are able to identify the location and characteristics of the two or more crops and then generate predictive map 264 and predictive control zone map 265 with control zones accordingly.
It will also be appreciated that control zone generator 213 can cluster values to generate control zones and the control zones can be added to predictive control zone map 265, or a separate map, showing only the control zones that are generated. In some examples, the control zones may be used for controlling or calibrating agricultural harvester 100 or both. In other examples, the control zones may be presented to the operator 260 and used to control or calibrate agricultural harvester 100, and, in other examples, the control zones may be presented to the operator 260 or another user or stored for later use.
Predictive map 264 or predictive control zone map 265 or both are provided to control system 214, which generates control signals based upon the predictive map 264 or predictive control zone map 265 or both. In some examples, communication system controller 229 controls communication system 206 to communicate the predictive map 264 or predictive control zone map 265 or control signals based on the predictive map 264 or predictive control zone map 265 to other agricultural harvesters that are harvesting in the same field. In some examples, communication system controller 229 controls the communication system 206 to send the predictive map 264, predictive control zone map 265, or both to other remote systems.
Operator interface controller 231 is operable to generate control signals to control operator interface mechanisms 218. The operator interface controller 231 is also operable to present the predictive map 264 or predictive control zone map 265 or other information derived from or based on the predictive map 264, predictive control zone map 265, or both to operator 260. Operator 260 may be a local operator or a remote operator. As an example, controller 231 generates control signals to control a display mechanism to display one or both of predictive map 264 and predictive control zone map 265 for the operator 260. Controller 231 may generate operator actuatable mechanisms that are displayed and can be actuated by the operator to interact with the displayed map. The operator can edit the map by, for example, correcting a yield value displayed on the map based on the operator's observation. Settings controller 232 can generate control signals to control various settings on the agricultural harvester 100 based upon predictive map 264, the predictive control zone map 265, or both. For instance, settings controller 232 can generate control signals to control machine and header actuators 248. In response to the generated control signals, the machine and header actuators 248 operate to control, for example, one or more of the sieve and chaffer settings, thresher clearance, rotor settings, cleaning fan speed settings, header height, header functionality, reel speed, reel position, draper functionality (where agricultural harvester 100 is coupled to a draper header), corn header functionality, internal distribution control, and other actuators 248 that affect the other functions of the agricultural harvester 100. Path planning controller 234 illustratively generates control signals to control steering subsystem 252 to steer agricultural harvester 100 according to a desired path. Path planning controller 234 can control a path planning system to generate a route for agricultural harvester 100 and can control propulsion subsystem 250 and steering subsystem 252 to steer agricultural harvester 100 along that route. Feed rate controller 236 can control various subsystems, such as propulsion subsystem 250 and machine actuators 248, to control a feed rate based upon the predictive map 264 or predictive control zone map 265 or both. For instance, as agricultural harvester 100 approaches an area yielding above a selected threshold, feed rate controller 236 may reduce the speed of agricultural harvester 100 to maintain constant feed rate of grain or biomass through the machine. Header and reel controller 238 can generate control signals to control a header or a reel or other header functionality. Draper belt controller 240 can generate control signals to control a draper belt or other draper functionality based upon the predictive map 264, predictive control zone map 265, or both. Deck plate position controller 242 can generate control signals to control a position of a deck plate included on a header based on predictive map 264 or predictive control zone map 265 or both, and residue system controller 244 can generate control signals to control a residue subsystem 138 based upon predictive map 264 or predictive control zone map 265, or both. Machine cleaning controller 245 can generate control signals to control machine cleaning subsystem 254. For instance, based upon the different types of seeds or weeds passed through agricultural harvester 100, a particular type of machine cleaning operation or a frequency with which a cleaning operation is performed may be controlled. Other controllers included on the agricultural harvester 100 can control other subsystems based on the predictive map 264 or predictive control zone map 265 or both as well.
At 280, agricultural harvester 100 receives prior information map 258. Examples of prior information map 258 or receiving prior information map 258 are discussed with respect to blocks 281, 282, 284 and 286. As discussed above, prior information map 258 maps values of a variable, corresponding to a first characteristic, to different locations in the field, as indicated at block 282. For instance, one prior information map may be a seeding map generated during a prior operation or based on data from a prior operation on the field, such as prior seed planting operation performed by a seeder. The data for the prior information map 258 may be collected in other ways as well. For instance, the data may be collected based on aerial images or measured values taken during a previous year, or earlier in the current growing season, or at other times. The information may be based on data detected or gathered in other ways (other than using aerial images) as well. For instance, the data for the prior information map 258 can be transmitted to agricultural harvester 100 using communication system 206 and stored in data store 202. The data for the prior information map 258 can be provided to agricultural harvester 100 using communication system 206 in other ways as well, and this is indicated by block 286 in the flow diagram of
At block 287, prior information map selector 209 can select one or more maps from the plurality of candidate prior information maps received in block 280. For example, multiple years of historical yield maps may be received as candidate prior information maps. Each of these maps can contain contextual information such as weather patterns over a period of time, such as a year, pest surges over a period of time, such as a year, soil types, etc. Contextual information can be used to select which historical yield map should be selected. For instance, the weather conditions over a period of time, such in a current year, or the soil types for the current field can be compared to the weather conditions and soil type in the contextual information for each candidate prior information map. The results of such a comparison can be used to select which historical yield map should be selected. For example, years with similar weather conditions may generally produce similar yields or yield trends across a field. In some cases, years with opposite weather conditions may also be useful for predicting yield based on historical yield. For instance, an area with a high yield in a dry year, might have a low yield in a wet year as the area gets flooded. The process by which one or more prior information maps are selected by prior information map selector 209 can be manual, semi-automated or automated. In some examples, during a harvesting operation, prior information map selector 209 can continually or intermittently determine whether a different prior information map has a better relationship with the in-situ sensor value. If a different prior information map is correlating with the in-situ data more closely, then prior information map selector 209 can replace the currently selected prior information map with the more correlative prior information map.
Upon commencement of a harvesting operation, in-situ sensors 208 generate sensor signals indicative of one or more in-situ data values indicative of a plant characteristic, such as a yield, as indicated by block 288. Examples of in-situ sensors 288 are discussed with respect to blocks 222, 290, and 226. As explained above, the in-situ sensors 208 include on-board sensors 222; remote in-situ sensors 224, such as UAV-based sensors flown at a time to gather in-situ data, shown in block 290; or other types of in-situ sensors, designated by in-situ sensors 226. In some examples, data from on-board sensors is georeferenced using position heading or speed data from geographic position sensor 204.
Predictive model generator 210 controls the prior information variable-to-in-situ variable model generator 228 to generate a model that models a relationship between the mapped values contained in the prior information map 258 and the in-situ values sensed by the in-situ sensors 208 as indicated by block 292. The characteristics or data types represented by the mapped values in the prior information map 258 and the in-situ values sensed by the in-situ sensors 208 may be the same characteristics or data type or different characteristics or data types.
The relationship or model generated by predictive model generator 210 is provided to predictive map generator 212. Predictive map generator 212 generates a predictive map 264 that predicts a value of the characteristic sensed by the in-situ sensors 208 at different geographic locations in a field being harvested, or a different characteristic that is related to the characteristic sensed by the in-situ sensors 208, using the predictive model and the prior information map 258, as indicated by block 294.
It should be noted that, in some examples, the prior information map 258 may include two or more different maps or two or more different map layers of a single map. Each map layer may represent a different data type from the data type of another map layer or the map layers may have the same data type that were obtained at different times. Each map in the two or more different maps or each layer in the two or more different map layers of a map maps a different type of variable to the geographic locations in the field. In such an example, predictive model generator 210 generates a predictive model that models the relationship between the in-situ data and each of the different variables mapped by the two or more different maps or the two or more different map layers. Similarly, the in-situ sensors 208 can include two or more sensors each sensing a different type of variable. Thus, the predictive model generator 210 generates a predictive model that models the relationships between each type of variable mapped by the prior information map 258 and each type of variable sensed by the in-situ sensors 208. Predictive map generator 212 can generate a functional predictive map 263 that predicts a value for each sensed characteristic sensed by the in-situ sensors 208 (or a characteristic related to the sensed characteristic) at different locations in the field being harvested using the predictive model and each of the maps or map layers in the prior information map 258.
Predictive map generator 212 configures the predictive map 264 so that the predictive map 264 is actionable (or consumable) by control system 214. Predictive map generator 212 can provide the predictive map 264 to the control system 214 or to control zone generator 213 or both. Some examples of different ways in which the predictive map 264 can be configured or output are described with respect to blocks 296, 295, 299 and 297. For instance, predictive map generator 212 configures predictive map 264 so that predictive map 264 includes values that can be read by control system 214 and used as the basis for generating control signals for one or more of the different controllable subsystems of the agricultural harvester 100, as indicated by block 296.
Control zone generator 213 can divide the predictive map 264 into control zones based on the values on the predictive map 264. Contiguously-geolocated values that are within a threshold value of one another can be grouped into a control zone. The threshold value can be a default threshold value, or the threshold value can be set based on an operator input, based on an input from an automated system or based on other criteria. A size of the zones may be based on a responsiveness of the control system 214, the controllable subsystems 216, or based on wear considerations, or on other criteria as indicated by block 295. Predictive map generator 212 configures predictive map 264 for presentation to an operator or other user. Control zone generator 213 can configure predictive control zone map 265 for presentation to an operator or other user. This is indicated by block 299. When presented to an operator or other user, the presentation of the predictive map 264 or predictive control zone map 265 or both may contain one or more of the predictive values on the predictive map 264 correlated to geographic location, the control zones on predictive control zone map 265 correlated to geographic location, and settings values or control parameters that are used based on the predicted values on predictive map 264 or zones on predictive control zone map 265. The presentation can, in another example, include more abstracted information or more detailed information. The presentation can also include a confidence level that indicates an accuracy with which the predictive values on predictive map 264 or the zones on predictive control zone map 265 conform to measured values that may be measured by sensors on agricultural harvester 100 as agricultural harvester 100 moves through the field. Further where information is presented to more than one location, an authentication/authorization system can be provided to implement authentication and authorization processes. For instance, there may be a hierarchy of individuals that are authorized to view and change maps and other presented information. By way of example, an on-board display device may show the maps in near real time locally on the machine, only, or the maps may also be generated at one or more remote locations. In some examples, each physical display device at each location may be associated with a person or a user permission level. The user permission level may be used to determine which display markers are visible on the physical display device, and which values the corresponding person may change. As an example, a local operator of agricultural harvester 100 may be unable to see the information corresponding to the predictive map 264 or make any changes to machine operation. A supervisor, at a remote location, however, may be able to see the predictive map 264 on the display, but not make changes. A manager, who may be at a separate remote location, may be able to see all of the elements on predictive map 264 and also change the predictive map 264 that is used in machine control. This is one example of an authorization hierarchy that may be implemented. The predictive map 264 or predictive control zone map 265 or both can be configured in other ways as well, as indicated by block 297.
At block 298, input from geographic position sensor 204 and other in-situ sensors 208 are received by the control system. Block 300 represents receipt by control system 214 of an input from the geographic position sensor 204 identifying a geographic location of agricultural harvester 100. Block 302 represents receipt by the control system 214 of sensor inputs indicative of trajectory or heading of agricultural harvester 100, and block 304 represents receipt by the control system 214 of a speed of agricultural harvester 100. Block 306 represents receipt by the control system 214 of other information from various in-situ sensors 208.
At block 308, control system 214 generates control signals to control the controllable subsystems 216 based on the predictive map 264 or predictive control zone map 265 or both and the input from the geographic position sensor 204 and any other in-situ sensors 208. At block 310, control system 214 applies the control signals to the controllable subsystems. It will be appreciated that the particular control signals that are generated, and the particular controllable subsystems 216 that are controlled, may vary based upon one or more different things. For example, the control signals that are generated and the controllable subsystems 216 that are controlled may be based on the type of predictive map 264 or predictive control zone map 265 or both that is being used. Similarly, the control signals that are generated and the controllable subsystems 216 that are controlled and the timing of the control signals can be based on various latencies of crop flow through the agricultural harvester 100 and the responsiveness of the controllable subsystems 216.
By way of example, a generated predictive map 264 in the form of a predictive yield map can be used to control one or more controllable subsystems 216. For example, the functional predictive yield map can include yield values georeferenced to locations within the field being harvested. The functional predictive yield map can be extracted and used to control the steering and propulsion subsystems 252 and 250. By controlling the steering and propulsion subsystems 252 and 250, a feed rate of material or grain moving through the agricultural harvester 100 can be controlled. Similarly, the header height can be controlled to take in more or less material and thus the header height can also be controlled to control feed rate of material through the agricultural harvester 100. In other examples, if the predictive map 264 maps a yield forward of the machine being higher on one portion of the header than another portion of the header, resulting in a different biomass entering one side of the header than the other side, control of the header may be implemented. For example, a draper speed on one side of the header may be increased or decreased relative to the draper speed other side of the header to account for the additional biomass. Thus, the header and reel controller 238 can be controlled using georeferenced values present in the predictive yield map to control draper speeds of the draper belts on the header. The preceding example involving feed rate and header control using a functional predictive yield map is provided merely as an example. Consequently, a wide variety of other control signals can be generated using values obtained from a predictive yield map or other type of functional predictive map to control one or more of the controllable subsystems 216.
At block 312, a determination is made as to whether the harvesting operation has been completed. If harvesting is not completed the processing advances to block 314 where in-situ sensor data from geographic position sensor 204 and in-situ sensors 208 (and perhaps other sensors) continue to be read.
In some examples, at block 316, agricultural harvester 100 can also detect learning trigger criteria to perform machine learning on one or more of the predictive map 264, predictive control zone map 265, the model generated by predictive model generator 210, the zones generated by control zone generator 213, one or more control algorithms implemented by the controllers in the control system 214, and other triggered learning.
The learning trigger criteria can include any of a wide variety of different criteria. Some examples of detecting trigger criteria are discussed with respect to blocks 318, 320, 321, 322 and 324. For instance, in some examples, triggered learning can involve recreation of a relationship used to generate a predictive model when a threshold amount of in-situ sensor data are obtained from in-situ sensors 208. In such examples, receipt of an amount of in-situ sensor data from the in-situ sensors 208 that exceeds a threshold triggers or causes the predictive model generator 210 to generate a new predictive model that is used by predictive map generator 212. Thus, as agricultural harvester 100 continues a harvesting operation, receipt of the threshold amount of in-situ sensor data from the in-situ sensors 208 triggers the creation of a new relationship represented by a predictive model generated by predictive model generator 210. Further, new predictive map 264, predictive control zone map 265, or both can be regenerated using the new predictive model. Block 318 represents detecting a threshold amount of in-situ sensor data used to trigger creation of a new predictive model.
In other examples, the learning trigger criteria may be based on how much the in-situ sensor data from the in-situ sensors 208 are changing, such as over time or compared to previous values. For example, if variations within the in-situ sensor data (or the relationship between the in-situ sensor data and the information in prior information map 258) are within a selected range or is less than a defined amount or is below a threshold value, then a new predictive model is not generated by the predictive model generator 210. As a result, the predictive map generator 212 does not generate a new predictive map 264, predictive control zone map 265, or both. However, if variations within the in-situ sensor data are outside of the selected range, are greater than the defined amount, or are above the threshold value, for example, then the predictive model generator 210 generates a new predictive model using all or a portion of the newly received in-situ sensor data that the predictive map generator 212 uses to generate a new predictive map 264. At block 320, variations in the in-situ sensor data, such as a magnitude of an amount by which the data exceeds the selected range or a magnitude of the variation of the relationship between the in-situ sensor data and the information in the prior information map 258, can be used as a trigger to cause generation of a new predictive model and predictive map. Keeping with the examples described above, the threshold, the range, and the defined amount can be set to default values; set by an operator or user interaction through a user interface; set by an automated system; or set in other ways.
Other learning trigger criteria can also be used. For instance, if predictive model generator 210 switches to a different prior information map (different from the originally selected prior information map 258), then switching to the different prior information map may trigger relearning by predictive model generator 210, predictive map generator 212, control zone generator 213, control system 214, or other items. In another example, transitioning of agricultural harvester 100 to a different topography or to a different control zone may be used as learning trigger criteria as well.
In some instances, operator 260 can also edit the predictive map 264 or predictive control zone map 265 or both. The edits can change a value on the predictive map 264; change a size, shape, position, or existence of a control zone on predictive control zone map 265; or both. Block 321 shows that edited information can be used as learning trigger criteria.
In some instances, it may also be that operator 260 observes that automated control of a controllable subsystem, is not what the operator desires. In such instances, the operator 260 may provide a manual adjustment to the controllable subsystem reflecting that the operator 260 desires the controllable subsystem to operate in a different way than is being commanded by control system 214. Thus, manual alteration of a setting by the operator 260 can cause one or more of predictive model generator 210 to relearn a model, predictive map generator 212 to regenerate map 264, control zone generator 213 to regenerate one or more control zones on predictive control zone map 265, and control system 214 to relearn a control algorithm or to perform machine learning on one or more of the controller components 232 through 246 in control system 214 based upon the adjustment by the operator 260, as shown in block 322. Block 324 represents the use of other triggered learning criteria.
