This application claims the benefit of a Japanese Patent Application No. 2004-027233 filed Feb. 3, 2004, in the Japanese Patent Office, the disclosure of which is hereby incorporated by reference.
1. Field of the Invention
The present invention generally relates to Z-fold methods and image forming apparatuses and Z-fold methods, and more particularly to a Z-fold method for automatically folding a transfer sheet or medium such as paper, and an image forming apparatus which employs such a Z-fold method to fold the transfer sheet or medium when ejecting the same.
2. Description of the Related Art
Recently, an image forming apparatus (hereinafter referred to as a composite apparatus) integrally comprising the functions of a printing apparatus (or printer), a copying apparatus, a facsimile apparatus, a scanning apparatus (or scanner) and the like, has been developed. Such a composite apparatus has a display part, a printing part, an image pickup (or imaging) part and the like that are provided within a housing. In addition, the composite apparatus is provided with 4 kinds of application programs (hereinafter simply referred to as applications) respectively corresponding to the printing apparatus, the copying apparatus, the facsimile apparatus and the scanning apparatus. The composite apparatus functions as the printing apparatus, the copying apparatus, the facsimile apparatus and the scanning apparatus by switching the applications.
A Z-fold function is one of various functions provided by the composite apparatus. The Z-fold function automatically folds a transfer sheet or medium such as paper (hereinafter referred to as a recording medium) when ejecting the recording medium from the composite apparatus. For example, if an A3-size document coexists within A4-size documents, the Z-fold function is used to fold the A3-size document so as to match the sizes of the documents.
But the conventional Z-fold function was not always useful due to limitations posed on the folding. For example, the Z-fold may be possible with respect to the A3-size document but not with respect to the A4-size document, and the Z-fold desired by the operator (or user) may not be possible.
Accordingly, it is a general object of the present invention to provide a novel and useful Z-fold method and image forming apparatus, in which the problems described above are suppressed.
Another and more specific object of the present invention is to provide a Z-fold method and an image forming apparatus, which can provide useful Z-fold functions to the operator (or user).
Still another and more specific object of the present invention is to provide an image forming apparatus comprising an orientation setting part configured to set a readable orientation of a document that enables an operator of the image forming apparatus to readily read and understand an image on the document when carrying out an image forming process to form the image on a recording medium; a folding direction setting part configured to set a folding direction in which a Z-fold of the recording medium is to be made after the image forming process; and a Z-fold part configured to form the Z-fold on the recording medium, based on the readable orientation and the folding direction. According to the image forming apparatus of the present invention, it is possible to provide useful Z-fold functions to the operator (or user).
A further object of the present invention is to provide a Z-fold method for an image forming apparatus, comprising an orientation setting step setting a readable orientation of a document that enables an operator of the image forming apparatus to readily read and understand an image on the document when carrying out an image forming process to form the image on a recording medium; a folding direction setting step setting a folding direction in which a Z-fold of the recording medium is to be made after the image forming process; and a Z-fold step forming the Z-fold on the recording medium, based on the readable orientation and the folding direction. According to the Z-fold method of the present invention, it is possible to provide useful Z-fold functions to the operator (or user).
Another object of the present invention is to provide a computer-readable storage medium which stores a program for causing a computer to carry out a Z-fold in an image forming apparatus, the program comprising an orientation setting procedure causing the computer to set a readable orientation of a document that enables an operator of the image forming apparatus to readily read and understand an image on the document when carrying out an image forming process to form the image on a recording medium; a folding direction setting procedure causing the computer to set a folding direction in which a Z-fold of the recording medium is to be made after the image forming process; and a Z-fold procedure causing the computer to form the Z-fold on the recording medium, based on the readable orientation and the folding direction. According to the computer-readable storage medium of the present invention, it is possible to provide useful Z-fold functions to the operator (or user).
Other objects and further features of the present invention will be apparent from the following detailed description when read in conjunction with the accompanying drawings.
A description will be given of a functional structure of an embodiment of an image forming apparatus according to the present invention, by referring to
The composite apparatus 1 shown in
The composite apparatus starting part 3 is first executed when a power supply of the composite apparatus 1 is turned ON, and starts the application layer 5 and the platform layer 6. For example, the composite apparatus starting part 3 reads programs of the application layer 5 and the platform layer 6 from a Hard Disk Drive (HDD) or the like, transfers each read program to a memory region and starts (boots) each program.
