The invention relates to an yttrium-zirconium mixed oxide powder, to its preparation and use.
Depending on the temperature, zirconium oxide can be present in the three crystallographic structures monoclinic, tetragonal and cubic.
Starting from a melt, cubic crystals form at about 2680° C. and assume a tetragonal structure at about 2370° C. The change from the tetragonal to the monoclinic phase takes place at about 1170° C. and is accompanied by an increase in volume of approximately from 3 to 5 percent. This increase in volume can lead to stresses and cracks in structural components that are produced above the tetragonal/monoclinic transition temperature.
It is possible to suppress the phase transition by stabilising the tetragonal structure of the zirconium oxide by doping with yttrium oxide, calcium oxide, cerium oxide or magnesium oxide.
Yttrium-stabilised, tetragonal zirconium oxide is understood as being a zirconium oxide doped with about 3 mol. % yttrium oxide. Partially yttrium-stabilised zirconium oxide is understood as being a zirconium oxide that is doped with approximately from 3 to 8 mol. % yttrium and consists of a cubic matrix with tetragonal inclusions. A fully yttrium-stabilised zirconium oxide is understood as being a zirconium oxide that is doped with about 8 mol. % yttrium and has a cubic crystal structure.
Yttrium-stabilised zirconium oxide can be obtained, for example, by the wet-chemical method and by pyrogenic reactions.
U.S. Pat. No. 6,703,334 describes a process for the preparation of yttrium-stabilised zirconium oxide powder which has a tetragonal and/or a cubic crystal structure, in which process zirconium carbonate particles and an yttrium compound are reacted together, wherein the two reaction partners are solid, one is solid and one is liquid or one is solid and one is gaseous, and the resulting product is then calcined. No information is given regarding the particle size and the specific surface area of the yttrium-stabilised zirconium oxide powder that is produced.
U.S. Pat. No. 5,155,071 claims a partially yttrium-stabilised zirconium oxide powder which is in the form of aggregated primary particles, the aggregates having a mean diameter of less than 150 nm and the yttrium being homogeneously distributed in the zirconium oxide. The partially yttrium-stabilised zirconium oxide powder is prepared by combustion of a homogeneous mixture consisting of a zirconium precursor and an yttrium precursor. An important feature is that the process is carried out at a temperature at which the zirconium oxide precursor, generally zirconium tetrachloride, is vaporisable but the yttrium precursor is not. The yttrium precursor is accordingly fed to the combustion in solid form. A disadvantage of this process is that powders having only a small BET surface area are obtained. In addition, it has been found that the distribution of the yttrium is not homogeneous, but regions of differing yttrium concentrations are present. Furthermore, no information is given regarding the sintering behaviour of the partially yttrium-stabilised zirconium oxide powder.
Böer et al. (Freiberger Forschungsheft 1998, A841, pages 281 to 295) describe an yttrium-stabilised zirconium oxide obtained by spraying a homogeneous solution of zirconium alkoxides with yttrium(II) acetylacetonate into an oxyhydrogen flame with a very high oxygen excess and very short residence times in the flame (about 1 ms). Depending on the yttrium content, a tetragonal or cubic zirconium oxide in the form of spherical particles having a BET surface area of 30 m2/g is obtained. The process is not economical owing to the high oxygen excess and the expensive yttrium precursor.
Juarez et al. (Journal of the European Ceramic Society 20 (2000), pages 133-138) describe an yttrium-stabilised zirconium oxide powder which is obtained by an exothermic redox reaction of nitrate and citrate ions in a nitrate-citrate gel. After grinding, the resulting powder has a particle size of 125 nm and a content of monoclinic zirconium oxide of about 20%. The gel is obtained by dissolving zirconium oxychloride and yttrium oxide in nitric acid, removing the chlorine and then adjusting the pH to 7 with citric acid and ammonium hydroxide. The solution is then heated to from 200 to 250° C. on a hot plate. At that temperature, the exothermic reaction between nitrate and citrate ions begins. Carbon-containing impurities are then removed at 350° C. over a period of one hour, followed by calcination at 600° C. This process is not very economical and is not suitable for up-scaling.