In other examples, relearning may be performed periodically or intermittently based, for example, upon a selected time interval such as a discrete time interval or a variable time interval, as indicated by block 326.
If relearning is triggered, whether based upon learning trigger criteria or based upon passage of a time interval, as indicated by block 326, then one or more of the predictive model generator 210, predictive map generator 212, control zone generator 213, and control system 214 performs machine learning to generate a new predictive model, a new predictive map, a new control zone, and a new control algorithm, respectively, based upon the learning trigger criteria. The new predictive model, the new predictive map, and the new control algorithm are generated using any additional data that has been collected since the last learning operation was performed. Performing relearning is indicated by block 328.
If the harvesting operation has been completed, operation moves from block 312 to block 330 where one or more of the predictive map 264, predictive control zone map 265, and predictive model generated by predictive model generator 210 are stored. The predictive map 264, predictive control zone map 265, and predictive model may be stored locally on data store 202 or sent to a remote system using communication system 206 for later use.
It will be noted that, while some examples herein describe predictive model generator 210 and predictive map generator 212 receiving a prior information map in generating a predictive model and a functional predictive map, respectively, in other examples, the predictive model generator 210 and predictive map generator 212 can receive, in generating a predictive model and a functional predictive map, respectively other types of maps, including predictive maps, such as a functional predictive map generated during the harvesting operation.
Besides receiving one or more of a vegetative index map 332 or a historical yield map 333 as a prior information map, predictive model generator 210 also receives a geographic location indicator 334, or an indication of a geographic location, from geographic position sensor 204. In-situ sensors 208 illustratively include an on-board yield sensor 336 as well as a processing system 338. The processing system 338 processes sensor data generated from the on-board yield sensors 336.
In some examples, on-board yield sensor 336 may be an optical sensor on agricultural harvester 100. In some instances, the optical sensor may be a camera or other device that performs optical sensing. The optical sensor may be arranged in grain tank 132 to collect images of the storage area of grain tank 132 as agricultural harvester 100 moves through the field during a harvesting operation. Processing system 338 processes one or more images obtained via the on-board yield sensor 336 to generate processed image data identifying one or more characteristics of grain in the image. Grain characteristics detected by the processing system 338 may include one or more of volume, shape, and orientation of harvested grain in tank 132 over time, which is indicative of the harvested grain yield. Processing system 338 can also geolocate the values received from the in-situ sensor 208. For example, the location of the agricultural harvester at the time a signal from in-situ sensor 208 is received is typically not the accurate location of the yield. This is because an amount of time elapses between when the agricultural harvester makes initial contact with the plant and when the grain from the plant is processed by the agricultural harvester or when the processed grain is delivered to a storage location on the agricultural harvester. Thus, a transient time between when a plant is initially encountered and when grain from the plant is sensed within the agricultural harvester is taken into account when georeferencing the sensed data. By doing so, an accurate yield measurement can be sensed. Due to travel of severed crop along a header in a direction that is transverse to a direction of travel of the agricultural harvester, the yield values normally geolocate to a chevron shape area rearward of the agricultural harvester as the agricultural harvester travels in a forward direction.
Processing system 338 allocates or apportions an aggregate yield detected by a yield sensor during each time or measurement interval back to earlier geo-referenced regions based upon the travel times of the crop from different portions of the agricultural harvester, such as different lateral locations along a width of a header of the agricultural harvester and the ground speed of the harvester. For example, processing system 338 allocates a measured aggregate yield from a measurement interval or time back to geo-referenced regions that were traversed by a header of the agricultural harvester during different measurement intervals or times. The processing system 338 apportions or allocates the aggregate yield from a particular measurement interval or time to previously traversed geo-referenced regions which are part of the chevron shape area.
In other examples, on-board yield sensor 336 can rely on different types of radiation and the way in which radiation is reflected by, absorbed by, attenuated by, or transmitted through the biomass or the harvested grain. The yield sensor 336 may sense other electromagnetic properties of grain and biomass such as electrical permittivity when the material passes between two capacitive plates. The yield sensor 336 may also rely on mass or mechanical properties of grains and biomass such as a signal generated when a grain impacts a piezoelectric sheet or when the impact is detected by a force sensor connected to a plate, a microphone, or an accelerometer. Other material properties and sensors may also be used. In some examples, raw or processed data from on-board yield sensor 336 may be presented to operator 260 via operator interface mechanism 218. Operator 260 may be onboard of the work agricultural harvester 100 or at a remote location.
The present discussion proceeds with respect to an example in which on-board yield sensor 336 is an impact plate sensor. It will be appreciated that this is merely one example, and the sensors mentioned above, as other examples of on-board yield sensor 336, are contemplated herein as well. As shown in
Model generator 342 identifies a relationship between in-situ yield data 340 at a geographic location corresponding to where in-situ yield data 340 was geolocated and vegetative index values from the vegetative index map 332 corresponding to the same location in the field where yield data 340 was geolocated. Based on this relationship established by model generator 342, model generator 342 generates a predictive yield model. The yield model is used by predictive map generator 212 to predict a yield at different locations in the field based upon the georeferenced vegetative index value contained in the vegetative index map 332 at the same locations in the field.
Model generator 344 identifies a relationship between the yield represented in the yield data 340, at a geographic location corresponding to where the yield data 340 was geolocated, and the historical yield at the same location (or a location in a historical yield map 333 with similar contextual data 337 as the present area or year). The historical yield value 335 is the georeferenced and contextually-referenced value contained in the historical yield map 333. Model generator 344 then generates a predictive yield model that is used by map generator 212 to predict the yield at a location in the field based upon the historical yield value.
In light of the above, the predictive model generator 210 is operable to produce a plurality of predictive yield models, such as one or more of the predictive yield models generated by model generators 342 and 344. In another example, two or more of the predictive yield models described above may be combined into a single predictive yield model that predicts a yield based upon the vegetative index value or the historical yield at different locations in the field or both. Any of these yield models, or combinations thereof, are represented collectively by yield model 350 in
The predictive yield model 350 is provided to predictive map generator 212. In the example of
Yield map generator 352 can generate a functional predictive yield map 360 that predicts yield at different locations in the field based upon the vegetative index value or historical yield value at those locations in the field and the predictive yield model 350. The generated functional predictive yield map 360 (with or without control zones) may be provided to control zone generator 213, control system 214, or both. Control zone generator 213 generates control zones and incorporates those control zones into the functional predictive map, i.e., predictive map 360, to produce predictive control zone map 265 predictive control zone map 265. One or both of functional predictive maps 264 or predictive control zone map 265 may be presented to the operator 260 or anther user or be provided to control system 214, which generates control signals to control one or more of the controllable subsystems 216 based upon the predictive map 264, predictive control zone map 265, or both.
At block 363, prior information map selector 209 selects one or more specific prior information map(s) 250 for use by predictive model generator 210. In one example, prior information map selector 209 selects a map from a plurality of candidate maps based on a comparison of the contextual information in the candidate maps with the current contextual information. For example, a candidate historical yield map may be selected from a prior year in which weather conditions over the growth season were similar to the present year's weather conditions. Or, for example, a candidate historical yield map may be selected from a prior year having a below average level of precipitation, while the present year has an average or above average level of precipitation, because the historical yield map associated with a previous year with below average precipitation may still have a useful historical yield-yield relationship, as discussed above. In some examples, prior information map selector 209 can change which prior information map is being used upon detection that one of the other candidate prior information maps is more closely correlating to the in-situ sensed yield.
At block 372, processing system 338 processes the one or more received sensor signals received from the on-board yield sensors 336 to generate a yield value indicative of a yield characteristic of the harvested grain.
At block 382, predictive model generator 210 also obtains the geographic location corresponding to the sensor signal. For instance, the predictive model generator 210 can obtain the geographic position from geographic position sensor 204 and determine, based upon machine delays (e.g., machine processing speed) and machine speed, an accurate geographic location where the in-situ sensed crop yield is to be attributed. For example, the exact time a yield sensor signal is captured typically does not correspond to a time when the crop was severed from the ground. Thus, a position of the agricultural harvester 100 when the yield sensor signal is obtained does not correspond to the location where the crop was planted. Instead, the current in-situ yield sensor signal corresponds to a location on the field reward of agricultural harvester 100 since an amount of time transpires between when initial contact between the crop and the agricultural harvester occurs and when the crop reaches yield sensor 336.
At block 384, predictive model generator 210 generates one or more predictive yield models, such as yield model 350, that model a relationship between at least one of a vegetative index value or historical yield value obtained from a prior information map, such as prior information map 258, and a yield being sensed by the in-situ sensor 208. For instance, predictive model generator 210 may generate a predictive yield model based on a historical yield value and a sensed yield indicated by the sensor signal obtained from in-situ sensor 208.
At block 386, the predictive yield model, such as predictive yield model 350, is provided to predictive map generator 212 which generates a functional predictive yield map that maps a predicted yield to different geographic locations in the field based on the vegetative index map or historical yield map and the predictive yield model 350. For instance, in some examples, the functional predictive yield map 360 predicts yield. In other examples, the functional predictive yield map 360 map predicts other items, as indicated by block 392. Further, the functional predictive yield map 360 can be generated during the course of an agricultural harvesting operation. Thus, as an agricultural harvester is moving through a field performing an agricultural harvesting operation, the functional predictive yield map 360 is generated.
At block 394, predictive map generator 212 outputs the functional predictive yield map 360. At block 393, predictive map generator 212 configures the functional predictive yield map 360 for consumption by control system 214. At block 395, predictive map generator 212 can also provide the map 360 to control zone generator 213 for generation of control zones. At block 397, predictive map generator 212 configures the map 360 in other ways as well. The functional predictive yield map 360 (with or without the control zones) is provided to control system 214. At block 396, control system 214 generates control signals to control the controllable subsystems 216 based upon the functional predictive yield map 360.
It can thus be seen that the present system takes a prior information map that maps a characteristic such as a vegetative index value or historical yield values to different locations in a field. The present system also uses one or more in-situ sensors that sense in-situ sensor data that is indicative of a characteristic, such as yield, and generates a model that models a relationship between the yield sensed in-situ using the in-situ sensor and the characteristic mapped in the prior information map. Thus, the present system generates a functional predictive map using a model and a prior information map and may configure the generated functional predictive map for consumption by a control system or for presentation to a local or remote operator or other user. For example, the control system may use the map to control one or more systems of a combine harvester.
The present discussion has mentioned processors and servers. In some examples, the processors and servers include computer processors with associated memory and timing circuitry, not separately shown. The processors and servers are functional parts of the systems or devices to which the processors and servers belong and are activated by and facilitate the functionality of the other components or items in those systems.
Also, a number of user interface displays have been discussed. The displays can take a wide variety of different forms and can have a wide variety of different user actuatable operator interface mechanisms disposed thereon. For instance, user actuatable operator interface mechanisms may include text boxes, check boxes, icons, links, drop-down menus, search boxes, etc. The user actuatable operator interface mechanisms can also be actuated in a wide variety of different ways. For instance, the user actuatable operator interface mechanisms can be actuated using operator interface mechanisms such as a point and click device, such as a track ball or mouse, hardware buttons, switches, a joystick or keyboard, thumb switches or thumb pads, etc., a virtual keyboard or other virtual actuators. In addition, where the screen on which the user actuatable operator interface mechanisms are displayed is a touch sensitive screen, the user actuatable operator interface mechanisms can be actuated using touch gestures. Also, user actuatable operator interface mechanisms can be actuated using speech commands using speech recognition functionality. Speech recognition may be implemented using a speech detection device, such as a microphone, and software that functions to recognize detected speech and execute commands based on the received speech.
A number of data stores have also been discussed. It will be noted the data stores can each be broken into multiple data stores. In some examples, one or more of the data stores may be local to the systems accessing the data stores, one or more of the data stores may all be located remote form a system utilizing the data store, or one or more data stores may be local while others are remote. All of these configurations are contemplated by the present disclosure.
Also, the figures show a number of blocks with functionality ascribed to each block. It will be noted that fewer blocks can be used to illustrate that the functionality ascribed to multiple different blocks is performed by fewer components. Also, more blocks can be used illustrating that the functionality may be distributed among more components. In different examples, some functionality may be added, and some may be removed.
It will be noted that the above discussion has described a variety of different systems, components, logic and interactions. It will be appreciated that any or all of such systems, components, logic and interactions may be implemented by hardware items, such as processors, memory, or other processing components, some of which are described below, that perform the functions associated with those systems, components, logic, or interactions. In addition, any or all of the systems, components, logic and interactions may be implemented by software that is loaded into a memory and is subsequently executed by a processor or server or other computing component, as described below. Any or all of the systems, components, logic and interactions may also be implemented by different combinations of hardware, software, firmware, etc., some examples of which are described below. These are some examples of different structures that may be used to implement any or all of the systems, components, logic and interactions described above. Other structures may be used as well.
In the example shown in
It will also be noted that the elements of
In some examples, remote server architecture 500 may include cybersecurity measures. Without limitation, these measures may include encryption of data on storage devices, encryption of data sent between network nodes, authentication of people or processes accessing data, as well as the use of ledgers for recording metadata, data, data transfers, data accesses, and data transformations. In some examples, the ledgers may be distributed and immutable (e.g., implemented as blockchain).
In other examples, applications can be received on a removable Secure Digital (SD) card that is connected to an interface 15. Interface 15 and communication links 13 communicate with a processor 17 (which can also embody processors or servers from other FIGS.) along a bus 19 that is also connected to memory 21 and input/output (I/O) components 23, as well as clock 25 and location system 27.
I/O components 23, in one example, are provided to facilitate input and output operations. I/O components 23 for various examples of the device 16 can include input components such as buttons, touch sensors, optical sensors, microphones, touch screens, proximity sensors, accelerometers, orientation sensors and output components such as a display device, a speaker, and or a printer port. Other I/O components 23 can be used as well.
Clock 25 illustratively comprises a real time clock component that outputs a time and date. It can also, illustratively, provide timing functions for processor 17.
Location system 27 illustratively includes a component that outputs a current geographical location of device 16. This can include, for instance, a global positioning system (GPS) receiver, a LORAN system, a dead reckoning system, a cellular triangulation system, or other positioning system. Location system 27 can also include, for example, mapping software or navigation software that generates desired maps, navigation routes and other geographic functions.
Memory 21 stores operating system 29, network settings 31, applications 33, application configuration settings 35, data store 37, communication drivers 39, and communication configuration settings 41. Memory 21 can include all types of tangible volatile and non-volatile computer-readable memory devices. Memory 21 may also include computer storage media (described below). Memory 21 stores computer readable instructions that, when executed by processor 17, cause the processor to perform computer-implemented steps or functions according to the instructions. Processor 17 may be activated by other components to facilitate their functionality as well.
Note that other forms of the devices 16 are possible.
Computer 810 typically includes a variety of computer readable media. Computer readable media may be any available media that can be accessed by computer 810 and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. Computer storage media is different from, and does not include, a modulated data signal or carrier wave. Computer readable media includes hardware storage media including both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by computer 810. Communication media may embody computer readable instructions, data structures, program modules or other data in a transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal.
The system memory 830 includes computer storage media in the form of volatile and/or nonvolatile memory or both such as read only memory (ROM) 831 and random access memory (RAM) 832. A basic input/output system 833 (BIOS), containing the basic routines that help to transfer information between elements within computer 810, such as during start-up, is typically stored in ROM 831. RAM 832 typically contains data or program modules or both that are immediately accessible to and/or presently being operated on by processing unit 820. By way of example, and not limitation,
The computer 810 may also include other removable/non-removable volatile/nonvolatile computer storage media. By way of example only,
Alternatively, or in addition, the functionality described herein can be performed, at least in part, by one or more hardware logic components. For example, and without limitation, illustrative types of hardware logic components that can be used include Field-programmable Gate Arrays (FPGAs), Application-specific Integrated Circuits (e.g., ASICs), Application-specific Standard Products (e.g., ASSPs), System-on-a-chip systems (SOCs), Complex Programmable Logic Devices (CPLDs), etc.
The drives and their associated computer storage media discussed above and illustrated in
A user may enter commands and information into the computer 810 through input devices such as a keyboard 862, a microphone 863, and a pointing device 861, such as a mouse, trackball or touch pad. Other input devices (not shown) may include a joystick, game pad, satellite dish, scanner, or the like. These and other input devices are often connected to the processing unit 820 through a user input interface 860 that is coupled to the system bus, but may be connected by other interface and bus structures. A visual display 891 or other type of display device is also connected to the system bus 821 via an interface, such as a video interface 890. In addition to the monitor, computers may also include other peripheral output devices such as speakers 897 and printer 896, which may be connected through an output peripheral interface 895.
The computer 810 is operated in a networked environment using logical connections (such as a controller area network—CAN, local area network—LAN, or wide area network WAN) to one or more remote computers, such as a remote computer 880.
When used in a LAN networking environment, the computer 810 is connected to the LAN 871 through a network interface or adapter 870. When used in a WAN networking environment, the computer 810 typically includes a modem 872 or other means for establishing communications over the WAN 873, such as the Internet. In a networked environment, program modules may be stored in a remote memory storage device.