The application layer 5 includes application programs (or applications) for carrying out processes peculiar to user services related to image formation, such as printing, copying, facsimile and scanning processes. More particularly, the application layer 5 includes a printer application 9 for the printing process, a copy application 10 for the copying process, a facsimile application 11 for the facsimile process, and a scanner application 12 for the scanning process.
The platform layer 6 includes a control service layer 7, a System Resource Manager (SRM) 21, and a handler layer 8. The control service layer 7 analyzes processing requests from the application layer 5, and generates acquisition requests for the hardware resources 4. The SRM 21 manages one or more hardware resources 4, and carries out an arbitration of the acquisition requests from the control service layer 7. The handler layer 8 manages the hardware resources 4 depending on the acquisition request from the SRM 21.
The control service layer 7 is formed by one or a plurality of service modules. More particularly, the control service layer 7 includes a Network Control Service (NCS) 13, a Delivery Control Service (DCS) 14, an Operation panel Control Service (OCS) 15, a Fax Control Service (FCS) 16, an Engine Control Service (ECS) 17, a Memory Control Service (MCS) 18, a User information Control Service (UCS) 19, and a System Control Service (SCS) 20.
The platform layer 6 includes an Application Program Interface (API) 28 that enables reception of the processing requests from the application layer 5 by predefined functions. The OS executes each software of the application layer 5 and the platform layer 6 in parallel as processes.
The NCS 13 provides services that may be used in common by the applications which require the network Input/Output (I/O) or interface (I/F). The processes carried out by the NCS 13 include distributing the data received from the network by each protocol to each application, and intervening when the data is sent from each application to the network.
For example, the NCS 13 may use a Hypertext Transfer Protocol Daemon (httpd) so as to control a data communication with a network equipment that is connected via the network by a HyperText Transfer Protocol (HTTP).
The DCS 14 carries out processes including control of distribution and the like of stored documents. The OCS 15 carries out processes including control of an operation panel forming an information transmitting part or means between the operator and a main body control. The FCS 16 provides the Application Program Interface (API) for facsimile transmission and reception using a Public Switched Telephone. Network or Integrated Services Digital Network (PSTN/ISDN) from the application layer 5, registration and/or reference of various facsimile data managed in a backup memory, facsimile reading, and facsimile reception printing.
The ECS 17 carries out processes corresponding to a Z-fold part or means, to control an engine part such as the scanner 25, the plotter 26 and the other hardware resources 24. The Z-fold part or means includes a rotating part or means, a size judging part or means, and a scan width comparing part or means. The MCS 18 carries out a memory control. More particularly, the MCS 18 carries out control processes such as acquiring and releasing a memory, and utilizing the HDD. The UCS 19 manages user information.
The SCS 20 carries out a plurality of functions that include application management, operating part control, system screen display, Light Emitting Diode (LED) display, hardware resource management, interrupt application control and the like.
The SRM 21 carries out the system control and the hardware resource management of the hardware resources 4 together with the SCS 20. The SRM 21 carries out an arbitration of the acquisition requests received from a higher layer that utilizes the hardware resources 4 such as the scanner 25 and the plotter 26, and executes the requests.
More particularly, the SRM 21 judges whether or not the hardware resource 4 requested by the acquisition request exists and is usable (not in use by another request), and if in the affirmative, notifies the higher layer that the requested hardware resource 4 is usable. In addition, the SRM 21 may carry out a scheduling of the hardware resources 4 that are used with respect to the acquisition request from the higher layer, and directly execute the requested contents (for example, transporting paper and forming an image by a printer engine, securing a memory, generating a file, etc.).
The handler layer 8 includes a Fax Control Unit Handler (FCUH) 22 for managing a Fax Control Unit (FCU) 40 which will be described later, and an Image Memory Handler (IMH) 23 for allocating the memory with respect to each process and for managing the allocated memory. The SRM 21 and the FCUH 22 make processing requests with respect to the hardware resources 4 by predefined functions, using an engine interface (I/F) 27 that enables transmission of the processing requests with respect to the hardware resources 4.