EP-A-1285881 claims a tetragonal yttrium-zirconium oxide mixed oxide powder which may have a BET surface area of from 1 to 600 m2/g, contains less than 0.05 wt. % chloride and does not exhibit any change to the monoclinic phase during storage at room temperature or during annealing (about 900° C.). The mixed oxide powder is prepared by atomising a zirconium oxide precursor and an yttrium oxide precursor together (two-component nozzle) or separately (three-component nozzle) into an oxyhydrogen flame with the aid of a carrier gas. It has been possible to show that, although more homogeneous distribution of the yttrium in the zirconium oxide is found when this two-component nozzle is used, it is not possible to obtain higher BET surface areas and/or a higher content of yttrium oxide (Examples 1 to 3).
The object of the invention is to provide a nano-scale yttrium-stabilised zirconium oxide in which the yttrium is distributed as homogeneously as possible in the zirconium oxide and which, after sintering, exhibits only small amounts of monoclinic zirconium oxide or no monoclinic zirconium oxide.
A further object of the invention is to provide an inexpensive process for the preparation of this powder.
The invention provides a nano-scale yttrium-zirconium mixed oxide powder in the form of aggregated primary particles having the following physico-chemical parameters:
Evaluation of the X-ray diffraction is carried out according to Rietveld.
More preferably, the BET surface area of the mixed oxide powder according to the invention may be from 45 to 65 m2/g.
It may further be preferable for the mixed oxide powder according to the invention to have a dn/da ratio of from 0.5 to 0.9, where dn is the mean, number-related primary particle diameter and da is the mean primary particle diameter averaged over the surface.
It may further be preferable for the mixed oxide powder according to the invention to have a mean aggregate diameter that is less than 200 nm.
It may further be preferable for the mixed oxide powder according to the invention to have an OEM surface area/BET surface area ratio that is greater than 1.1. The OEM surface area is given by OEM=6000/(da×Rho), where da=particle diameter averaged over the surface, Rho=density for zirconium oxide of 6.05 g/cm3. Particular preference may be given to an OEM surface area/BET surface area ratio that is greater than 1.2.
It may further be preferable for the mixed oxide powder according to the invention to have no micropores and for the content of mesopores in the range from 2 to 30 nm to be less than 0.2 ml/g.
The invention further provides a process for the preparation of the mixed oxide powder according to the invention, in which process
There may advantageously be used as the organic zirconium oxide precursor zirconium(IV) ethanolate, zirconium(IV) n-propanolate, zirconium(IV) isopropanolate, zirconium(IV) n-butanolate, zirconium(IV) tert.-butanolate and/or zirconium(IV) 2-ethylhexanoate.
Zirconium compounds generally contain from 1 to 5 wt. % hafnium compounds. However, zirconium compounds may also be prepared in degrees of purity of 99 wt. % or more.
As the inorganic yttrium oxide precursor there may advantageously be used yttrium nitrate, yttrium chloride, yttrium carbonate and/or yttrium sulfate.
The use of yttrium nitrate tetrahydrate is particularly advantageous.
It is possible in principle to use any organic solvents, provided that the inorganic yttrium oxide precursor and the organic zirconium oxide precursor are soluble therein. Suitable organic solvents are methanol, ethanol, n-propanol, isopropanol, n-butanol, tert.-butanol, 2-propanone, 2-butanone, diethyl ether, tert.-butyl methyl ether, tetrahydrofuran, ethyl acetate, toluene and/or benzine.
The invention relates further to the use of the mixed oxide powder according to the invention as a filler, as a carrier, as a catalytically active substance, in fuel cells, as a dental material, for the preparation of membranes, as an additive in the silicone and rubber industry, for adjusting the rheology of liquid systems, for heat protection stabilisation, in the surface coatings industry, as a colouring pigment.