Example 1 is an agricultural work machine, comprising:
a communication system that receives a prior information map that includes values of a first agricultural characteristic corresponding to different geographic locations in a field;
a geographic position sensor that detects a geographic location of the agricultural work machine;
an in-situ sensor that detects an agricultural yield as a second agricultural characteristic corresponding to the geographic location;
a predictive model generator that generates a predictive agricultural model that models a relationship between the first agricultural characteristic and the second agricultural characteristic based on a value of the first agricultural characteristic in the prior information map at the geographic location and a value of the second agricultural characteristic sensed by the in-situ sensor at the geographic location; and
a predictive map generator that generates a functional predictive agricultural map of the field that maps predictive values of the second agricultural characteristic to the different geographic locations in the field, based on the values of the first agricultural characteristic in the prior information map and based on the predictive agricultural model.
Example 2 is the agricultural work machine of any or all previous examples, wherein the predictive map generator configures the functional predictive agricultural map for consumption by a control system that generates control signals to control a controllable subsystem on the agricultural work machine based on the functional predictive agricultural map.
Example 3 is the agricultural work machine of any or all previous examples, wherein the in-situ sensor comprises at least one of an impact plate force sensor, a microphone, an accelerometer, a piezoelectric sensor, an optical sensor, an electromagnetic sensor, or a radiation sensor.
Example 4 is the agricultural work machine of any or all previous examples, wherein the prior information map comprises a prior vegetative index map that maps, as the first agricultural characteristic, vegetative index values to the different geographic locations in the field.
Example 5 is the agricultural work machine of any or all previous examples, wherein the predictive model generator is configured to identify a relationship between a value of the agricultural yield detected at the geographic location and the vegetative index value, in the vegetative index map, at the geographic location, the predictive agricultural model being configured to receive a vegetative index value as a model input and generate a predicted agricultural yield value as a model output based on the identified relationship
Example 6 is the agricultural work machine of any or all previous examples, wherein the prior information map comprises a historical yield map that maps, as the first agricultural characteristic, historical yield values to the different geographic locations in the field.
Example 7 is the agricultural work machine of any or all previous examples, wherein the predictive model generator is configured to identify a relationship between a value of the agricultural yield detected at the geographic location and the historical yield value, in the historical yield map, at the geographic location, the predictive agricultural model being configured to receive a historical yield value as a model input and generate a predicted agricultural yield value as a model output based on the identified relationship.
Example 8 is the agricultural work machine of any or all previous examples, wherein the prior information map comprises contextual information indicative of a historical contextual variable that contributed to the historical yield value.
Example 9 is the agricultural work machine of any or all previous examples, wherein the communication system receives a second prior information map and wherein the agricultural work machine further comprises a prior information map selector that selects one of the first prior information map and the second prior information map that the predictive model generator uses to identify the relationship between the historical yield values and the agricultural yield.
Example 10 is a computer implemented method of generating a functional predictive agricultural map, comprising:
receiving, at an agricultural work machine, a prior information map that indicates values of a first agricultural characteristic corresponding to different geographic locations in a field;
detecting a geographic location of the agricultural work machine;
detecting, with an in-situ sensor, an agricultural yield as a second agricultural characteristic corresponding to the geographic location;
generating a predictive agricultural model that models a relationship between the first agricultural characteristic and the second agricultural characteristic; and
controlling a predictive map generator to generate the functional predictive agricultural map of the field that maps predictive values of the second agricultural characteristic to the different locations in the field based on the values of the first agricultural characteristic in the prior information map and the predictive agricultural model.
Example 11 is the computer implemented method of any or all previous examples, and further comprising:
configuring the functional predictive agricultural map for a control system that generates control signals to control a controllable subsystem on the agricultural work machine based on the functional predictive agricultural map.
Example 12 is the computer implemented method of any or all previous examples, wherein receiving the prior information map comprises receiving a prior vegetative index map that maps, as the first agricultural characteristic, vegetative index values to the different geographic locations in the field.
Example 13 is the computer implemented method of any or all previous examples, wherein receiving the prior information map comprises receiving a historical yield map that maps, as the first agricultural characteristic, historical yield values to the different geographic locations in the field.
Example 14 is the computer implemented method of any or all previous examples, wherein receiving the prior information map comprises receiving a plurality of historical yield maps and selecting one of the historical yield maps based on a comparison of contextual information in the plurality of historical yield maps to present contextual information.
Example 15 is the computer implemented method of any or all previous examples, wherein generating a predictive agricultural model comprises:
identifying a relationship between the historical yield and the agricultural yield based on the agricultural yield value detected at the geographic location and the historical yield value, in the historical yield index map, at the geographic location; and
controlling a predictive model generator to generate the predictive agricultural model that receives a historical yield value as a model input and generates a predicted agricultural yield value as a model output based on the identified relationship.
Example 16 is the computer implemented method of any or all previous examples, wherein generating a predictive agricultural model comprises:
identifying a relationship between the vegetative index and the agricultural yield based on the agricultural yield value detected at the geographic location and the vegetative index value, in the vegetative index map, at the geographic location; and
controlling a predictive model generator to generate the predictive agricultural model that receives a vegetative index value as a model input and generates a predicted agricultural yield value as a model output based on the identified relationship.
Example 17 is the computer implemented method of any or all previous examples, wherein the in-situ sensor comprises at least one of an impact plate force sensor, a microphone, an accelerometer, a piezoelectric sensor, an optical sensor, an electromagnetic sensor, or a radiation sensor.
Example 18 is an agricultural work machine, comprising:
a communication system that receives a prior vegetative index map that indicates vegetative index values corresponding to different geographic locations in a field;
a geographic position sensor that detects a geographic location of the agricultural work machine;
an in-situ sensor that detects an agricultural yield corresponding to the geographic location;
a predictive model generator that generates a predictive yield model that models a relationship between the vegetative index values and the agricultural yield values based on a vegetative index value in the prior vegetative index map at the geographic location and the agricultural yield sensed by the in-situ sensor at the geographic location; and
a predictive map generator that generates a functional predictive yield map of the field, that maps predictive yield values to the different locations in the field, based on the vegetative index values in the prior vegetative index map and based on the predictive yield model.
Example 19 is the agricultural work machine of any or all previous examples, wherein the in-situ sensor comprises at least one of an impact plate force sensor, a microphone, an accelerometer, a piezoelectric sensor, an optical sensor, an electromagnetic sensor, or a radiation sensor.
Example 20 is the agricultural work machine of any or all previous examples, wherein the geographic position sensor detects the geographic location at an amount of time before the in-situ sensor detects the agricultural yield corresponding to the geographic location, the amount of time being based at least in part on a machine speed and a machine processing time.
It should also be noted that the different examples described herein can be combined in different ways. That is, parts of one or more examples can be combined with parts of one or more other examples. All of this is contemplated herein
The present application is a continuation-in-part of and claims priority of U.S. patent application Ser. Nos. 16/380,550 and 16/380,531, filed Apr. 10, 2019, and Ser. No. 16/171,978, filed Oct. 26, 2018, the content of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3568157 | Downing et al. | Mar 1971 | A |
3580257 | Teague | May 1971 | A |
3599543 | Kerridge | Aug 1971 | A |
3775019 | Konig et al. | Nov 1973 | A |
3856754 | Habermeier et al. | Dec 1974 | A |
4129573 | Bellus et al. | Dec 1978 | A |
4166735 | Pilgram et al. | Sep 1979 | A |
4183742 | Sasse et al. | Jan 1980 | A |
4268679 | Lavanish | May 1981 | A |
4349377 | Durr et al. | Sep 1982 | A |
4360677 | Doweyko et al. | Nov 1982 | A |
4435203 | Funaki et al. | Mar 1984 | A |
4493726 | Burdeska et al. | Jan 1985 | A |
4527241 | Sheehan et al. | Jul 1985 | A |
4566901 | Martin et al. | Jan 1986 | A |
4584013 | Brunner | Apr 1986 | A |
4687505 | Sylling et al. | Aug 1987 | A |
4857101 | Musco et al. | Aug 1989 | A |
4911751 | Nyffeler et al. | Mar 1990 | A |
5059154 | Reyenga | Oct 1991 | A |
5089043 | Hayase et al. | Feb 1992 | A |
5246164 | McCann et al. | Sep 1993 | A |
5246915 | Lutz et al. | Sep 1993 | A |
5250690 | Turner et al. | Oct 1993 | A |
5296702 | Beck et al. | Mar 1994 | A |
5300477 | Tice et al. | Apr 1994 | A |
5416061 | Hewett et al. | May 1995 | A |
5477459 | Clegg et al. | Dec 1995 | A |
5488817 | Paquet et al. | Feb 1996 | A |
5563112 | Barnes, III | Oct 1996 | A |
5585626 | Beck et al. | Dec 1996 | A |
5586033 | Hall | Dec 1996 | A |
5592606 | Myers | Jan 1997 | A |
5606821 | Sadjadi et al. | Mar 1997 | A |
5666793 | Bottinger | Sep 1997 | A |
5712782 | Weigelt et al. | Jan 1998 | A |
5721679 | Monson | Feb 1998 | A |
5767373 | Ward et al. | Jun 1998 | A |
5771169 | Wendte | Jun 1998 | A |
5789741 | Kinter et al. | Aug 1998 | A |
5809440 | Beck et al. | Sep 1998 | A |
5841282 | Christy et al. | Nov 1998 | A |
5849665 | Gut et al. | Dec 1998 | A |
5878821 | Flenker et al. | Mar 1999 | A |
5899950 | Milender et al. | May 1999 | A |
5902343 | Hale et al. | May 1999 | A |
5915492 | Yates et al. | Jun 1999 | A |
5957304 | Dawson | Sep 1999 | A |
5974348 | Rocks | Oct 1999 | A |
5978723 | Hale et al. | Nov 1999 | A |
5991687 | Hale et al. | Nov 1999 | A |
5991694 | Gudat et al. | Nov 1999 | A |
5995859 | Takahashi | Nov 1999 | A |
5995894 | Wendte | Nov 1999 | A |
5995895 | Watt et al. | Nov 1999 | A |
6004076 | Cook et al. | Dec 1999 | A |
6016713 | Hale | Jan 2000 | A |
6029106 | Hale et al. | Feb 2000 | A |
6041582 | Tiede et al. | Mar 2000 | A |
6073070 | Diekhans | Jun 2000 | A |
6073428 | Diekhans | Jun 2000 | A |
6085135 | Steckel | Jul 2000 | A |
6119442 | Hale | Sep 2000 | A |
6119531 | Wendte et al. | Sep 2000 | A |
6128574 | Diekhans | Oct 2000 | A |
6141614 | Janzen et al. | Oct 2000 | A |
6178253 | Hendrickson et al. | Jan 2001 | B1 |
6185990 | Missotten et al. | Feb 2001 | B1 |
6188942 | Corcoran et al. | Feb 2001 | B1 |
6199000 | Keller et al. | Mar 2001 | B1 |
6204856 | Wood et al. | Mar 2001 | B1 |
6205381 | Motz et al. | Mar 2001 | B1 |
6205384 | Diekhans | Mar 2001 | B1 |
6216071 | Motz | Apr 2001 | B1 |
6236924 | Motz et al. | May 2001 | B1 |
6272819 | Wendte et al. | Aug 2001 | B1 |
6327569 | Reep | Dec 2001 | B1 |
6374173 | Ehlbeck | Apr 2002 | B1 |
6380745 | Anderson et al. | Apr 2002 | B1 |
6431790 | Anderegg et al. | Aug 2002 | B1 |
6451733 | Pidskalny et al. | Sep 2002 | B1 |
6505146 | Blackmer et al. | Jan 2003 | B1 |
6505998 | Bullivant | Jan 2003 | B1 |
6539102 | Anderson et al. | Mar 2003 | B1 |
6549849 | Lange et al. | Apr 2003 | B2 |
6584390 | Beck | Jun 2003 | B2 |