In the composite apparatus 1, the processes required in common by each of the applications may be centrally processed in the platform layer 6.
Next, a description will be given of a hardware structure of this embodiment of the image forming apparatus, by referring to
As shown in
The controller board 30 includes a Central Process Unit (CPU) 31, a system memory (MEM-P) 32, a North Bridge (NB) 33, a South Bridge (SB) 34, an Application Specific Integrated Circuit (ASIC) 36, a local memory (MEM-C) 37, an HDD 38, a Universal Serial Bus (USB) device 41, an IEEE 1394 device 42, a Network Interface Card (NIC) 50, and a Centronics device 51.
The operation panel 39 is connected to the ASIC 36 of the controller board 30. The SB 34, the NIC 50, the USB device 41, the IEEE 1394 device 42 and the Centronics device 51 are connected to the NB 33 via a Peripheral Component Interconnect (PCI) bus.
The FCU 40 and the engine part 43 are connected to the ASIC 36 of the controller board 30 via a PCI bus.
In the controller board 30, the local memory 37, the HDD 38 and the like are connected to the ASIC 36. The CPU 31 and the ASIC 36 are connected via the NB 33 of a CPU chip set. By connecting the CPU 31 and the ASIC 36 via the NB 33 in this manner, it is possible to cope with a case where the interface of the CPU 31 itself is unknown.
The ASIC 36 and the NB 33 are not simply connected via the PCI bus, but are connected via an Accelerated Graphics Port (AGP) 35. The ASIC 36 and the NB 33 are connected via the AGP 35 to prevent a performance deterioration that would otherwise occur if the two were connected by the low-speed PCI bus, since the composite apparatus 1 is designed to execute and control one or a plurality of processes forming the application layer 5 and the platform layer 6 shown in
The CPU 31 controls the general operation of the composite apparatus 1. More particularly, the CPU 31 starts and executes, on the OS, the NCS 13, the DCS 14, the OCS 15, the FCS 16, the ECS 17, the MCS 18, the UCS 19, the SCS 20, the SRM 21, the FCUH 22 and the IMH 23, as processes. The CPU 31 also starts and executes the printer application 9, the copy application 10, the facsimile application 11 and the scanner application 12 which form the application layer 5.
The NB 33 is provided to connect the CPU 31 to the system memory 32, the SB 34 and the ASIC 36. The system memory 32 is used as a plotting memory and the like of the composite apparatus 1. The SB 34 connects the NB 33 to the PCI bus, a peripheral device and the like. The local memory 37 is used as an image buffer for copying, a code buffer and the like.
The ASIC 36 includes image processing hardware elements for carrying out image processing. The HDD 38 forms a storage for storing image data (document data), programs, font data, forms, documents and the like. The operation panel 39 includes keys for accepting an input operation made by the operator (or user), and a display part for displaying messages and the like with respect to the operator. In this embodiment, the operation panel 39 forms an orientation setting part or means and a folding direction setting part or means.
Next, a description will be given of the Z-fold. First, a description will be given of the definitions of the terms “size of document data”, “recording medium size”, “readable orientation”, “non-readable orientation”, “right-fold”, “bottom-fold”, “vertical” and “horizontal”, and a basic Z-fold operation.
The “size of document data” refers to the recording medium size such as the A4-size and the B5-size to which the image data (document data) read from the document (hereinafter referred to as document data) conforms when being formed on the recording medium. The “recording medium size” refers to the recording medium size such as the A4-size and the B5-size. Hence, the scanning widths of the document data and the recording medium correspond to the recording medium size such as the A4-size and the B5-size. In addition, the document data and the recording medium are regarded as being aligned in the “same direction” (or as having the “same orientation”), if a longer side (or shorter side) of the recording medium to which the document data conforms when being formed on the recording medium is parallel to the longer side (or shorter side) of the recording medium on which the image of the document data is formed.
The “readable orientation” refers to an orientation of the document that enables the operator (or user) of the composite apparatus 1 to readily read and understand the image on the document when carrying out a copying process, for example, to form this image on a recording medium. On the other hand, the “non-readable orientation” refers to an orientation of the document that does not enable the operator (or user) of the composite apparatus 1 to readily read and understand the image on the document when carrying out the copying process, for example, to form this image on the recording medium.