BET determined in accordance with DIN 66131
TEM/EDX: Energy Dispersive X-Ray Analysis (EDX)
TEM: Jeol 2070-F; EDX: Noran Voyager 4.2.3
Image analysis: The primary particle and aggregate sizes are determined by image analysis. The image analyses are carried out by means of an H 7500 TEM device from Hitachi and a MegaView II CCD camera from SIS. The image magnification for the evaluation is 30,000:1 with a pixel density of 3.2 nm. The number of particles evaluated is greater than 1000. Preparation is carried out in accordance with ASTM3849-89. The lower threshold limit in respect of detection is 50 pixels.
The content of yttrium oxide and zirconium oxide is determined by X-ray fluorescence analysis and/or chemical analysis.
Solution Zr-1: Octa-Soligen® Zirkonium 18: Zirconium octoate corresponding to 25.4 wt. % zirconium oxide, 39.6 wt. % octanoic acid, 3.5 wt. % 2-(2-butoxyethoxy)-ethanol, 31.5 wt. % white spirit.
Solution Zr-2: Tyzor® NPZ: Zirconium tetrapropanolate corresponding to 28.8 wt. % zirconium oxide, 41.2 wt. % tetrapropanolate, 30 wt. % 1-propanol.
Solution Y-1: 30.7 wt. % Y(NO3)3*4H2O, 69.3 wt. % acetone
Solution Y-2: 33.8 wt. % Y(NO3)3*6H2O, 66.2 wt. % methanol
Solution Zr-1 in an amount of 312 g/h (based on zirconium oxide) and solution Y-1 in an amount of 7.0 g/h (based on yttrium oxide) are mixed. The mixture remains stable, no precipitates form.
The mixture, total amount including the solvents 1300 g/h, is then atomised with air (3.5 Nm3/h) . The resulting droplets exhibit a droplet size spectrum d30 of from 5 to 15 μm. The droplets are burnt in a flame, formed from hydrogen (1.5 Nm3/h) and primary air (12.0 Nm3/h), into a reaction space. 15.0 Nm3/h of (secondary) air are additionally introduced into the reaction space. The hot gases and the solid products are then cooled in a cooling line. The resulting yttrium-stabilised zirconium oxide is separated off in filters.
Example 2 is carried out analogously but with components Zr-2 and Y-1. The amounts used are indicated in Table 1.
Example 3 is carried out analogously to Example 1. The amounts of the substances used are indicated in Table 1.
Example 4 is carried out analogously to Example 1 but with components Zr-2 and Y-1. The amounts used are indicated in Table 1.
Examples 5 and 6 are carried out analogously to Example 1 but solutions Zr-2 and Y-2 are fed to the flame separately.
The powders according to the invention of Examples 1 to 4 show a largely similar composition of the primary particles in respect of the components yttrium and zirconium. These values correspond well with those from the powder analysis.
The powders according to the invention of Examples 1 to 4 exhibit a characteristic OEM surface area/BET surface area ratio. This ratio has a higher value, greater than 1.1, compared with the powders of the comparative examples and competitive samples.
The powders from Comparative Examples 5 and 6 exhibit in particular an inhomogeneous distribution of the mixed oxide components compared with the powders according to the invention. Moreover, after heat treatment at 1300° C. they still contain distinct amounts of monoclinic zirconium oxide.
a)Flow rate: 1500 g/h Zr-2, 250 g/h Y-2;
b)14820 g/h Zr-2, 3000 g/h Y-2;
d)RT = room temperature (23° C.);
e)n.d. = not determined
Number | Date | Country | Kind |
---|---|---|---|
10 2004 039 139.4 | Aug 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/07822 | 7/19/2005 | WO | 00 | 1/26/2007 |