6591145 | Hoskinson et al. | Jul 2003 | B1 |
6591591 | Coers et al. | Jul 2003 | B2 |
6592453 | Coers et al. | Jul 2003 | B2 |
6604432 | Hamblen et al. | Aug 2003 | B1 |
6681551 | Sheidler et al. | Jan 2004 | B1 |
6682416 | Behnke et al. | Jan 2004 | B2 |
6687616 | Peterson et al. | Feb 2004 | B1 |
6729189 | Paakkinen | May 2004 | B2 |
6735568 | Buckwalter et al. | May 2004 | B1 |
6834550 | Upadhyaya et al. | Dec 2004 | B2 |
6838564 | Edmunds et al. | Jan 2005 | B2 |
6846128 | Sick | Jan 2005 | B2 |
6932554 | Isfort et al. | Aug 2005 | B2 |
6999877 | Dyer et al. | Feb 2006 | B1 |
7073374 | Berkman | Jul 2006 | B2 |
7167797 | Faivre et al. | Jan 2007 | B2 |
7167800 | Faivre et al. | Jan 2007 | B2 |
7191062 | Chi et al. | Mar 2007 | B2 |
7194965 | Hickey et al. | Mar 2007 | B2 |
7211994 | Mergen et al. | May 2007 | B1 |
7248968 | Reid | Jul 2007 | B2 |
7255016 | Burton | Aug 2007 | B2 |
7261632 | Pirro et al. | Aug 2007 | B2 |
7302837 | Wendte | Dec 2007 | B2 |
7308326 | Maertens et al. | Dec 2007 | B2 |
7313478 | Anderson et al. | Dec 2007 | B1 |
7318010 | Anderson | Jan 2008 | B2 |
7347168 | Reckels et al. | Mar 2008 | B2 |
7408145 | Holland | Aug 2008 | B2 |
7480564 | Metzler et al. | Jan 2009 | B2 |
7483791 | Anderegg et al. | Jan 2009 | B2 |
7537519 | Huster et al. | May 2009 | B2 |
7557066 | Hills et al. | Jul 2009 | B2 |
7628059 | Scherbring | Dec 2009 | B1 |
7687435 | Witschel et al. | Mar 2010 | B2 |
7703036 | Satterfield et al. | Apr 2010 | B2 |
7725233 | Hendrickson et al. | May 2010 | B2 |
7733416 | Gal | Jun 2010 | B2 |
7756624 | Diekhans et al. | Jul 2010 | B2 |
7798894 | Isfort | Sep 2010 | B2 |
7827042 | Jung et al. | Nov 2010 | B2 |
7915200 | Epp et al. | Mar 2011 | B2 |
7945364 | Schricker et al. | May 2011 | B2 |
7993188 | Ritter | Aug 2011 | B2 |
8024074 | Stelford et al. | Sep 2011 | B2 |
8060283 | Mott et al. | Nov 2011 | B2 |
8107681 | Gaal | Jan 2012 | B2 |
8145393 | Foster et al. | Mar 2012 | B2 |
8147176 | Coers et al. | Apr 2012 | B2 |
8152610 | Harrington | Apr 2012 | B2 |
8190335 | Vik et al. | May 2012 | B2 |
8195342 | Anderson | Jun 2012 | B2 |
8195358 | Anderson | Jun 2012 | B2 |
8213964 | Fitzner et al. | Jul 2012 | B2 |
8224500 | Anderson | Jul 2012 | B2 |
8252723 | Jakobi et al. | Aug 2012 | B2 |
8254351 | Fitzner et al. | Aug 2012 | B2 |
8321365 | Anderson | Nov 2012 | B2 |
8329717 | Minn et al. | Dec 2012 | B2 |
8332105 | Laux | Dec 2012 | B2 |
8338332 | Hacker et al. | Dec 2012 | B1 |
8340862 | Baumgarten et al. | Dec 2012 | B2 |
8407157 | Anderson | Mar 2013 | B2 |
8428829 | Brunnert et al. | Apr 2013 | B2 |
8478493 | Anderson | Jul 2013 | B2 |
8488865 | Hausmann et al. | Jul 2013 | B2 |
8494727 | Green | Jul 2013 | B2 |
8527157 | Imhof et al. | Sep 2013 | B2 |
8544397 | Bassett | Oct 2013 | B2 |
8577561 | Green et al. | Nov 2013 | B2 |
8606454 | Wang et al. | Dec 2013 | B2 |
8626406 | Schleicher et al. | Jan 2014 | B2 |
8635903 | Oetken et al. | Jan 2014 | B2 |
8649940 | Bonefas | Feb 2014 | B2 |
8656693 | Madsen et al. | Feb 2014 | B2 |
8662972 | Behnke et al. | Mar 2014 | B2 |
8671760 | Wallrath et al. | Mar 2014 | B2 |
8677724 | Chaney et al. | Mar 2014 | B2 |
8738238 | Rekow | May 2014 | B2 |
8738244 | Lenz et al. | May 2014 | B2 |
8755976 | Peters et al. | Jun 2014 | B2 |
8781692 | Kormann | Jul 2014 | B2 |
8789563 | Wenzel | Jul 2014 | B2 |
8814640 | Behnke et al. | Aug 2014 | B2 |
8843269 | Anderson et al. | Sep 2014 | B2 |
8868304 | Bonefas | Oct 2014 | B2 |
8909389 | Meyer | Dec 2014 | B2 |
8942860 | Morselli | Jan 2015 | B2 |
8962523 | Rosinger et al. | Feb 2015 | B2 |
9002591 | Wang et al. | Apr 2015 | B2 |
9008918 | Missotten et al. | Apr 2015 | B2 |
9009087 | Mewes et al. | Apr 2015 | B1 |
9011222 | Johnson et al. | Apr 2015 | B2 |
9014901 | Wang et al. | Apr 2015 | B2 |
9043096 | Zielke et al. | May 2015 | B2 |
9043129 | Bonefas et al. | May 2015 | B2 |
9066465 | Hendrickson et al. | Jun 2015 | B2 |
9072227 | Wenzel | Jul 2015 | B2 |
9095090 | Casper et al. | Aug 2015 | B2 |
9119342 | Bonefas | Sep 2015 | B2 |
9127428 | Meier | Sep 2015 | B2 |
9131644 | Osborne | Sep 2015 | B2 |
9152938 | Lang et al. | Oct 2015 | B2 |
9173339 | Sauder et al. | Nov 2015 | B2 |
9179599 | Bischoff | Nov 2015 | B2 |
9188518 | Snyder et al. | Nov 2015 | B2 |
9188986 | Baumann | Nov 2015 | B2 |
9220196 | Baumgarten et al. | Dec 2015 | B2 |
9226449 | Bischoff | Jan 2016 | B2 |
9234317 | Chi | Jan 2016 | B2 |
9235214 | Anderson | Jan 2016 | B2 |
9301447 | Kormann | Apr 2016 | B2 |
9301466 | Kelly | Apr 2016 | B2 |
9313951 | Herman et al. | Apr 2016 | B2 |
9326443 | Zametzer et al. | May 2016 | B2 |
9326444 | Bonefas | May 2016 | B2 |
9392746 | Darr et al. | Jul 2016 | B2 |
9405039 | Anderson | Aug 2016 | B2 |
9410840 | Acheson et al. | Aug 2016 | B2 |
9439342 | Pasquier | Sep 2016 | B2 |
9457971 | Bonefas et al. | Oct 2016 | B2 |
9463939 | Bonefas et al. | Oct 2016 | B2 |
9485905 | Jung et al. | Nov 2016 | B2 |
9489576 | Johnson et al. | Nov 2016 | B2 |
9497898 | Dillon | Nov 2016 | B2 |
9510508 | Jung | Dec 2016 | B2 |
9511633 | Anderson et al. | Dec 2016 | B2 |
9511958 | Bonefas | Dec 2016 | B2 |
9516812 | Baumgarten et al. | Dec 2016 | B2 |
9521805 | Muench et al. | Dec 2016 | B2 |
9522791 | Bonefas et al. | Dec 2016 | B2 |
9522792 | Bonefas et al. | Dec 2016 | B2 |
9523180 | Deines | Dec 2016 | B2 |
9529364 | Foster et al. | Dec 2016 | B2 |
9532504 | Herman et al. | Jan 2017 | B2 |
9538714 | Anderson | Jan 2017 | B2 |
9563492 | Bell et al. | Feb 2017 | B2 |
9563848 | Hunt | Feb 2017 | B1 |
9563852 | Wiles et al. | Feb 2017 | B1 |
9578808 | Dybro et al. | Feb 2017 | B2 |
9629308 | Schøler et al. | Apr 2017 | B2 |
9631964 | Gelinske et al. | Apr 2017 | B2 |
9642305 | Nykamp et al. | May 2017 | B2 |
9648807 | Escher et al. | May 2017 | B2 |
9675008 | Rusciolelli et al. | Jun 2017 | B1 |
9681605 | Noonan et al. | Jun 2017 | B2 |
9694712 | Healy | Jul 2017 | B2 |
9696162 | Anderson | Jul 2017 | B2 |
9699967 | Palla et al. | Jul 2017 | B2 |
9714856 | Myers | Jul 2017 | B2 |
9717178 | Sauder et al. | Aug 2017 | B1 |
9721181 | Guan et al. | Aug 2017 | B2 |
9723790 | Berry et al. | Aug 2017 | B2 |
9740208 | Sugumaran et al. | Aug 2017 | B2 |
9767521 | Stuber et al. | Sep 2017 | B2 |
9807934 | Rusciolelli et al. | Nov 2017 | B2 |
9807940 | Roell et al. | Nov 2017 | B2 |
9810679 | Kimmel | Nov 2017 | B2 |
9829364 | Wilson et al. | Nov 2017 | B2 |
9848528 | Werner et al. | Dec 2017 | B2 |
9856609 | Dehmel | Jan 2018 | B2 |
9856612 | Oetken | Jan 2018 | B2 |
9861040 | Bonefas | Jan 2018 | B2 |
9872433 | Acheson et al. | Jan 2018 | B2 |
9903077 | Rio | Feb 2018 | B2 |
9903979 | Dybro et al. | Feb 2018 | B2 |
9904963 | Rupp et al. | Feb 2018 | B2 |
9915952 | Dollinger et al. | Mar 2018 | B2 |
9922405 | Sauder et al. | Mar 2018 | B2 |
9924636 | Lisouski et al. | Mar 2018 | B2 |
9928584 | Jens et al. | Mar 2018 | B2 |
9933787 | Story | Apr 2018 | B2 |
9974226 | Rupp et al. | May 2018 | B2 |
9982397 | Korb et al. | May 2018 | B2 |
9984455 | Fox et al. | May 2018 | B1 |
9992931 | Bonefas et al. | Jun 2018 | B2 |
9992932 | Bonefas et al. | Jun 2018 | B2 |
10004176 | Mayerle | Jun 2018 | B2 |
10015928 | Nykamp et al. | Jul 2018 | B2 |
10019018 | Hulin | Jul 2018 | B2 |
10019790 | Bonefas et al. | Jul 2018 | B2 |
10025983 | Guan et al. | Jul 2018 | B2 |
10028435 | Anderson et al. | Jul 2018 | B2 |
10028451 | Rowan et al. | Jul 2018 | B2 |
10034427 | Krause et al. | Jul 2018 | B2 |
10039231 | Anderson et al. | Aug 2018 | B2 |
10064331 | Bradley | Sep 2018 | B2 |
10064335 | Byttebier et al. | Sep 2018 | B2 |
10078890 | Tagestad et al. | Sep 2018 | B1 |
10085372 | Noyer et al. | Oct 2018 | B2 |
10091925 | Aharoni et al. | Oct 2018 | B2 |
10115158 | Lindores | Oct 2018 | B2 |
10126153 | Bischoff et al. | Nov 2018 | B2 |
10129528 | Bonefas et al. | Nov 2018 | B2 |
10143132 | Inoue et al. | Dec 2018 | B2 |
10152035 | Reid et al. | Dec 2018 | B2 |
10154624 | Guan et al. | Dec 2018 | B2 |
10165725 | Sugumaran et al. | Jan 2019 | B2 |
10178823 | Kovach et al. | Jan 2019 | B2 |
10183667 | Anderson et al. | Jan 2019 | B2 |
10188037 | Bruns et al. | Jan 2019 | B2 |
10201121 | Wilson | Feb 2019 | B1 |
10209179 | Hollstein | Feb 2019 | B2 |
10231371 | Dillon | Mar 2019 | B2 |
10254147 | Vermue et al. | Apr 2019 | B2 |
10254765 | Rekow | Apr 2019 | B2 |
10255670 | Wu et al. | Apr 2019 | B1 |
10275550 | Lee | Apr 2019 | B2 |
10295703 | Dybro et al. | May 2019 | B2 |
10310455 | Blank et al. | Jun 2019 | B2 |
10314232 | Isaac et al. | Jun 2019 | B2 |
10315655 | Blank et al. | Jun 2019 | B2 |
10317272 | Bhavsar et al. | Jun 2019 | B2 |
10351364 | Green et al. | Jul 2019 | B2 |
10368488 | Becker et al. | Aug 2019 | B2 |
10398084 | Ray et al. | Sep 2019 | B2 |
10408545 | Blank et al. | Sep 2019 | B2 |
10412889 | Palla et al. | Sep 2019 | B2 |
10426086 | Van de Wege et al. | Oct 2019 | B2 |
10437243 | Blank et al. | Oct 2019 | B2 |
10477756 | Richt et al. | Nov 2019 | B1 |
10485178 | Mayerle | Nov 2019 | B2 |
10521526 | Haaland et al. | Dec 2019 | B2 |
10537061 | Farley et al. | Jan 2020 | B2 |
10568316 | Gall et al. | Feb 2020 | B2 |
10631462 | Bonefas | Apr 2020 | B2 |
10677637 | Von Muenster | Jun 2020 | B1 |
10681872 | Viaene et al. | Jun 2020 | B2 |
10703277 | Schroeder | Jul 2020 | B1 |
10729067 | Hammer et al. | Aug 2020 | B2 |
10740703 | Story | Aug 2020 | B2 |
10745868 | Laugwitz et al. | Aug 2020 | B2 |
10760946 | Meier et al. | Sep 2020 | B2 |
10809118 | Von Muenster | Oct 2020 | B1 |
10830634 | Blank et al. | Nov 2020 | B2 |
10866109 | Madsen et al. | Dec 2020 | B2 |
10890922 | Ramm et al. | Jan 2021 | B2 |
10909368 | Guo et al. | Feb 2021 | B2 |
10912249 | Wilson | Feb 2021 | B1 |
11079725 | Palla et al. | Aug 2021 | B2 |
11080798 | Ethington | Aug 2021 | B2 |
20020011061 | Lucand et al. | Jan 2002 | A1 |
20020083695 | Behnke et al. | Jul 2002 | A1 |
20020091458 | Moore | Jul 2002 | A1 |
20020099471 | Benneweis et al. | Jul 2002 | A1 |
20020133309 | Hardt | Sep 2002 | A1 |
20020173893 | Blackmore et al. | Nov 2002 | A1 |
20020193928 | Beck | Dec 2002 | A1 |
20020193929 | Beck | Dec 2002 | A1 |
20020198654 | Lange et al. | Dec 2002 | A1 |
20030004630 | Beck | Jan 2003 | A1 |
20030014171 | Ma et al. | Jan 2003 | A1 |
20030015351 | Goldman et al. | Jan 2003 | A1 |
20030024450 | Juptner | Feb 2003 | A1 |
20030060245 | Coers et al. | Mar 2003 | A1 |
20030069680 | Cohen et al. | Apr 2003 | A1 |
20030075145 | Sheidler et al. | Apr 2003 | A1 |
20030174207 | Alexia et al. | Sep 2003 | A1 |
20030182144 | Pickett et al. | Sep 2003 | A1 |
20030187560 | Keller et al. | Oct 2003 | A1 |
20030216158 | Bischoff | Nov 2003 | A1 |
20030229432 | Ho et al. | Dec 2003 | A1 |
20030229433 | van den Berg et al. | Dec 2003 | A1 |
20030229435 | Van der Lely | Dec 2003 | A1 |
20040004544 | Knutson | Jan 2004 | A1 |
20040054457 | Kormann | Mar 2004 | A1 |
20040073468 | Vyas et al. | Apr 2004 | A1 |
20040141641 | McDonald et al. | Jul 2004 | A1 |
20040193348 | Gray et al. | Sep 2004 | A1 |
20050059445 | Niermann et al. | Mar 2005 | A1 |
20050066738 | Moore | Mar 2005 | A1 |
20050149235 | Seal et al. | Jul 2005 | A1 |
20050150202 | Quick | Jul 2005 | A1 |
20050197175 | Anderson | Sep 2005 | A1 |
20050241285 | Maertens et al. | Nov 2005 | A1 |
20050283314 | Hall | Dec 2005 | A1 |
20050284119 | Brunnert | Dec 2005 | A1 |
20060014489 | Fitzner et al. | Jan 2006 | A1 |
20060014643 | Hacker et al. | Jan 2006 | A1 |
20060047377 | Ferguson et al. | Mar 2006 | A1 |
20060058896 | Pokorny et al. | Mar 2006 | A1 |
20060074560 | Dyer et al. | Apr 2006 | A1 |
20060155449 | Dammann | Jul 2006 | A1 |
20060162631 | Hickey et al. | Jul 2006 | A1 |
20060196158 | Faivre et al. | Sep 2006 | A1 |
20060200334 | Faivre et al. | Sep 2006 | A1 |
20070005209 | Fitzner et al. | Jan 2007 | A1 |
20070021948 | Anderson | Jan 2007 | A1 |
20070056258 | Behnke | Mar 2007 | A1 |
20070068238 | Wendte | Mar 2007 | A1 |
20070073700 | Wippersteg et al. | Mar 2007 | A1 |
20070089390 | Hendrickson et al. | Apr 2007 | A1 |
20070135190 | Diekhans et al. | Jun 2007 | A1 |
20070185749 | Anderson et al. | Aug 2007 | A1 |
20070199903 | Denny | Aug 2007 | A1 |
20070208510 | Anderson et al. | Sep 2007 | A1 |
20070233348 | Diekhans et al. | Oct 2007 | A1 |
20070233374 | Diekhans et al. | Oct 2007 | A1 |
20070239337 | Anderson | Oct 2007 | A1 |
20070282523 | Diekhans et al. | Dec 2007 | A1 |
20070298744 | Fitzner et al. | Dec 2007 | A1 |
20080030320 | Wilcox et al. | Feb 2008 | A1 |
20080098035 | Wippersteg et al. | Apr 2008 | A1 |
20080140431 | Anderson et al. | Jun 2008 | A1 |
20080177449 | Pickett et al. | Jul 2008 | A1 |
20080248843 | Birrell et al. | Oct 2008 | A1 |
20080268927 | Farley et al. | Oct 2008 | A1 |
20080269052 | Rosinger et al. | Oct 2008 | A1 |
20080289308 | Brubaker | Nov 2008 | A1 |
20080312085 | Kordes et al. | Dec 2008 | A1 |
20090044505 | Huster et al. | Feb 2009 | A1 |
20090074243 | Missotten et al. | Mar 2009 | A1 |
20090143941 | Tarasinski et al. | Jun 2009 | A1 |
20090192654 | Wendte et al. | Jul 2009 | A1 |
20090216410 | Allen et al. | Aug 2009 | A1 |
20090226036 | Gaal | Sep 2009 | A1 |
20090259483 | Hendrickson et al. | Oct 2009 | A1 |
20090265098 | Dix | Oct 2009 | A1 |
20090306835 | Ellermann et al. | Dec 2009 | A1 |
20090311084 | Coers et al. | Dec 2009 | A1 |
20090312919 | Foster et al. | Dec 2009 | A1 |
20090312920 | Boenig et al. | Dec 2009 | A1 |
20090325658 | Phelan et al. | Dec 2009 | A1 |
20100036696 | Lang et al. | Feb 2010 | A1 |
20100042297 | Foster et al. | Feb 2010 | A1 |
20100063626 | Anderson | Mar 2010 | A1 |
20100063648 | Anderson | Mar 2010 | A1 |
20100063651 | Anderson | Mar 2010 | A1 |
20100063664 | Anderson | Mar 2010 | A1 |