In
As may be seen from
The recording medium that is subjected to the Z-fold assumes a size that is ½ that of the document, as described hereunder with reference to
The positions (corresponding to the lines 203 and 204 on the document 202) where the recording medium 201 is folded may be slightly adjustable, as shown in
Next, the definition of the terms “vertical” and “horizontal” will be given with referring again to
The Z-fold desired by the operator can be realized on the recording medium by inputting the Z-fold direction (that is, the right-fold or bottom-fold) and the readable orientation from the operation panel 39 shown in
Next, a description will be given of the manner in which the copying process is carried out to form the image of the document on the recording medium, when the Z-fold is to be made while making a media specifying magnification and the documents having mixed sizes coexist. The media specifying magnification refers to an image forming process (copying process) which magnifies the image of the document by a suitable magnification (or zoom) when forming the image on the recording medium having a size that is specified by the operator.
First, a description will be given of the media specifying magnification and the Z-fold, by referring to
The “horizontal size” is selected when the operator wishes to form the image of the document on the recording medium that has the horizontal orientation, and the “vertical size” is selected when the operator wishes to form the image of the document on the recording medium that has the vertical orientation, when carrying out the copying process. In other words, the first row of the table shown in
When the right-fold and the horizontal size are selected for the copying process employing the media specifying magnification with respect to the readable document 115 in the horizontal orientation, the recording medium 120 in the horizontal orientation is formed with the document image with a magnification 1 (that is, no reduction or enlargement) and ejected from the composite apparatus 1 as it is without the right-fold. When the right-fold and the vertical size are selected for the copying process with respect to the readable document 115, the recording medium 121 in the vertical orientation is formed with the document image with a magnification less than 1 (that is, reduction) so as to have a right margin (blank space) and ejected with the right-fold for the first copy, and the recording medium 122 in the vertical orientation is formed with the document image with a magnification 1 and a −90 degree image rotation and ejected with the right-fold for the second and subsequent copies. For the sake of convenience, the image rotation in a clockwise direction is regarded as a rotation in a positive angular direction, and the image rotation in an anticlockwise direction is regarded as a rotation in a negative angular direction.
When the right-fold and the horizontal size are selected for the copying process employing the media specifying magnification with respect to the readable document 116 in the vertical orientation, the recording medium 126 in the horizontal orientation is formed with the document image with a magnification less than 1 so as to have a top margin (blank space) and ejected from the composite apparatus 1 without the right-fold for the first copy, and the recording medium 127 in the horizontal orientation is formed with the document image with a magnification 1 and a −90 degree image rotation and ejected without the right-fold for the second subsequent copies. When the right-fold and the vertical size are selected for the copying process with respect to the readable document 116, the recording medium 128 in the vertical orientation is formed with the document image with a magnification 1 and ejected with the right-fold.
When the bottom-fold and the horizontal size are selected for the copying process employing the media specifying magnification with respect to the readable document 115 in the horizontal orientation, the recording medium 123 in the horizontal orientation is formed with the document image with a magnification less than 1 and a −90 degree image rotation so as to have a top margin and ejected from the composite apparatus 1 without the bottom-fold for the first copy, and the recording medium 124 in the horizontal orientation is formed with the document image with a magnification 1 and a −180 degree image rotation and ejected without the bottom fold for the second and subsequent copies. When the bottom-fold and the vertical size are selected for the copying process with respect to the readable document 115, the recording medium 125 in the vertical orientation is formed with the document image with a magnification 1 and a −90 degree image rotation and ejected with the bottom-fold.
When the bottom-fold and the horizontal size are selected for the copying process employing the media specifying magnification with respect to the readable document 116 in the vertical orientation, the recording medium 129 in the horizontal orientation is formed with the document image with a magnification 1 and a −90 degree image rotation and ejected from the composite apparatus 1 without the bottom-fold. When the bottom-fold and the vertical size are selected for the copying process with respect to the readable document 116, the recording medium 130 in the vertical orientation is formed with the document image with a magnification less than 1 and a −90 degree image rotation so as to have a left margin (blank space) and ejected with the bottom-fold for the first copy, and the recording medium 131 in the vertical orientation is formed with the document image with a magnification 1 and a −180 degree image rotation and ejected with the bottom-fold for the second subsequent copies.
