The present invention relates generally to mine roof control, and more particularly, it is directed to a yielding arch support for withstanding the effects of impact loading during rock burst occurring in underground mines or tunnels. This invention relates particularly to cambered steel arches capable capable of yielding instantly under sudden impact, such as to cushion the effect of rock burst, in such a manner so as to avoid distortion of the roof arch and maintain the integrety of the support assembly.
As mining conditions continue to deteriorate due to depletion of easily accessible reserves, arch support installation is becoming more common. Currently all wide flange arch support assemblies are rigid. Cambered arch support assemblies are typically installed in an area where a roof fall has occurred and loose debris has been removed. In order to protect miners from secondary rock falls, arch support assemblies must be installed to protect the miners using the travel way. The object is for the cambered arch support system or assembly to absorb the impact of a rock burst impact load.
Typically, when an underground mine experiences a roof fall, the rock debris is removed from the area and the area of the roof fall is bolted and backfilled to reduce the risk of further rock fall. The process of bolting and backfilling the area of the roof that experience roof fall, however, is a time consuming process that requires the mine to stop production. In addition, backfill material is costly and backfilling the large roof fall area can become prohibitively expensive. Accordingly, steel arch support assemblies are more currently utilized as a simple and reliable system to protect personnel and moving vehicles from falling rocks.
Generally, these rigid arch support assemblies incorporate a roof structure spanning between adjacent arch supports of the assembly as lagging panels which are intended to absorb the impact loads from the falling rock. As an example, see the impact resistant lagging assembly disclosed in U.S. Patent Application Publication No. US 2010/0266349, published on Oct. 21, 2010.
Presently, wide flange arch support assemblies deform when an impact load is applied and the arch sets comprising the assembly are compromised and cannot be preserved and therefore have to be replaced.
The arch support assembly of the present invention can withstand the effects of rock burst in underground mines without being compromised, whereby the structural integrity of the steel sets making up the assembly is preserved. The arch support assembly of the present invention includes a spaced aligned series of arch supports, each support having a spaced pair of upright legs or side support columns with an upwardly cambered cap beam having opposite ends thereof transversely meeting and secured respectively to the upper ends of the side columns at an obtuse angle. The arch supports are rigidly tied together and provided with a roof that is supported by the cap beams to provide in combination an arch support assembly. The improvement of the present invention includes a yielding connection provided between each of the upright columns and the cap beam ends whereby the cambered cap beams are permitted to flex downwardly under an impact load on the roof and the cap beam ends are thereby permitted to extend transversely a controlled limited amount (generally a yield of not more than a few inches) relative to the upright side columns under a yieldable interference friction securement fit.
Tie rods tie adjacent of the spaced arch supports together with portions of the roof spanning therebetween under compression. Accordingly, extreme movement of the arch support assembly under impact loading is limited. The yielding cambered arch design allows adequate movement to absorb impact but not extreme yielding movement which would exert stress on the tie rod connections.
The cap beams are generally wide flange cap beams (metal I-beams), and the roof generally consists of parallel beam panels or segments which are confined at their opposite ends by the cap beam flanges and retained transversely to and between adjacent cap beams under longitudinal compression. These roof panels are generally constructed of wood, but may also be constructed of other appropriate materials, or combinations thereof, such as plastic and metal.
The side legs or upright support columns may also be constructed of flanged metal I-beams with parallel beam wall segments confined at their opposite ends by the upright column beam flanges.
The yielding connections between the cap beams and the upright column beams take on different configurations. As one example, the yielding connection may consist of fasteners secured through apertures which are elongated in the direction of extension of the cap beams in order to provide the yieldable interference friction securement fit between the cap beam ends and the upright side columns. As another alternative, the yielding connection may consist of a clamped connection, such as a connection known in the industry as a clamped TH-Profile connection.
Other objects and advantages appear hereinafter in the following description and claims. The accompanying drawings show, for the purpose of exemplification, without limiting the scope of the invention or the appended claims, certain practical embodiments of the present invention wherein:
Referring to the drawings, the arch support assembly 10 of the present invention is provided for withstanding the effects of rock burst in underground mines, and includes a spaced aligned series of arch supports 11. Each support 11 has a spaced pair of legs or upright side support columns 12 with upwardly arched or cambered cap beams 13 having opposite ends 14 meeting and secured respectively to the upper ends 15 at an obtuse angle as illustrated. Arch supports 11 are rigidly tied together with tie rods 16 and provided with a roof 17 supported by cap beams 13 to provide in combination the arch support assembly 10.
A yielding connection 18 is provided between the upright columns 12 and cap beam ends 14 whereby cambered cap beams 13 are permitted to flex downwardly under an impact load on roof 17 and cap beams 13 are thereby permitted to extend laterally at their ends 14 a controlled limited amount relative to upright columns 12 under a yieldable interference friction securement fit of yielding connections 18.
Cap beams 13 and upright side columns 12 are wide flanged steel beams of a generally I-beam configuration. The side columns 12 are supported on runner channels 19 which permit sliding of the entire arch support assembly 10 along a ground surface as a unit.
Roof 17 is comprised of parallel beam segments 20, which in this instance are constructed of wood, but may also be constructed of plastic or metal. These parallel beam segments 20 are confined at their opposite ends by the side flanges of cap beams 13 whereby they are retained transversely to and between adjacent cap beams 13. Tie rods 16 tie adjacent of the spaced arch supports 11 together with the roof panels or beams 20 therebetween under compression.
The sidewalls 21 are constructed in the same manner as the roof 17.
Two different example embodiments of the yielding connections 18 are illustrated. Referring first to
Typically the cambered arches 11 are installed in courses of three or more units. The individual arch sets 11 are bound together by tie rods 16 pulling individuals adjacent sets of arch supports 11 tightly together, placing the roof beam segments 20 under compression. Because the individual arches 11 are tightly bound together, extreme movement under impact loading is limited. The yielding cambered arch support assembly 10 of the present invention allows adequate movement to absorb impact but not extreme yielding movement which would exert stress on the tie rod connections.
Referring next to
Accordingly, the yieldable connections 18 provided in the wide flange structure of arch support assembly 10 of the present invention easily absorbs impact energy from rock falls or rock bursts, and because of the connection of the tie rods 18 between adjacent arch supports 11, the unit is tied together so that the assembly can yield little. Accordingly, the integrity of the arches are maintained, eliminating the necessity for replacement.
This application claims the benefit of U.S. Provisional Application No. 61/518,477, filed May 6, 2011, the entire content of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61518477 | May 2011 | US |