20100063954 | Anderson | Mar 2010 | A1 |
20100070145 | Foster et al. | Mar 2010 | A1 |
20100071329 | Hindryckx et al. | Mar 2010 | A1 |
20100094481 | Anderson | Apr 2010 | A1 |
20100121541 | Behnke et al. | May 2010 | A1 |
20100137373 | Hungenberg et al. | Jun 2010 | A1 |
20100145572 | Steckel et al. | Jun 2010 | A1 |
20100152270 | Suty-Heinze et al. | Jun 2010 | A1 |
20100152943 | Matthews | Jun 2010 | A1 |
20100217474 | Baumgarten et al. | Aug 2010 | A1 |
20100268562 | Anderson | Oct 2010 | A1 |
20100268679 | Anderson | Oct 2010 | A1 |
20100285964 | Waldraff et al. | Nov 2010 | A1 |
20100317517 | Rosinger et al. | Dec 2010 | A1 |
20100319941 | Peterson | Dec 2010 | A1 |
20100332051 | Kormann | Dec 2010 | A1 |
20110056178 | Sauerwein et al. | Mar 2011 | A1 |
20110059782 | Harrington | Mar 2011 | A1 |
20110072773 | Schroeder et al. | Mar 2011 | A1 |
20110084851 | Peterson et al. | Apr 2011 | A1 |
20110086684 | Luellen et al. | Apr 2011 | A1 |
20110160961 | Wollenhaupt et al. | Jun 2011 | A1 |
20110213531 | Farley et al. | Sep 2011 | A1 |
20110224873 | Reeve et al. | Sep 2011 | A1 |
20110227745 | Kikuchi et al. | Sep 2011 | A1 |
20110257850 | Reeve et al. | Oct 2011 | A1 |
20110270494 | Imhof et al. | Nov 2011 | A1 |
20110270495 | Knapp | Nov 2011 | A1 |
20110295460 | Hunt et al. | Dec 2011 | A1 |
20110307149 | Pighi et al. | Dec 2011 | A1 |
20120004813 | Baumgarten et al. | Jan 2012 | A1 |
20120029732 | Meyer | Feb 2012 | A1 |
20120087771 | Wenzel | Apr 2012 | A1 |
20120096827 | Chaney et al. | Apr 2012 | A1 |
20120143642 | O'Neil | Jun 2012 | A1 |
20120215378 | Sprock et al. | Aug 2012 | A1 |
20120215379 | Sprock et al. | Aug 2012 | A1 |
20120253611 | Zielke et al. | Oct 2012 | A1 |
20120263560 | Diekhans et al. | Oct 2012 | A1 |
20120265412 | Diekhans et al. | Oct 2012 | A1 |
20120271489 | Roberts et al. | Oct 2012 | A1 |
20120323452 | Green et al. | Dec 2012 | A1 |
20130019580 | Anderson et al. | Jan 2013 | A1 |
20130022430 | Anderson et al. | Jan 2013 | A1 |
20130046419 | Anderson et al. | Feb 2013 | A1 |
20130046439 | Anderson et al. | Feb 2013 | A1 |
20130046525 | Ali et al. | Feb 2013 | A1 |
20130103269 | Heligen et al. | Apr 2013 | A1 |
20130124239 | Rosa et al. | May 2013 | A1 |
20130126399 | Wolff | May 2013 | A1 |
20130184944 | Missotten et al. | Jul 2013 | A1 |
20130197767 | Lenz | Aug 2013 | A1 |
20130205733 | Peters et al. | Aug 2013 | A1 |
20130210505 | Bischoff | Aug 2013 | A1 |
20130231823 | Wang et al. | Sep 2013 | A1 |
20130319941 | Schneider | Dec 2013 | A1 |
20130325242 | Cavender-Bares et al. | Dec 2013 | A1 |
20130332003 | Murray et al. | Dec 2013 | A1 |
20140002489 | Sauder et al. | Jan 2014 | A1 |
20140019017 | Wilken et al. | Jan 2014 | A1 |
20140021598 | Sutardja | Jan 2014 | A1 |
20140050364 | Brueckner et al. | Feb 2014 | A1 |
20140067745 | Avey | Mar 2014 | A1 |
20140121882 | Gilmore et al. | May 2014 | A1 |
20140129048 | Baumgarten et al. | May 2014 | A1 |
20140172222 | Nickel | Jun 2014 | A1 |
20140172224 | Matthews et al. | Jun 2014 | A1 |
20140172225 | Matthews et al. | Jun 2014 | A1 |
20140208870 | Quaderer et al. | Jul 2014 | A1 |
20140215984 | Bischoff | Aug 2014 | A1 |
20140230391 | Hendrickson et al. | Aug 2014 | A1 |
20140230392 | Dybro et al. | Aug 2014 | A1 |
20140236381 | Anderson et al. | Aug 2014 | A1 |
20140236431 | Hendrickson et al. | Aug 2014 | A1 |
20140257911 | Anderson | Sep 2014 | A1 |
20140262547 | Acheson et al. | Sep 2014 | A1 |
20140277960 | Blank et al. | Sep 2014 | A1 |
20140297242 | Sauder et al. | Oct 2014 | A1 |
20140303814 | Burema et al. | Oct 2014 | A1 |
20140324272 | Madsen et al. | Oct 2014 | A1 |
20140331631 | Sauder et al. | Nov 2014 | A1 |
20140338298 | Jung et al. | Nov 2014 | A1 |
20140350802 | Biggerstaff et al. | Nov 2014 | A1 |
20140360148 | Wienker et al. | Dec 2014 | A1 |
20150049088 | Snyder et al. | Feb 2015 | A1 |
20150088785 | Chi | Mar 2015 | A1 |
20150095830 | Massoumi et al. | Apr 2015 | A1 |
20150101519 | Blackwell et al. | Apr 2015 | A1 |
20150105984 | Birrell et al. | Apr 2015 | A1 |
20150124054 | Darr et al. | May 2015 | A1 |
20150168187 | Myers | Jun 2015 | A1 |
20150211199 | Corcoran et al. | Jul 2015 | A1 |
20150230403 | Jung et al. | Aug 2015 | A1 |
20150242799 | Seki et al. | Aug 2015 | A1 |
20150243114 | Tanabe et al. | Aug 2015 | A1 |
20150254800 | Johnson et al. | Sep 2015 | A1 |
20150264863 | Muench et al. | Sep 2015 | A1 |
20150276794 | Pistrol et al. | Oct 2015 | A1 |
20150278640 | Johnson et al. | Oct 2015 | A1 |
20150285647 | Meyer zu Helligen et al. | Oct 2015 | A1 |
20150293029 | Acheson et al. | Oct 2015 | A1 |
20150302305 | Rupp et al. | Oct 2015 | A1 |
20150305238 | Klausmann et al. | Oct 2015 | A1 |
20150305239 | Jung | Oct 2015 | A1 |
20150327440 | Dybro et al. | Nov 2015 | A1 |
20150351320 | Takahara et al. | Dec 2015 | A1 |
20150370935 | Starr | Dec 2015 | A1 |
20150373902 | Pasquier | Dec 2015 | A1 |
20150379785 | Brown, Jr. et al. | Dec 2015 | A1 |
20160025531 | Bischoff et al. | Jan 2016 | A1 |
20160029558 | Dybro et al. | Feb 2016 | A1 |
20160052525 | Tuncer et al. | Feb 2016 | A1 |
20160057922 | Freiberg et al. | Mar 2016 | A1 |
20160066505 | Bakke et al. | Mar 2016 | A1 |
20160073573 | Ethington et al. | Mar 2016 | A1 |
20160078375 | Ethington et al. | Mar 2016 | A1 |
20160078570 | Ethington et al. | Mar 2016 | A1 |
20160084813 | Anderson et al. | Mar 2016 | A1 |
20160088794 | Baumgarten et al. | Mar 2016 | A1 |
20160106038 | Boyd et al. | Apr 2016 | A1 |
20160125331 | Vollmar | May 2016 | A1 |
20160146611 | Matthews | May 2016 | A1 |
20160147962 | Vollmar | May 2016 | A1 |
20160202227 | Mathur et al. | Jul 2016 | A1 |
20160203657 | Bell et al. | Jul 2016 | A1 |
20160212939 | Ouchida et al. | Jul 2016 | A1 |
20160215994 | Mewes et al. | Jul 2016 | A1 |
20160223506 | Shriver | Aug 2016 | A1 |
20160232621 | Ethington et al. | Aug 2016 | A1 |
20160247075 | Mewes et al. | Aug 2016 | A1 |
20160247082 | Stehling | Aug 2016 | A1 |
20160260021 | Marek | Sep 2016 | A1 |
20160286720 | Heitmann et al. | Oct 2016 | A1 |
20160286721 | Heitmann et al. | Oct 2016 | A1 |
20160286722 | Heitmann et al. | Oct 2016 | A1 |
20160309656 | Wilken et al. | Oct 2016 | A1 |
20160314542 | Vollmar | Oct 2016 | A1 |
20160327535 | Cotton et al. | Nov 2016 | A1 |
20160330906 | Acheson et al. | Nov 2016 | A1 |
20160338267 | Anderson et al. | Nov 2016 | A1 |
20160342915 | Humphrey | Nov 2016 | A1 |
20160345485 | Acheson et al. | Dec 2016 | A1 |
20160360697 | Diaz | Dec 2016 | A1 |
20170013773 | Kirk et al. | Jan 2017 | A1 |
20170031365 | Sugumaran et al. | Feb 2017 | A1 |
20170034997 | Mayerle | Feb 2017 | A1 |
20170049045 | Wilken et al. | Feb 2017 | A1 |
20170055433 | Jamison | Mar 2017 | A1 |
20170082442 | Anderson | Mar 2017 | A1 |
20170083024 | Reijersen Van Buuren | Mar 2017 | A1 |
20170086381 | Roell et al. | Mar 2017 | A1 |
20170089741 | Takahashi et al. | Mar 2017 | A1 |
20170089742 | Bruns et al. | Mar 2017 | A1 |
20170090068 | Xiang et al. | Mar 2017 | A1 |
20170105331 | Herlitzius et al. | Apr 2017 | A1 |
20170105335 | Xu et al. | Apr 2017 | A1 |
20170112049 | Weisberg et al. | Apr 2017 | A1 |
20170112061 | Meyer | Apr 2017 | A1 |
20170115862 | Stratton et al. | Apr 2017 | A1 |
20170118915 | Middelberg et al. | May 2017 | A1 |
20170124463 | Chen et al. | May 2017 | A1 |
20170127606 | Horton | May 2017 | A1 |
20170160916 | Baumgarten et al. | Jun 2017 | A1 |
20170161627 | Xu et al. | Jun 2017 | A1 |
20170185086 | Sauder et al. | Jun 2017 | A1 |
20170188515 | Baumgarten et al. | Jul 2017 | A1 |
20170192431 | Foster et al. | Jul 2017 | A1 |
20170208742 | Ingibergsson et al. | Jul 2017 | A1 |
20170213141 | Xu | Jul 2017 | A1 |
20170215330 | Missotten et al. | Aug 2017 | A1 |
20170223947 | Gall et al. | Aug 2017 | A1 |
20170227969 | Murray et al. | Aug 2017 | A1 |
20170235471 | Scholer et al. | Aug 2017 | A1 |
20170245434 | Jung et al. | Aug 2017 | A1 |
20170251600 | Anderson et al. | Sep 2017 | A1 |
20170270446 | Starr et al. | Sep 2017 | A1 |
20170270616 | Basso | Sep 2017 | A1 |
20170316692 | Rusciolelli et al. | Nov 2017 | A1 |
20170318743 | Sauder et al. | Nov 2017 | A1 |
20170322550 | Yokoyama | Nov 2017 | A1 |
20170332551 | Todd et al. | Nov 2017 | A1 |
20170336787 | Pichlmaier et al. | Nov 2017 | A1 |
20170370765 | Meier et al. | Dec 2017 | A1 |
20180000011 | Schleusner et al. | Jan 2018 | A1 |
20180014452 | Starr | Jan 2018 | A1 |
20180022559 | Knutson | Jan 2018 | A1 |
20180024549 | Hurd | Jan 2018 | A1 |
20180035622 | Gresch et al. | Feb 2018 | A1 |
20180054955 | Oliver | Mar 2018 | A1 |
20180060975 | Hassanzadeh | Mar 2018 | A1 |
20180070534 | Mayerle | Mar 2018 | A1 |
20180077865 | Gallmeier | Mar 2018 | A1 |
20180084709 | Wieckhorst et al. | Mar 2018 | A1 |
20180084722 | Wieckhorst et al. | Mar 2018 | A1 |
20180092301 | Vandike et al. | Apr 2018 | A1 |
20180092302 | Vandike et al. | Apr 2018 | A1 |
20180108123 | Baurer et al. | Apr 2018 | A1 |
20180120133 | Blank et al. | May 2018 | A1 |
20180121821 | Parsons et al. | May 2018 | A1 |
20180124992 | Koch et al. | May 2018 | A1 |
20180128933 | Koch et al. | May 2018 | A1 |
20180129879 | Achtelik et al. | May 2018 | A1 |
20180132422 | Hassanzadeh et al. | May 2018 | A1 |
20180136664 | Tomita et al. | May 2018 | A1 |
20180146612 | Sauder et al. | May 2018 | A1 |
20180146624 | Chen et al. | May 2018 | A1 |
20180153084 | Calleija et al. | Jun 2018 | A1 |
20180177125 | Takahara et al. | Jun 2018 | A1 |
20180181893 | Basso | Jun 2018 | A1 |
20180196438 | Newlin et al. | Jul 2018 | A1 |
20180196441 | Muench et al. | Jul 2018 | A1 |
20180211156 | Guan et al. | Jul 2018 | A1 |
20180232674 | Bilde | Aug 2018 | A1 |
20180242523 | Kirchbeck et al. | Aug 2018 | A1 |
20180249641 | Lewis et al. | Sep 2018 | A1 |
20180257657 | Blank et al. | Sep 2018 | A1 |
20180271015 | Redden et al. | Sep 2018 | A1 |
20180279599 | Struve | Oct 2018 | A1 |
20180295771 | Peters | Oct 2018 | A1 |
20180310474 | Posselius et al. | Nov 2018 | A1 |
20180317381 | Bassett | Nov 2018 | A1 |
20180317385 | Wellensiek et al. | Nov 2018 | A1 |
20180325012 | Ferrari et al. | Nov 2018 | A1 |
20180325014 | Debbaut | Nov 2018 | A1 |
20180332767 | Muench et al. | Nov 2018 | A1 |
20180338422 | Brubaker | Nov 2018 | A1 |
20180340845 | Rhodes et al. | Nov 2018 | A1 |
20180359917 | Blank et al. | Dec 2018 | A1 |
20180359919 | Blank et al. | Dec 2018 | A1 |
20180364726 | Foster et al. | Dec 2018 | A1 |
20190021226 | Dima et al. | Jan 2019 | A1 |
20190025175 | Laughwitz | Jan 2019 | A1 |
20190041813 | Horn et al. | Feb 2019 | A1 |
20190050948 | Perry | Feb 2019 | A1 |
20190057460 | Sakaguchi et al. | Feb 2019 | A1 |
20190066234 | Bedoya et al. | Feb 2019 | A1 |
20190069470 | Pfeiffer et al. | Mar 2019 | A1 |
20190075727 | Duke et al. | Mar 2019 | A1 |
20190085785 | Abolt | Mar 2019 | A1 |
20190090423 | Escher et al. | Mar 2019 | A1 |
20190098825 | Neitemeier et al. | Apr 2019 | A1 |
20190104722 | Slaughter et al. | Apr 2019 | A1 |
20190108413 | Chen et al. | Apr 2019 | A1 |
20190114847 | Wagner et al. | Apr 2019 | A1 |
20190124819 | Madsen et al. | May 2019 | A1 |
20190129430 | Madsen et al. | May 2019 | A1 |
20190136491 | Martin et al. | May 2019 | A1 |
20190138962 | Ehlmann et al. | May 2019 | A1 |
20190147094 | Zhan et al. | May 2019 | A1 |
20190147249 | Kiepe et al. | May 2019 | A1 |
20190156255 | Carroll | May 2019 | A1 |
20190174667 | Gresch et al. | Jun 2019 | A1 |
20190183047 | Dybro et al. | Jun 2019 | A1 |
20190191617 | Hoffmann et al. | Jun 2019 | A1 |
20190200522 | Hansen et al. | Jul 2019 | A1 |
20190230855 | Reed et al. | Aug 2019 | A1 |
20190239416 | Green et al. | Aug 2019 | A1 |
20190261550 | Damme et al. | Aug 2019 | A1 |
20190261559 | Heitmann et al. | Aug 2019 | A1 |
20190261560 | Jelenkovic | Aug 2019 | A1 |
20190313570 | Owechko | Oct 2019 | A1 |
20190327889 | Borgstadt | Oct 2019 | A1 |
20190327892 | Fries et al. | Oct 2019 | A1 |
20190335662 | Good et al. | Nov 2019 | A1 |
20190335674 | Basso | Nov 2019 | A1 |
20190343035 | Smith et al. | Nov 2019 | A1 |
20190343043 | Bormann et al. | Nov 2019 | A1 |
20190343044 | Bormann et al. | Nov 2019 | A1 |
20190343048 | Farley et al. | Nov 2019 | A1 |
20190351765 | Rabusic | Nov 2019 | A1 |
20190354081 | Blank et al. | Nov 2019 | A1 |
20190364733 | Laugen et al. | Dec 2019 | A1 |
20190364734 | Kriebel et al. | Dec 2019 | A1 |
20200000006 | McDonald et al. | Jan 2020 | A1 |
20200008351 | Zielke et al. | Jan 2020 | A1 |
20200015416 | Barther et al. | Jan 2020 | A1 |
20200019159 | Kocer et al. | Jan 2020 | A1 |
20200024102 | Brill et al. | Jan 2020 | A1 |
20200029488 | Bertucci et al. | Jan 2020 | A1 |
20200034759 | Dumstorff et al. | Jan 2020 | A1 |
20200037491 | Schoeny et al. | Feb 2020 | A1 |
20200053961 | Dix et al. | Feb 2020 | A1 |
20200064144 | Tomita et al. | Feb 2020 | A1 |
20200064863 | Tomita et al. | Feb 2020 | A1 |
20200074023 | Nizami et al. | Mar 2020 | A1 |
20200084963 | Gururajan et al. | Mar 2020 | A1 |
20200084966 | Corban et al. | Mar 2020 | A1 |
20200090094 | Blank | Mar 2020 | A1 |
20200097851 | Alvarez et al. | Mar 2020 | A1 |
20200113142 | Coleman et al. | Apr 2020 | A1 |
20200125098 | Cavender-Bares | Apr 2020 | A1 |
20200125822 | Yang et al. | Apr 2020 | A1 |
20200128732 | Chaney | Apr 2020 | A1 |
20200128733 | Vandike et al. | Apr 2020 | A1 |
20200128734 | Brammeier et al. | Apr 2020 | A1 |
20200128735 | Bonefas et al. | Apr 2020 | A1 |
20200128737 | Anderson et al. | Apr 2020 | A1 |
20200128738 | Suleman et al. | Apr 2020 | A1 |
20200128740 | Suleman | Apr 2020 | A1 |
20200133262 | Suleman et al. | Apr 2020 | A1 |
20200141784 | Lange et al. | May 2020 | A1 |
20200146203 | Deng | May 2020 | A1 |