On the other hand, when the right-fold and the horizontal size are selected for the copying process employing the media specifying magnification with respect to the non-readable document 117 in the vertical orientation, the recording medium 132 in the horizontal orientation is formed with the document image with a magnification 1 and a 90 degree image rotation and ejected from the composite apparatus 1 without the right-fold. When the right-fold and the vertical size are selected for the copying process with respect to the non-readable document 117, the recording medium 133 in the vertical orientation is formed with the document image with a magnification less than 1 and a 90 degree image rotation so as to have a right margin and ejected with the right-fold for the first copy, and the recording medium 134 in the vertical orientation is formed with the document image with a magnification 1 and ejected with the right-fold for the second and subsequent copies.
When the right-fold and the horizontal size are selected for the copying process employing the media specifying magnification with respect to the non-readable document 118 in the horizontal orientation, the recording medium 138 in the horizontal orientation is formed with the document image with a magnification less than 1 and a 90 degree image rotation so as to have a bottom margin (blank space) and ejected from the composite apparatus 1 without the right-fold for the first copy, and the recording medium 139 in the horizontal orientation is formed with the document image with a magnification 1 and ejected without the right-fold for the second subsequent copies. When the right-fold and the vertical size are selected for the copying process with respect to the non-readable document 118, the recording medium 140 in the vertical orientation is formed with the document image with a magnification 1 and a −90 image rotation and ejected with the right-fold.
When the bottom-fold and the horizontal size are selected for the copying process employing the media specifying magnification with respect to the non-readable document 117 in the vertical orientation, the recording medium 135 in the horizontal orientation is formed with the document image with a magnification less than 1 so as to have a top margin and ejected from the composite apparatus 1 without the bottom-fold for the first copy, and the recording medium 136 in the horizontal orientation is formed with the document image with a magnification 1 and a −90 degree image rotation and ejected without the bottom fold for the second and subsequent copies. When the bottom-fold and the vertical size are selected for the copying process with respect to the non-readable document 117, the recording medium 137 in the vertical orientation is formed with the document image with a magnification 1 and ejected with the bottom-fold.
When the bottom-fold and the horizontal size are selected for the copying process employing the media specifying magnification with respect to the non-readable document 118 in the horizontal orientation, the recording medium 141 in the horizontal orientation is formed with the document image with a magnification 1 and ejected from the composite apparatus 1 without the bottom-fold. When the bottom-fold and the vertical size are selected for the copying process with respect to the non-readable document 118, the recording medium 142 in the vertical orientation is formed with the document image with a magnification less than 1 so as to have a right margin and ejected with the bottom-fold for the first copy, and the recording medium 143 in the vertical orientation is formed with the document image with a magnification 1 and a −90 degree image rotation and ejected with the bottom-fold for the second subsequent copies.
Of course, the document image subjected to the magnification and/or the image rotation is formed on the recording medium by the plotter 26, and the recording medium is thereafter subjected to the Z-fold by the folding mechanism included in the other hardware resources 24 if necessary.
Next, a description will be given of the Z-fold for the case where documents having mixed (or different) sizes coexist, by referring to
Case C1):
When the right-fold is selected for the copying process with respect to a readable document 150 in the horizontal orientation and a readable document 151 in the vertical orientation, a recording medium 152 in the horizontal orientation is formed with the document image of the readable document 150 and ejected from the composite apparatus 1 without the right-fold, and a recording medium 153 in the horizontal orientation is formed with the document image of the readable document 151 with a −90 degree image rotation and ejected without the right-fold in succession to the recording medium 152. When the bottom-fold is selected for the copying process with respect to the readable documents 150 and 151, a recording medium 154 in the vertical orientation is formed with the document image of the readable document 150 with a −90 degree image rotation and ejected with the bottom-fold, and a recording medium 155 in the vertical orientation is formed with the document image of the readable document 151 and ejected with the bottom-fold in succession to the recording medium 155.
When the right-fold is selected for the copying process with respect to a non-readable document 156 in the horizontal orientation and a non-readable document 157 in the vertical orientation, a recording medium 158 in the vertical orientation is formed with the document image of the non-readable document 156 with a 90 degree image rotation and ejected from the composite apparatus 1 with the right-fold, and a recording medium 159 in the vertical orientation is formed with the document image of the non-readable document 157 and ejected with the right-fold in succession to the recording medium 158. When the bottom-fold is selected for the copying process with respect to the non-readable documents 156 and 157, a recording medium 160 in the horizontal orientation is formed with the document image of the non-readable document 156 and ejected without the bottom-fold, and a recording medium 161 in the horizontal orientation is formed with the document image of the non-readable document 157 with a −90 degree image rotation and ejected without the bottom-fold in succession to the recording medium 160.
Case C2):
When the right-fold is selected for the copying process with respect to a readable document 162 in the horizontal orientation and a readable document 163 in the vertical orientation, a recording medium 164 in the horizontal orientation is formed with the document image of the readable document 162 and ejected from the composite apparatus 1 without the right-fold, and a recording medium 165 in the vertical orientation is formed with the document image of the readable document 163 and ejected with the right-fold in succession to the recording medium 165. When the bottom-fold is selected for the copying process with respect to the readable documents 162 and 163, a recording medium 166 in the vertical orientation is formed with the document image of the readable document 162 with a −90 degree image rotation and ejected with the bottom-fold, and a recording medium 167 in the vertical orientation is formed with the document image of the readable document 163 and ejected with the bottom-fold in succession to the recording medium 166.
When the right-fold is selected for the copying process with respect to a non-readable document 168 in the horizontal orientation and a non-readable document 169 in the vertical orientation, a recording medium 170 in the vertical orientation is formed with the document image of the non-readable document 168 with a 90 degree image rotation and ejected from the composite apparatus 1 with the right-fold, and a recording medium 171 in the vertical orientation is formed with the document image of the non-readable document 169 and ejected with the right-fold in succession to the recording medium 170. When the bottom-fold is selected for the copying process with respect to the non-readable documents 168 and 169, a recording medium 172 in the horizontal orientation is formed with the document image of the non-readable document 168 and ejected without the bottom-fold, and a recording medium 173 in the vertical orientation is formed with the document image of the non-readable document 169 with a 180 degree image rotation and ejected with the bottom-fold in succession to the recording medium 172.
Case C3):
When the right-fold is selected for the copying process with respect to a readable document 174 in the vertical orientation and a readable document 175 in the horizontal orientation, a recording medium 176 in the vertical orientation is formed with the document image of the readable document 174 and ejected from the composite apparatus 1 with the right-fold, and a recording medium 177 in the horizontal orientation is formed with the document image of the readable document 175 and ejected without the right-fold in succession to the recording medium 176. When the bottom-fold is selected for the copying process with respect to the readable documents 174 and 175, a recording medium 178 in the horizontal orientation is formed with the document image of the readable document 174 with a −90 degree image rotation and ejected without the bottom-fold, and a recording medium 179 in the horizontal orientation is formed with the document image of the readable document 175 with a 180 degree image rotation and ejected without the bottom-fold in succession to the recording medium 178.
When the right-fold is selected for the copying process with respect to a non-readable document 180 in the vertical orientation and a non-readable document 181 in the horizontal orientation, a recording medium 182 in the horizontal orientation is formed with the document image of the non-readable document 180 with a 90 degree image rotation and ejected from the composite apparatus 1 without the right-fold, and a recording medium 183 in the horizontal orientation is formed with the document image of the non-readable document 181 and ejected without the right-fold in succession to the recording medium 182. When the bottom-fold is selected for the copying process with respect to the non-readable documents 180 and 181, a recording medium 184 in the vertical orientation is formed with the document image of the non-readable document 180 and ejected without the bottom-fold, and a recording medium 185 in the horizontal orientation is formed with the document image of the non-readable document 181 with a 180 degree image rotation and ejected without the bottom-fold in succession to the recording medium 184.