20200150631 | Frieberg et al. | May 2020 | A1 |
20200154639 | Takahara et al. | May 2020 | A1 |
20200163277 | Cooksey et al. | May 2020 | A1 |
20200183406 | Borgstadt | Jun 2020 | A1 |
20200187409 | Meyer Zu Helligen | Jun 2020 | A1 |
20200196526 | Koch et al. | Jun 2020 | A1 |
20200202127 | Chen et al. | Jun 2020 | A1 |
20200202596 | Kitahara et al. | Jun 2020 | A1 |
20200221632 | Strnad et al. | Jul 2020 | A1 |
20200221635 | Hendrickson et al. | Jul 2020 | A1 |
20200221636 | Boydens et al. | Jul 2020 | A1 |
20200265527 | Rose et al. | Aug 2020 | A1 |
20200278680 | Schultz et al. | Sep 2020 | A1 |
20200317114 | Hoff | Oct 2020 | A1 |
20200319632 | Desai et al. | Oct 2020 | A1 |
20200319655 | Desai et al. | Oct 2020 | A1 |
20200323133 | Anderson et al. | Oct 2020 | A1 |
20200323134 | Darr et al. | Oct 2020 | A1 |
20200326674 | Palla et al. | Oct 2020 | A1 |
20200326727 | Palla et al. | Oct 2020 | A1 |
20200333278 | Locken et al. | Oct 2020 | A1 |
20200337232 | Blank et al. | Oct 2020 | A1 |
20200352099 | Meier et al. | Nov 2020 | A1 |
20200359547 | Sakaguchi et al. | Nov 2020 | A1 |
20200359549 | Sakaguchi et al. | Nov 2020 | A1 |
20200363256 | Meier et al. | Nov 2020 | A1 |
20200375083 | Anderson et al. | Dec 2020 | A1 |
20200375084 | Sakaguchi et al. | Dec 2020 | A1 |
20200378088 | Anderson | Dec 2020 | A1 |
20200404842 | Dugas et al. | Dec 2020 | A1 |
20210015041 | Bormann et al. | Jan 2021 | A1 |
20210129853 | Appleton et al. | May 2021 | A1 |
20210176916 | Sidon et al. | Jun 2021 | A1 |
20210176918 | Franzen et al. | Jun 2021 | A1 |
20210289687 | Heinold et al. | Sep 2021 | A1 |
20210321567 | Sidon et al. | Oct 2021 | A1 |
20220110249 | Vandike | Apr 2022 | A1 |
Number | Date | Country |
---|---|---|
108898 | Oct 2018 | AR |
20100224431 | Apr 2011 | AU |
6800140 | Dec 1989 | BR |
PI0502658 | Feb 2007 | BR |
PI0802384 | Mar 2010 | BR |
102014007178 | Aug 2016 | BR |
1165300 | Apr 1984 | CA |
2283767 | Mar 2001 | CA |
2330979 | Aug 2001 | CA |
2451633 | Oct 2001 | CN |
101236188 | Aug 2008 | CN |
101303338 | Nov 2008 | CN |
101363833 | Feb 2009 | CN |
201218789 | Apr 2009 | CN |
101839906 | Sep 2010 | CN |
101929166 | Dec 2010 | CN |
102080373 | Jun 2011 | CN |
102277867 | Dec 2011 | CN |
202110103 | Jan 2012 | CN |
202119772 | Jan 2012 | CN |
202340435 | Jul 2012 | CN |
103181263 | Jul 2013 | CN |
203053961 | Jul 2013 | CN |
203055121 | Jul 2013 | CN |
203206739 | Sep 2013 | CN |
102277867 | Oct 2013 | CN |
103491765 | Jan 2014 | CN |
204435344 | Jul 2015 | CN |
204475304 | Jul 2015 | CN |
105205248 | Dec 2015 | CN |
204989174 | Jan 2016 | CN |
105432228 | Mar 2016 | CN |
105741180 | Jul 2016 | CN |
106053330 | Oct 2016 | CN |
106198877 | Dec 2016 | CN |
106198879 | Dec 2016 | CN |
106226470 | Dec 2016 | CN |
106248873 | Dec 2016 | CN |
106290800 | Jan 2017 | CN |
106327349 | Jan 2017 | CN |
106644663 | May 2017 | CN |
206330815 | Jul 2017 | CN |
206515118 | Sep 2017 | CN |
206515119 | Sep 2017 | CN |
206616118 | Nov 2017 | CN |
206696107 | Dec 2017 | CN |
206696107 | Dec 2017 | CN |
107576674 | Jan 2018 | CN |
107576674 | Jan 2018 | CN |
206906093 | Jan 2018 | CN |
206941558 | Jan 2018 | CN |
206941558 | Jan 2018 | CN |
107736088 | Feb 2018 | CN |
107795095 | Mar 2018 | CN |
207079558 | Mar 2018 | CN |
107941286 | Apr 2018 | CN |
107957408 | Apr 2018 | CN |
207567744 | Jul 2018 | CN |
108614089 | Oct 2018 | CN |
208013131 | Oct 2018 | CN |
109357804 | Feb 2019 | CN |
109485353 | Mar 2019 | CN |
109633127 | Apr 2019 | CN |
109763476 | May 2019 | CN |
109961024 | Jul 2019 | CN |
110135341 | Aug 2019 | CN |
110262287 | Sep 2019 | CN |
110582198 | Dec 2019 | CN |
111201879 | May 2020 | CN |
111406505 | Jul 2020 | CN |
247426 | Dec 1986 | CS |
248318 | Feb 1987 | CS |
17266 | Feb 2007 | CZ |
20252 | Nov 2009 | CZ |
441597 | Mar 1927 | DE |
504035 | Jul 1930 | DE |
2354828 | May 1975 | DE |
152380 | Nov 1981 | DE |
3728669 | Mar 1989 | DE |
19509496 | Sep 1996 | DE |
19718455 | Nov 1997 | DE |
19705842 | Aug 1998 | DE |
19828355 | Jan 2000 | DE |
10050224 | Apr 2002 | DE |
10120173 | Oct 2002 | DE |
202004015141 | Dec 2004 | DE |
102005000770 | Jul 2006 | DE |
102005000771 | Aug 2006 | DE |
102008021785 | Nov 2009 | DE |
102009041646 | Mar 2011 | DE |
102010004648 | Jul 2011 | DE |
102010038661 | Feb 2012 | DE |
102011005400 | Sep 2012 | DE |
202012103730 | Oct 2012 | DE |
102011052688 | Feb 2013 | DE |
102012211001 | Jan 2014 | DE |
102012220109 | May 2014 | DE |
102012223768 | Jun 2014 | DE |
102013212151 | Dec 2014 | DE |
102013019098 | Jan 2015 | DE |
102014108449 | Feb 2015 | DE |
2014201203 | Jul 2015 | DE |
102014208068 | Oct 2015 | DE |
102015006398 | May 2016 | DE |
102015109799 | Dec 2016 | DE |
112015002194 | Jan 2017 | DE |
102017204511 | Sep 2018 | DE |
102019206734 | Nov 2020 | DE |
102019114872 | Dec 2020 | DE |
845198 | Jun 1998 | EP |
1444879 | Aug 2004 | EP |
1219159 | Jun 2005 | EP |
1219153 | Feb 2006 | EP |
1692928 | Aug 2006 | EP |
1574122 | Feb 2008 | EP |
1943877 | Jul 2008 | EP |
1598586 | Sep 2009 | EP |
1731983 | Sep 2009 | EP |
2146307 | Jan 2010 | EP |
0845198 | Feb 2010 | EP |
2186389 | May 2010 | EP |
2267566 | Dec 2010 | EP |
3491192 | Dec 2010 | EP |
2057884 | Jan 2011 | EP |
2146307 | May 2012 | EP |
2446732 | May 2012 | EP |
2524586 | Nov 2012 | EP |
2529610 | Dec 2012 | EP |
2174537 | May 2013 | EP |
2592919 | May 2013 | EP |
1674324 | May 2014 | EP |
2764764 | Aug 2014 | EP |
2191439 | Mar 2015 | EP |
2921042 | Sep 2015 | EP |
2944725 | Nov 2015 | EP |
2997805 | Mar 2016 | EP |
3000302 | Mar 2016 | EP |
2868806 | Jul 2016 | EP |
3085221 | Oct 2016 | EP |
3095310 | Nov 2016 | EP |
3097759 | Nov 2016 | EP |
2452551 | May 2017 | EP |
3175691 | Jun 2017 | EP |
3195719 | Jul 2017 | EP |
3195720 | Jul 2017 | EP |
3259976 | Dec 2017 | EP |
3262934 | Jan 2018 | EP |
3491192 | Jan 2018 | EP |
3287007 | Feb 2018 | EP |
3298876 | Mar 2018 | EP |
3300579 | Apr 2018 | EP |
3315005 | May 2018 | EP |
3316208 | May 2018 | EP |
2829171 | Jun 2018 | EP |
2508057 | Jul 2018 | EP |
2508057 | Jul 2018 | EP |
3378298 | Sep 2018 | EP |
3378299 | Sep 2018 | EP |
2997805 | Oct 2018 | EP |
3384754 | Oct 2018 | EP |
3289853 | Mar 2019 | EP |
3456167 | Mar 2019 | EP |
3466239 | Apr 2019 | EP |
3469878 | Apr 2019 | EP |
3289852 | Jun 2019 | EP |
3491192 | Jun 2019 | EP |
3494770 | Jun 2019 | EP |
3498074 | Jun 2019 | EP |
3000302 | Aug 2019 | EP |
3533314 | Sep 2019 | EP |
3569049 | Nov 2019 | EP |
3000307 | Dec 2019 | EP |
3586592 | Jan 2020 | EP |
3593613 | Jan 2020 | EP |
3593620 | Jan 2020 | EP |
3613272 | Feb 2020 | EP |
3243374 | Mar 2020 | EP |
3626038 | Mar 2020 | EP |
3259976 | Apr 2020 | EP |
3635647 | Apr 2020 | EP |
3378298 | May 2020 | EP |
3646699 | May 2020 | EP |
3662741 | Jun 2020 | EP |
3685648 | Jul 2020 | EP |
2995191 | Oct 2020 | EP |
2116215 | Jul 1998 | ES |
2311322 | Feb 2009 | ES |
5533 | Nov 1913 | FI |
1451480 | Jan 1966 | FR |
2817344 | May 2002 | FR |
2901291 | Nov 2007 | FR |
2901291 | Nov 2007 | FR |
901081 | Jul 1962 | GB |
201519517 | May 2017 | GB |
1632DE2014 | Aug 2016 | IN |
201641027017 | Oct 2016 | IN |
202041039250 | Sep 2020 | IN |
7079681 | Nov 1982 | JP |
S60253617 | Dec 1985 | JP |
S63308110 | Dec 1988 | JP |
H02196960 | Aug 1990 | JP |
H02215311 | Aug 1990 | JP |
H0779681 | Mar 1995 | JP |
H1066436 | Mar 1998 | JP |
H10191762 | Jul 1998 | JP |
2000352044 | Dec 2000 | JP |
2001057809 | Mar 2001 | JP |
2002186348 | Jul 2002 | JP |
2005227233 | Aug 2005 | JP |
2006166871 | Jun 2006 | JP |
2011205967 | Oct 2011 | JP |
2015070812 | Apr 2015 | JP |
2015219651 | Dec 2015 | JP |
2016071726 | May 2016 | JP |
2016160808 | Sep 2016 | JP |
6087258 | Mar 2017 | JP |
2017136035 | Aug 2017 | JP |
2017137729 | Aug 2017 | JP |
2017195804 | Nov 2017 | JP |
2018068284 | May 2018 | JP |
2018102154 | Jul 2018 | JP |
2018151388 | Sep 2018 | JP |
2019004796 | Jan 2019 | JP |
2019129744 | Aug 2019 | JP |
2019146506 | Sep 2019 | JP |
2019216744 | Dec 2019 | JP |
2020018255 | Feb 2020 | JP |
2020031607 | Mar 2020 | JP |
2020113062 | Jul 2020 | JP |
2020127405 | Aug 2020 | JP |
100974892 | Aug 2010 | KR |
100974892 | Aug 2010 | KR |
20110018582 | Feb 2011 | KR |
101067576 | Sep 2011 | KR |
101067576 | Sep 2011 | KR |
101134075 | Apr 2012 | KR |
101447197 | Oct 2014 | KR |
101653750 | Sep 2016 | KR |
20170041377 | Apr 2017 | KR |
200485051 | Nov 2017 | KR |
200485051 | Nov 2017 | KR |
101873657 | Aug 2018 | KR |
06000012 | Jan 2008 | MX |
178299 | Apr 2000 | PL |
RO130713 | Nov 2015 | RO |
1791767 | Jan 1993 | RU |
2005102554 | Jul 2006 | RU |
2421744 | Jun 2011 | RU |
2421744 | Jun 2011 | RU |
2447640 | Apr 2012 | RU |
2502047 | Dec 2013 | RU |
2502047 | Dec 2013 | RU |
164128 | Aug 2016 | RU |
2017114139 | Apr 2017 | RU |
2017114139 | Oct 2018 | RU |
2017114139 | May 2019 | RU |
834514 | May 1981 | SU |
887717 | Dec 1981 | SU |
1052940 | Nov 1983 | SU |
1134669 | Jan 1985 | SU |
1526588 | Dec 1989 | SU |
1540053 | Jan 1991 | SU |
1761864 | Sep 1992 | SU |
1986005353 | Sep 1986 | WO |
2001052160 | Jul 2001 | WO |
2002015673 | Feb 2002 | WO |
2003005803 | Jan 2003 | WO |
2007050192 | May 2007 | WO |
2009156542 | Dec 2009 | WO |
2010003421 | Jan 2010 | WO |
2011104085 | Sep 2011 | WO |
2012041621 | Apr 2012 | WO |
2012110508 | Aug 2012 | WO |
2012110544 | Aug 2012 | WO |
2013063106 | May 2013 | WO |
2013079247 | Jun 2013 | WO |
2013086351 | Jun 2013 | WO |
2013087275 | Jun 2013 | WO |
2014046685 | Mar 2014 | WO |
2014093814 | Jun 2014 | WO |
2014195302 | Dec 2014 | WO |
2015038751 | Mar 2015 | WO |
2015153809 | Oct 2015 | WO |
2016020595 | Feb 2016 | WO |
2016118686 | Jul 2016 | WO |
2017004074 | Jan 2017 | WO |
2017008161 | Jan 2017 | WO |
2017060168 | Apr 2017 | WO |
2017077113 | May 2017 | WO |
2017096489 | Jun 2017 | WO |
2017099570 | Jun 2017 | WO |
2017116913 | Jul 2017 | WO |
WO-2017127291 | Jul 2017 | WO |
2017170507 | Oct 2017 | WO |
2017205406 | Nov 2017 | WO |
2017205410 | Nov 2017 | WO |
2018043336 | Mar 2018 | WO |
2018073060 | Apr 2018 | WO |
2018081759 | May 2018 | WO |
WO-2018081043 | May 2018 | WO |
2018112615 | Jun 2018 | WO |
2018116772 | Jun 2018 | WO |
2018142768 | Aug 2018 | WO |
2018200870 | Nov 2018 | WO |
2018206587 | Nov 2018 | WO |
2018220159 | Dec 2018 | WO |
2018226139 | Dec 2018 | WO |
2018235486 | Dec 2018 | WO |
2018235942 | Dec 2018 | WO |
WO18235486 | Dec 2018 | WO |
2019034213 | Feb 2019 | WO |
2019079205 | Apr 2019 | WO |
2019081349 | May 2019 | WO |
2019091535 | May 2019 | WO |
2019109191 | Jun 2019 | WO |
2019124174 | Jun 2019 | WO |
2019124217 | Jun 2019 | WO |
2019124225 | Jun 2019 | WO |
2019124273 | Jun 2019 | WO |
2019129333 | Jul 2019 | WO |
2019129334 | Jul 2019 | WO |
2019129335 | Jul 2019 | WO |
2019215185 | Nov 2019 | WO |
2019230358 | Dec 2019 | WO |
2020026578 | Feb 2020 | WO |
2020026650 | Feb 2020 | WO |
2020026651 | Feb 2020 | WO |
2020031473 | Feb 2020 | WO |
2020038810 | Feb 2020 | WO |
2020039312 | Feb 2020 | WO |
2020039671 | Feb 2020 | WO |
2020044726 | Mar 2020 | WO |
2020082182 | Apr 2020 | WO |
2020100810 | May 2020 | WO |
2020110920 | Jun 2020 | WO |
2020195007 | Oct 2020 | WO |
2020206941 | Oct 2020 | WO |
2020206942 | Oct 2020 | WO |
2020210607 | Oct 2020 | WO |
2020221981 | Nov 2020 | WO |
Entry |
---|
Suresh et al., “Agriculture Change Detection Model using Remote Sensing Images and GIS: Study area Vellore,” 2012, Publisher: IEEE. |
U.S. Appl. No. 17/344,517 Office Action dated May 25, 2022, 8 pages. |
Prosecution History for U.S. Appl. No. 16/380,691 including: Notice of Allowance dated Mar. 10, 2021 and Application and Drawings filed Apr. 10, 2019, 46 pages. |
U.S. Appl. No. 16/831,216 Application and Drawings filed Mar. 26, 2020, 56 pages. |
Notice of Allowance for U.S. Appl. No. 16/380,531 dated Apr. 5, 2021, 5 pages. |
Pioneer Estimator, “Corn Yield Estimator” accessed on Feb. 13, 2018, 1 page. retrieved from: https://www.pioneer.com/home/site/us/tools-apps/growing-tools/corn-yield-estimator/. |
Guindin, N. “Estimating Maize Grain Yield From Crop Biophysical Parameters Using Remote Sensing”, Nov. 4, 2013, 19 pages. |
EP Application No. 19203883.4-1004 Office Action dated May 3, 2021, 4 pages. |
Iowa State University Extension and Outreach, “Harvest Weed Seed Control”, Dec. 13, 2018, 6 pages. https://crops.extension.iastate.edu/blog/bob-hartzler/harvest-weed-seed-control. |
Getting Rid Of WeedsThrough Integrated Weed Management, accessed on Jun. 25, 2021, 10 pages. https://integratedweedmanagement.org/index.php/iwm-toolbox/the-harrington-seed-destructor. |
The Importance of Reducing Weed Seeds, Jul. 2018, 2 pages. https://www.aphis.usda.gov/plant_health/soybeans/soybean-handouts.pdf. |
Alternative Crop Guide, Published by the Jefferson Institute, “Buckwheat”, Revised Jul. 2002. 4 pages. |
Extended European Search Report and Written Opinion issued in European Patent Application No. 20208171.7, dated May 11, 2021, in 05 pages. |
Cordoba, M.A., Bruno, C.I. Costa, J.L. Peralta, N.R. and Balzarini, M.G., 2016, Protocol for multivariate homogeneous zone delineation in precision agriculture, biosystems engineering, 143, pp. 95-107. |
Extended European Search Report and Written Opinion issued in European Patent Application No. 21151611.7, dated Jun. 28, 2021, in 09 pages. |
Extended European Search Report and Written Opinion issued in European Patent Application No. 21151666.1, dated Jul. 1, 2021, in 10 pages. |
Lamsal et al. “Sugarcane Harvest Logistics in Brazil” Iowa Research Online, Sep. 11, 2013, 27 pages. |
Jensen, “Algorithms for Operational Planning of Agricultural Field Operations”, Mechanical Engineering Technical Report ME-TR-3, Nov. 9, 2012, 23 pages. |
Chauhan, “Remote Sensing of Crop Lodging”, Nov. 16, 2020, 16 pages. |
7 Combine Tweaks to Boost Speed (https://www.agriculture.com/machinery/harvest-equipment/7-combine-tweaks-to-boost-speed_203-ar33059) 8 pages, Aug. 19, 2018. |
Managing corn harvest this fall with variable com conditions (https://www.ocj.com/2019/10/managing-corn-harvest-this-fall-with-variable-corn-conditions/), 4 pages, Oct. 10, 2019. |
Reducing Aflatoxin in Corn During Harvest and Storage (https://extension.uga.edu/publications/detail.html?number=B1231&title=Reducing%20Aflatoxin%20in%20Corn%20During%20Harvest%20and%20Storage), 9 pages, Published with Full Review on Apr. 19, 2017. |
Variable Rate Applications to Optimize Inputs (https://www.cotton.org/tech/physiology/cpt/miscpubs/upload/CPT-v9No2-98-REPOP.pdf), 8 pages, Nov. 2, 1998. |
Robin Booker, VIDEO: Canadian cage mill teams up with JD (https://www.producer.com/2019/12/video-canadian-cage-mill-teams-up-with-jd/) , 6 pages, Dec. 19, 2019. |
Jarnevich, et al. “Forecasting Weed Distributions using Climate Data: A GIS Early Warning Tool”, Invasive Plant Science and Management, 11 pages, Jan. 20, 2017. |
Burks, “Classification of Weed Species Using Color Texture Features and Discriminant Analysis” (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.468.5833&rep=rep1&type=pdf), 8 pages, 2000. |
John Deere, https://www.youtube.com/watch?v=1Gq77CfdGl4&list=PL1KGsSJ4CWk4rShNb3-sTMOliL8meHBL5 (last accessed Jul. 14, 2020), Jun. 15, 2020, 5 pages. |
Combine Adjustments (http://corn.agronomy.wisc.edu/Management/L036.aspx), 2 pages, Originally written Feb. 1, 2006; last updated Oct. 18, 2018. |
Ardekani, “Off- and on-ground GPR techniques for field-scale soil moisture mapping” Jun. 2013, 13 pages. |
Does an Adaptive Gearbox Really Learn How You Drive? (https://practicalmotoring.com.au/voices/does-an-adaptive-gearbox-really-learn-how-you-drive/), Oct. 30, 2019, 8 pages. |
https://www.researchgate.net/publication/222527694_Energy_Requirement_Model_for_a_Combine_Harvester_Part_l_Development_of_Component_Models, Abstract Only, Jan. 2005. |
http://canola.okstate.edu/cropproduction/harvesting, 8 pages, Aug. 2011. |
“Tips and Tricks of Harvesting High Moisture Grain”, https://www.koenigequipment.com/blog/tips-and-tricks-of-harvesting-highmoisture-grain, 5 pages, last accessed Feb. 11, 2021. |
Hoff, Combine Adjustements, Mar. 1943, 8 pages. |
Haung et al., “Accurate Weed Mapping and Prescription Map Generation Based onFully Convolutional Networks Using UAV Imagery”, 14 pages, Oct. 1, 2018. |
Thompson, “Morning glory can make it impossible to harvest com”, Feb. 19, 2015, 4 pages. |
Apan et al., “Predictive Mapping of Blackberry in the Condamine Catchment Using Logistic Regressiona dn Spatial Analysis”, Jan. 2008, 12 pages. |
Robson, “Remote Sensing Applications for the Determination of Yield, Maturity and Aflatoxin Contamination in Peanut”, Oct. 2007, 275 pages. |
Bhattarai et al., “Remote Sensing Data to Detect Hessian Fly Infestation in Commercial Wheat Fields”, Apr. 16, 2019, 8 pages. |
Towery, et al., “Remote Sensing of Crop Hail Damage”, Jul. 21, 1975, 31 pages. |
Sa et al., “WeedMap: A Large-Scale Semantic Weed Mapping Framework Using Aerial Multispectral Imaging and Deep Neural Network for Precision Farming”, Sep. 7, 2018, 25 pages. |
Mathyam et al., “Remote Sensing of Biotic Stress in Crop Plants and Its Applications for Pest Management”, Dec. 2011, 30 pages. |
Martinez-Feria et al., “Evaluating Maize and Soybean Grain Dry-Down In The Field With Predictive Algorithms and Genotype-by-Environmental Analysis”, May 9, 2019, 13 pages. |
“GIS Maps for Agriculture”, Precision Agricultural Mapping, Retrieved Dec. 11, 2020, 6 pages. |
Paul, “Scabby Wheat Grain? Increasing Your Fan Speed May Help”, https://agcrops.osu.edu/newsletter/corn-newsletter/2015-20/scabby-wheat-grain-increasing-yourfan-speed-may-help, C.O.R.N Newsletter//2015-20, 3 pages. |
Clay et al., “Scouting for Weeds”, SSMG-15, 4 pages, 2002. |
Taylor et al., “Sensor-Based Variable Rate Application for Cotton”, 8 pages, 2010. |
Christiansen et al., “Designing and Testing a UAV Mapping System for Agricultural Field Surveying”, Nov. 23, 2017, 19 pages. |
Haung et al., “AccurateWeed Mapping and Prescription Map Generation Based on Fully Convolutional Networks Using UAV Imagery”, Oct. 1, 2018, 12 pages. |
Ma et al., Identification of Fusarium Head Blight in Winter Wheat Ears Using Continuous Wavelet Analysis, Dec. 19, 2019, 15 pages. |
Morrison, “Should You Use Tillage to Control Resistant Weeds”, Aug. 29, 2014, 9 pages. |
Morrison, “Snow Trapping Snars Water”, Oct. 13, 2005, 3 pages. |
“Soil Zone Index”, https://www.satimagingcorp.com/applications/natural-resources/agricultu . . . , Retrieved Dec. 11, 2020, 5 pages. |
Malvic, “Soybean Cyst Nematode”, University of Minnesota Extension, Oct. 19, 2020, 3 pages. |
Unglesbee, “Soybean Pod Shatter—Bad Enough to Scout Before Harvest?—DTN”, Oct. 17, 2018, 4 pages. |
Tao, “Standing Crop Residue Can Reduce Snow Drifting and Increase Soil Moisture”, 2 pages, last accessed Jul. 14, 2020. |
Berglund, et al., “Swathing and Harvesting Canola”, Jul. 2019, 8 pages. |
Bell et al., “Synthetic Aperture Radar and Optical Remote Sensing of Crop Damage Attributed To Severe Weather in the Central United States”, Jul. 25, 2018, 1 page. |
Rosencrance, “Tabletop Grapes in India to Be Picked by Virginia Tech Robots”, Jul. 23, 2020, 8 pages. |
Lofton, et al., The Potential of Grazing Grain Sorghum Residue Following Harvest, May 13, 2020, 11 pages. |
Beal et al., “Time Shift Evaluation to Improve Yield Map Quality”, Published in Applied Engineering in Agriculture vol. 17(3): 385-390 (© 2001 American Society of Agricultural Engineers), 9 pages. |
“Tips and Tricks of Harvesting High Moisture Grain”, https://www.koenigequipment.com/blog/tips-and-tricks-of-harvesting-highmoisture-grain, 7 pages, last accessed Jul. 14, 2020. |
Ransom, “Tips for Planting Winter Wheat and Winter Rye (for Grain) (Aug. 15, 2019)”, 2017, 3 pages. |
AgroWatch Tree Grading Maps, “The Grading Maps and Plant Count Reports”, https://www.satimagingcorp.com/applications/natural-resources/agricultu . . . , Retrieved Dec. 11, 2020, 4 pages. |
Ackley, “Troubleshooting Abnormal Corn Ears”, Jul. 23, 2020, 25 pages. |
Smith, “Understanding Ear Flex”, Feb. 25, 2019, 17 pages. |
Carroll et al., “Use of Spectral Vegetation Indicies Derived from Airborne Hyperspectral Imagery For Detection of European Corn Borer Infestation in Iowa Corn Plots”, Nov. 2008, 11 pages. |
Agriculture, “Using drones in agriculture and capturing actionable data”, Retrieved Dec. 11, 2020, 18 pages. |
Bentley et al., “Using Landsat to Identify Thunderstorm Damage in Agricultural Regions”, Aug. 28, 2001, 14 pages. |
Duane Grant and the Idaho Wheat Commission, “Using Remote Sensing to Manage Wheat Grain Protein”, Jan. 2, 2003, 13 pages. |
Zhang et al., “Using satellite multispectral imagery for damage mapping of armyworm (Spodoptera frugiperda) in maize at a regional scale”, Apr. 10, 2015, 14 pages. |
Booker, “VIDEO: Canadian cage mill teams up with JD”, Dec. 19, 2019, 6 pages. |
AgTalk Home, “Best Combine to Handle Weeds”, Posted Nov. 23, 2018, 9 pages. |
“Volunteer corn can be costly for soybeans”, Jun. 2, 2016, 1 page. |
Pflanz, et al., “Weed Mapping with UAS Imagery and a Bag of Visual Words Based Image Classifier”, Published Sep. 24, 2018, 17 pages. |
Hartzler, “Weed seed predation in agricultural fields”, 9 pages, 2009. |
Sa et al., “Weedmap: A Large-Scale Sematnic Weed Mapping Framework Using Aerial Multispectral Imaging and Deep Neural Netowrk for Precision Farming”, Sep. 6, 2018, 25 pages. |
Nagelkirk, Michigan State University-Extension, “Wheat Harvest: Minimizing the Risk of Fusarium Head Scab Losses”, Jul. 11, 2013, 4 pages. |
Saskatchewan, “Wheat: Winter Wheat”, (https://www.saskatchewan.ca/business/agriculture-natural-resources-and-industry/agribusiness-farmers-and-ranchers/crops-and-irrigation/field-crops/cereals-barley-wheat-oats-triticale/wheat-winter-wheat) 5 pages, last accessed Jul. 14, 2020. |
Quora, “Why would I ever use sport mode in my automatic transmission car? Will this incrase fuel efficiency or isit simply a feature that makes form more fun when driving?”, Aug. 10, 2020, 5 pages. |
Wade, “Using a Drone's Surface Model to Estimate Crop Yields & Assess Plant Health”, Oct. 19, 2015, 14 pages. |
Mathyam et al., “Remote Sensing of Biotic Stress in Crop Plants and Its Applications for Pest Stress”, Dec. 2011, 30 pages. |
“Four Helpful Weed-Management Tips for Harvest Time”, 2 pages, Sep. 4, 2019. |
Franz et al., “The role of topography, soil, and remotely sensed vegetation condition towards predicting crop yield”, University of Nebraska—Lincoln, Mar. 23, 2020, 44 pages. |
Peiffer et al., The Genetic Architecture of Maize Stalk Strength:, Jun. 20, 2013, 14 pages. |
Leu et al., Grazing Corn Residue Using Resources and Reducing Costs, Aug. 2009, 4 pages. |
“No-Till Soils”, Soil Heath Brochure, 2 pages, last accessed Jul. 14, 2020. |
Strickland et al., “Nitrate Toxicity in Livestock” Oklahoma State University, Feb. 2017, 2 pages. |
Strickland et al., “Nitrate Toxicity in Livestock” Oklahoma State University, 8 pages, Feb. 2017. |
Brownlee, “Neural Networks are Function Approximation Algorithms”, Mar. 18, 2020, 13 pages. |
Thompson, “Morning glory can make it impossible to harvest corn”, Feb. 19, 2015, 3 pages. |
Tumlison, “Monitoring Growth Development and Yield Estimation of Maize Using Very High-Resolution Uavimages in Gronau, Germany”, Feb. 2017, 63 pages. |
Hunt, “Mapping Weed Infestations Using Remote Sensing”, 8 pages, Jul. 19, 2005. |
Wright, et al., “Managing Grain Protein in Wheat Using Remote Sensing”, 12 pages, 2003. |
“Malting Barley in Pennsylvania”, Agronomy Facts 77, 6 pages, Code EE0179 06/16. |
“Green stem syndrome in soybeans”, Agronomy eUpdate Issue 478 Oct. 10, 2014, 3 pages. |
“Keep Weed Seed Out of Your Harvest”, Aug. 8, 2019, 1 pages. |
Hodrius et al., “The Impact of Multi-Sensor Data Assimilation on Plant Parameter Retrieval and Yield Estimation for Sugar Beet”, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XL-7/W3, 2015, 36th International Symposium on Remote Sensing of Environment, May 11-15, 2015, Berlin, Germany, 7 pages. |
Fernandez-Quintanilla et al., “Is the current state of the art of weed monitoring suitable for site-specific weed management in arable crops?”, Feb. 2018, 35 pages. |
Anonymously, “Improved System and Method for Controlling Agricultural Vehicle Operation Using Historical Data”, Dec. 16, 2009, 8 pages. |
Anonymously, “System and Method for Controlling Agricultural Vehicle Operation Using Historical Data”, Jun. 30, 2009, 8 pages. |
“Leafsnap, a new mobile appthat identifies plants by leaf shape, is launched by Smithsonian and collaborators”, May 2, 2011, 5 pages. |
Insect Gallery, Department of Entomology, Kansas State University, Oct. 19, 2020, 8 pages. |
Licht, “Influence of Corn Seeding Rate, Soil Attributes, and Topographic Characteristics on Grain Yield, Yield Components, and Grain Composition”, 2015, 107 pages. |
“Notice of Retraction Virtual simulation of plant with individual stem based on crop growth model”, Mar. 5, 2017, 7 pages. |
Leland, “Who Did that? Identifying Insect Damage”, Apr. 1, 2015, 4 pages. |
“How to improve maize protein content” https://www.yara.co.uk/crop-nutrition/forage-maize/improving-maize-protein-content, Sep. 30, 2020, 10 pages. |
Hafemeister, “Weed control at harvest, combines are ideal vehicles for spreading weed seeds”, Sep. 25, 2019, 3 pages. |
“Harvesting Tips”, Northern Pulse Growers Association, 9 pages, Jan. 31, 2001. |
Wortmann et al., “Harvesting Crop Residues”, Aug. 10, 2020, 8 pages. |
“Harvesting”, Oklahoma State University, Canola Swathing Guide, 2010, 9 pages, last accessed Jul. 14, 2020. |
Hanna, “Harvest Tips for Lodged Corn”, Sep. 6, 2011, 3 pages. |
“Green Weeds Complicate Harvest”, Crops, Slider, Sep. 26, 2012, 2 pages. |
“Agrowatch Green Vegetation Index”, Retrieved Dec. 11, 2020, 4 pages. |
“Grazing Corn Residues” (http://www.ca.uky.edu), 3 pages, Aug. 24, 2009. |
Jarnevich et al., Forecasting Weed Distributions Using Climate Data: A GIS Early Warning Tool, Downloaded on Jul. 13, 2020, 12 pages. |
Combine Cutting and Feeding Mechanisms in the Southeast, By J-K Park, Agricultural Research Service, U.S. Dept. of Agriculture, 1963, 1 page. |
Hartzler, “Fate of weed seeds in the soil”, 4 pages, Jan. 31, 2001. |
Digman, “Combine Considerations for a Wet Corn Harvest”, Extension SpecialistUW—Madison, 3 pages, Oct. 29, 2009. |
S-Series Combine and Front End Equipment Optimization, John Deere Harvester Works, 20 pages Date: Oct. 9, 2017. |
Determining yield monitoring system delay time with geostatistical and data segmentation approaches (https://www.ars.usda.gov/ARSUserFiles/50701000/cswq-0036-128359.pdf) Jul. 2002, 13 pages. |
Precision Agriculture: Yield Monitors (dated Nov. 1998—metadata; last accessed Jul. 16, 2020) (https://extensiondata.missouri.edu/pub/pdf/envqual/wq0451.pdf) 4 pages. |
Paul et al., “Effect of soil water status and strength on trafficability” (1979) (https://www.nrcresearchpress.com/doi/pdfplus/10.4141/cjss79-035), 12 pages, Apr. 23, 1979. |
Sick, “Better understanding corn hybrid characteristics and properties can impact your seed decisions” (https://emergence.fbn.com/agronomy/corn-hybrid-characteristics-and-properties-impact-seed-decisions) By Steve Sick, FBN Breeding Project Lead | Sep. 21, 2018, 8 pages. |
Robertson et al., “Maize Stalk Lodging: Morphological Determinants of Stalk Strength” Mar. 2017, 10 pages. |
Martin, et al., “Breakage Susceptibility and Hardness of Corn Kernels ofVarious Sizes and Shapes”, May 1987, 10 Pages. |
Martin et al. Breakage Susceptibiltiy and Hardness of Corn Kernels of Various Sizes and Shapes, vol. 3(): May 1087, 10 pages, https://pdfs.semanticscholar.org/e579/1b5363b6a78efd44adfb97755a0cdd14f7ca.pdf. |
Hoff, “Combine Adjustments” (https://smallfarmersjournal.com/combine-adjustments/), Mar. 1943, 9 pages. |
Optimizing Crop Profit Across Multiple Grain Attributes and Stover, Electronic Publication Date May 26, 2009. 17 pages. |
Unglesbee, Soybean Pod Shatter—Bad Enough to Scout Before Harvest—DTN, Oct. 17. 2018, 11 pages. Susceptibility to shatter (https://agfax.com/2018/10/17/soybean-pod-shatter-bad-enough-to-scout-before-harvest-dtn/). |
GIS Maps for Agricultural, accessed on May 10, 2022, 7 pages. https://www.satimagingcorp.com/services/geographic-information-systems/gis-maps-agriculture-mapping. |
https://wingtra.com/drone-mapping-applications/use-of-drones-in-agriculture, accessed on May 10, 2022, 19 pages. |
Energy Requirement Model for a Combine Harvester: Part 1: Development of Component Models. Published online Dec. 22, 2004, 17 pages. |
Energy Requirement Model for a Combine Harvester. Part 2: Integration of Component Models, Published online Jan. 18, 2005, 11 pages. |
Pioneer on reducing soybean harvest losses including combine adjustments (last accessed Jul. 23, 2020) (https://www.pioneer.com/us/agronomy/reducing_harvest_losses_in_soybeans.html), 5 pages. |
Application and Drawings for U.S. Appl. No. 16/175,993, filed Oct. 31, 2018, 28 pages. |
Application and Drawings for U.S. Appl. No. 16/380,623, filed Apr. 10, 2019, 36 pages. |
Application and Drawings for U.S. Appl. No. 16/783,511, filed Feb. 6, 2020, 55 pages. |
“Automated Weed Detection With Drones” dated May 25, 2017, retrieved at: <<https://www.precisionhawk.com/blog/media/topic/automated-weed-identification-with-drones>>, retrieved on Jan. 21, 2020, 4 pages. |
F. Forcella, “Estimating the Timing of Weed Emergence”, Site-Specific Management Guidelines, retrieved at: <<http://www.ipni.net/publication/ssmg.nsf/0/D26EC9A906F9B8C9852579E500773936/$FILE/SSMG-20.pdf>>, retrieved on Jan. 21, 2020, 4 pages. |
Chauhan et al., “Emerging Challenges and Opportunities for Education and Research in Weed Science”, frontiers in Plant Science. Published online Sep. 5, 2017, 22 pages. |
Apan, A., Wells ,N., Reardon-Smith, K, Richardson, L, McDougall, K, and Basnet, B.B., 2008. Predictive mapping of blackberry in the Condamine Catchment using logistic regression and spatial analysis. In Proceedings of the 2008 Queensland Spatial Conference: Global Warning: What's Happening in Paradise. Spatial Sciences Institute, 11 pages. |
Jarnevich, C.S., Holcombe, T.R., Barnett, D.T., Stohlgren, T.J. and Kartesz, J.T., 2010. Forecasting weed distributions using climate data: a GIS early warning tool. Invasive Plant Science and Management. 3(4), pp. 365-375. |
Sa et al., “WeedMap: A Large-Scale Semantic Weed Mapping Framework Using Aerial Multispectral Imaging and Deep Neural Network for Precision Farming”, Sep. 6, 2018, 25 pages. |
Pflanz et al., “Weed Mapping with UAS Imagery and a Bag of Visual Words Based Image Classifier”, Published Sep. 24, 2018, 28 pages. |
Provisional Application and Drawings for U.S. Appl. No. 62/928,964, filed Oct. 31, 2019, 14 pages. |
Application and Drawings for U.S. Appl. No. 16/783,475, filed Feb. 6, 2020, 55 pages. |
U.S. Appl. No. 17/067,483 Application and Drawings as filed on Oct. 9, 2020, 63 pages. |
U.S. Appl. No. 17/066,442 Application and Drawings as filed on Oct. 8, 2020, 65 pages. |
U.S. Appl. No. 16/380,550, filed Apr. 10, 2019, Application and Drawings, 47 pages. |
U.S. Appl. No. 17/066,999 Application and Drawings as filed on Oct. 9, 2020, 67 pages. |
U.S. Appl. No. 17/066,444 Application and Drawings as filed on Oct. 8, 2020, 102 pages. |
Extended Search Report for European Patent Application No. 20167930.5 dated Sep. 15, 2020, 8 pages. |
Extended Search Report for European Patent Application No. 19205901.2 dated Mar. 17, 2020, 6 pages. |
Notice of Allowance for U.S. Appl. No. 16/171,978, dated Dec. 15, 2020, 21 pages. |
Zhigen et al., “Research of the Combine Harvester Load Feedback Control System Using Multi-Signal Fusion Method and Fuzzy Algorithm,” 2010, Publisher: IEEE, 5 pages. |
Dan et al., “On-the-go Throughput Prediction in a Combine Harvester Using Sensor Fusion,” 2017, Publisher: IEEE, 6 pages. |
Fernandez-Quintanilla et al., “Is the current state of the art of weed monitoring sutible for site-specific weed management in arable crops?”, First Published May 1, 2018, 4 pages. |
Dionysis Bochtis et al. “Field Operations Planning for Agricultural Vehicles: A Hierarchical Modeling Framework.” Agricultural Engineering International: the CIGR Ejournal. Manuscript PM 06 021. Vol. IX. Feb. 2007, pp. 1-11. |
U.S. Appl. No. 16/432,557, filed Jun. 5, 2019, 61 pages. |
European Search Report issued in counterpart European Patent Application No. 19205142.3 dated Feb. 28, 2020 (6 pages). |
Mei-Ju et al., “Two paradigms in cellular Intemet-of-Things access for energy-harvesting machine-to-machine devices: push-based versus pull-based,” 2016, vol. 6, 9 pages. |
Yi et al., “An Efficient MAC Protocol With Adaptive Energy Harvesting for Machine-to-Machine Networks,” 2015, vol. 3, Publisher: IEEE, 10 pages. |
Application and Drawings for U.S. Appl. No. 16/171,978, filed Oct. 26, 2018, 53 pages. |
European Search Report issued in European Patent Application No. 19203883.4 dated Mar. 23, 2020 (10 pages). |
Notice of Allowance for U.S. Appl. No. 16/171,978 dated Oct. 28, 2020, 5 pages. |
Notice of Allowance for U.S. Appl. No. 16/171,978, dated Aug. 7, 2020, 9 pages. |
K.R. Manjunath et al., “Developing Spectral Library of Major Plant Species of Western Himalayas Using Ground Observations”, J. Indian Soc Remote Sen (Mar. 2014) 42(a):201-216, 17 pages. |
U.S. Appl. No. 16/380,564 Application and Drawings as filed on Apr. 10, 2019, 55 pages. |
S. Veenadhari et al., “Machine Learning Approach For Forecasting Crop Yield Based on Climatic Parameters”, 2014 International Conference on Computer Communication and Informatics (ICCCI-2014) Jan. 3-6, 2014, Coimbatore, India, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 16/380,531 dated Oct. 21, 2020, 10 pages. |
U.S. Appl. No. 16/380,531 Application and Drawings as filed on Apr. 10, 2019, 46 pages. |
Martin et al., “Breakage Susceptibility and Harness of Corn Kernels of Various Sizes and Shapes”, May 1987, 10 pages. |
Jones et al., “Brief history of agricultural systems modeling” Jun. 21, 2016, 15 pages. |
Dan Anderson, “Brief history of agricultural systems modeling” 1 pages. Aug. 13, 2019. |
A.Y. Seflek, “Determining the Physico-Mechanical Characteristics of Maize Stalks Fordesigning Harvester”, The Journal of Animal & Plant Sciences, 27(3): 2017, p. 855-860 ISSN: 1018-7081, Jun. 1, 2017. |
Carmody, Paul, “Windrowing and harvesting”, 8 pages Date: Feb. 3, 2010. |
Dabney, et al., “Forage Harvest Representation in RUSLE2”, Published Nov. 15, 2013, 17 pages. |
John Deere S-Series Combines S760, S770, S780, S790 Brochure, 44 pages, Nov. 15, 2017. |
Sekhon et al., “Stalk Bending Strength is Strongly Assoicated with Maize Stalk Lodging Incidence Across Multiple Environments”, Jun. 20, 2019, 23 pages. |
Thomison et al. “Abnormal Corn Ears”, Apr. 28, 2015, 1 page. |
Anderson, “Adjust your Combine to Reduce Damage to High Moisture Corn”, Aug. 13, 2019, 11 pages. |
Sumner et al., “Reducing Aflatoxin in Corn During Harvest and Storage”, Reviewed by John Worley, Apr. 2017, 6 pages. |
Sick, “Better understanding corn hybrid characteristics and properties can impact your seed decisions”, 8 pages, Sep. 21, 2018. |
TraCI/Change Vehicle State—SUMO Documentation, 10 pages, Retrieved Dec. 11, 2020. |
Arnold, et al., Chapter 8. “Plant Growth Component”, Jul. 1995, 41 pages. |
Humburg, Chapter: 37 “Combine Adjustments to Reduce Harvest Losses”, 2019, South Dakota Board of Regents, 8 pages. |
Hoff, “Combine Adjustments”, Cornell Extension Bulletin 591, Mar. 1943, 10 pages. |
University of Wisconsin, Corn Agronomy, Originally written Feb. 1, 2006 | Last updated Oct. 18, 2018, 2 pages. |
University of Nebraska-Lincoln, “Combine Adjustments for Downed Corn—Crop Watch”, Oct. 27, 2017, 5 pages. |
“Combine Cleaning: Quick Guide To Removing Resistant Weed Seeds (Among Other Things)”, Nov. 2006, 5 pages. |
Dekalb, “Corn Drydown Rates”, 7 pages, Aug. 4, 2020. |
Mahmoud et al. Iowa State University, “Corn Ear Orientation Effects on Mechanical Damage and Forces on Concave”, 1975, 6 pages. |
Sindelar et al., Kansas State University, “Corn Growth & Development” Jul. 17, 2017, 9 pages. |
Pannar, “Manage the Growth Stages of the Maize Plant With Pannar”, Nov. 14, 2016, 7 pages. |
He et al., “Crop residue harvest impacts wind erodibility and simulated soil loss in the Central Great Plains”, Sep. 27, 2017, 14 pages. |
Blanken, “Designing a Living Snow Fence for Snow Drift Control”, Jan. 17, 2018, 9 pages. |
Jean, “Drones give aerial boost to ag producers”, Mar. 21, 2019, 4 pages. |
Zhao et al., “Dynamics modeling for sugarcane sucrose estimation using time series satellite imagery”, Jul. 27, 2017, 11 pages. |
Brady, “Effects of Cropland Conservation Practices on Fish and Wldlife Habitat”, Sep. 1, 2007, 15 pages. |
Jasa, et al., “Equipment Adjustments for Harvesting Soybeans at 13%-15% Moisture”, Sep. 15, 2017, 2 pages. |
Bendig et al., “Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging”, Oct. 21, 2014, 18 pages. |
Robertson, et al., “Maize Stalk Lodging: Morphological Determinants of Stalk Strength”, Mar. 3, 2017, 10 pages. |
MacGowan et al. Purdue University, Corn and Soybean Crop Deprediation by Wildlife, Jun. 2006, 14 pages. |
Martinez-Feria et al., Iowa State University, “Corn Grain Dry Down in Field From Maturity to Harvest”, Sep. 20, 2017, 3 pages. |
Wrona, “Precision Agriculture's Value” Cotton Physiology Today, vol. 9, No. 2, 1998, 8 pages. |
Zhang et al., “Design of an Optical Weed Sensor Using Plant Spectral Characteristics” Sep. 2000, 12 pages. |
Hunt, et al., “What Weeds Can Be Remotely Sensed?”, 5 pages, May 2016. |
Pepper, “Does An Adaptive Gearbox Really Learn How You Drive?”, Oct. 30, 2019, 8 pages. |
Eggerl, “Optimization of Combine Processes Using Expert Knowledge and Methods of Artificial Intelligence”, Oct. 7, 1982, 143 pages. |
Sheely et al., “Image-Based, Variable Rate Plant Growth Regulator Application in Cotton at Sheely Farms in California”, Jan. 6-10, 2003 Beltwide Cotton Conferences, Nashville, TN, 17 pages. |
Kovacs et al., “Physical characteristics and mechanical behaviour of maize stalks for machine development”, Apr. 23, 2019, 1- pages. |
Anonymously, “Optimizing Crop Profit Across Multiple Grain Attributes and Stover”, ip.com, May 26, 2009, 17 pages. |
Breen, “Plant Identification: Examining Leaves”, Oregon State University, 2020, 8 pages. |
Caglayan et al., A Plant Recognition Approach Using Shape and Color Features in Leaf Images, Sep. 2013, 11 pages. |
Casady et al., “Precision Agriculture” Yield Monitors University of Missouri-System, 4 pages, 1998. |
Apan et al., “Predicting Grain Protein Content in Wheat Using Hyperspectral Sensing of In-season Crop Canopies and Partial Least Squares Regression” 18 pages, 2006. |
Xu et al., “Prediction of Wheat Grain Protein by Coupling Multisource Remote Sensing Imagery and ECMWF Data”, Apr. 24, 2020, 21 pages. |
Day, “Probability Distributions of Field Crop Yields,” American Journal of Agricultural Economics, vol. 47, Issue 3, Aug. 1965, Abstract Only, 1 page. |
Butzen, “Reducing Harvest Losses in Soybeans”, Pioneer, Jul. 23, 2020, 3 pages. |
Martin et al., “Relationship between secondary variables and soybean oil and protein concentration”, Abstract Only, 1 page., 2007. |
Torres, “Precision Planting of Maize” Dec. 2012, 123 pages. |
Notice of Allowance for U.S. Appl. No. 16/432,557 dated Mar. 22, 2021,9 pages. |
Zhao, L., Yang, J., Li, P. and Zhang, L., 2014. Characteristics analysis and classification of crop harvest patterns by exploiting high-frequency multipolarization SAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(9), pp. 3773-3783. |
Feng-Jie, X., Er-da, W. and Feng-yuan, X., Crop area yield risk evaluation and premium rates calculation—Based on nonparametric kernel density estimation. In 2009 International Conference on Management Science and Engineering, 7 pages. |
Liu, R. and Bai, X., 2014, May. Random fuzzy production and distribution plan of agricultural products and its PSO algorithm. In 2014 IEEE International Conference on Progress in Informatics and Computing (pp. 32-36). IEEE. |
Notice of Allowance for U.S. Appl. No. 16/171,978 dated Mar. 31, 2021, 6 pages. |
Application and Drawings for U.S. Appl. No. 17/067,383, filed Oct. 9, 2020, 61 pages. |
Non-Final Office Action for U.S. Appl. No. 17/067,383 dated Nov. 2, 2022, 38 pages. |
Benvenuti, S., 2007. Weed seed movement and dispersal strategies in the agricultural environment. Weed biology and management, 7, pp. 141-157. |
Chantre, G.R., Vigna, M.R.. Renzi, J.P. and Blanco, A.M., 2018. A flexible and practical approach for real-time weed emergence prediction based on Artificial Neural Networks. Biosystems engineering. 179. pp. 51-60. |
Final Office Action for U.S. Appl. No. 16/783,511 dated Nov. 4, 2022. 19 pages. |
Number | Date | Country | |
---|---|---|---|
20210022283 A1 | Jan 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16380531 | Apr 2019 | US |
Child | 17067483 | US | |
Parent | 16380550 | Apr 2019 | US |
Child | 16380531 | US | |
Parent | 16171978 | Oct 2018 | US |
Child | 16380550 | US |