Next, a description will be given of the processes that are carried out when the Z-fold is to be made while making the media specifying magnification and when the documents having mixed sizes coexist, with reference to flow charts. The processes of the flow charts described hereunder are carried out by the ECS 17 shown in
Next, a more detailed description will be given of the Z-fold rotation process carried out in the step S102 shown in
In
If the document has the non-readable orientation and the judgement result in the step S201 is NO, a step S204 carries out a right-fold judging process to judge whether or not the right-fold is selected and required, based on the information of the table shown in
If the judgement result in the step S205 is YES, a step S206 carries out the required image rotation, and forms the rotated image on the recording medium, and the process returns to the step S103 shown in
Next, a more detailed description will be given of the Z-fold size judging process carried out in the step S103 shown in
In
The Z-fold of the recording medium may be realized by the folding mechanism having a known structure for folding the recording medium. Accordingly, a description and illustration of the folding mechanism itself will be omitted. This folding mechanism within the other hardware resources 24 may also form a part of the Z-fold part or means described above.
The document data of the document 220 in the readable orientation is processed differently depending on whether or not the recording medium on which the document image is formed is to be subjected to the right-fold by the judgement made in the step S202. In the case of the right-fold, the document data of the document 220 is processed as it is (that is, no image rotation is made) as the document data 222 that is formed on the recording medium in the step S203, and if the step S301 judges that the recording medium 226 has a size that does not enable the Z-fold, the step S303 ejects the recording medium 226 without the Z-fold.
In the case of the bottom-fold, the document data of the document 220 is processed into the rotated document data 223 that is formed on the recording medium in the step S206, and if the step S301 judges that the recording medium 227 has a size that enables the Z-fold, the step S302 ejects the recording medium 227 with the Z-fold.
The document data of the document 221 in the non-readable orientation is processed differently depending on whether or not the recording medium on which the document image is formed is to be subjected to the right-fold by the judgement made in the step S204. In the case of the right-fold, the document data of the document 221 is processed into the rotated document data 224 that is formed on the recording medium in the step S206, and if the step S301 judges that the recording medium 228 has a size that enables the Z-fold, the step S302 ejects the recording medium 228 with the Z-fold.
In the case of the bottom-fold, the document data of the document 221 is processed as it is as the document data 225 that is formed on the recording medium in the step S203, and if the step S301 judges that the recording medium 229 has a size that does not enable the Z-fold, the step S303 ejects the recording medium 229 without the Z-fold.
Next, a description will be given of a basic Z-fold operation of the composite apparatus 1 when making the media specifying magnification, with reference to
In
In
If the judgement result in the step S603 is NO, a step S611 sets the image rotation to 0 or 180 degrees and sets the magnification size (reading size) to the size corresponding to ½ the size of the selected recording medium, based on the information of the table shown in
If the judgement result in the step S602 is NO, a step S605 judges whether or not the document and the selected recording medium have the same direction (or orientation). If the judgement result in the step S605 is YES, a step S606 sets the image rotation to 90 or −90 (or 270) degrees and sets the magnification size (reading size) to ½ the size corresponding to the size of the selected recording medium, based on the information of the table shown in
If the judgement result in the step S605 is NO, a step S610 sets the image rotation to 90 or −90 (or 270) degrees and sets the magnification size (reading size) to the size corresponding to the size of the selected recording medium, based on the information of the table shown in
If the judgement result in the step S601 is NO, a step S607 judges whether or not the right-fold is selected. If the judgement result in the step S607 is YES, a step S608 judges whether or not the document and the selected recording medium have the same direction (or orientation). The process advances to the step S606 if the judgement result in the step S608 is YES, and the process advances to the step S610 if the judgement result in the step S608 is NO.
If the judgement result in the step S607 is NO, a step S609 judges whether or not the document and the selected recording medium have the same direction (or orientation). The process advances to the step S604 if the judgement result in the step S609 is YES, and the process advances to the step S611 if the judgement result in the step S609 is NO.
The document data of the document 250 in the readable orientation is processed differently depending on whether or not the recording medium on which the document image is formed is to be subjected to the right-fold by the judgement made in the step S401. In the case of the right-fold, the document data of the document 250 is processed as it is (that is, no image rotation is made) as the document data 252, in the step S402. In addition, the document data 252 is processed with a magnification size corresponding to the size of the selected recording medium as the document data 264 that is formed on the recording medium if the processed document and the selected recording medium have the same orientation, in the step S402. In this case, if the step S403 judges that the recording medium 272 has a size that does not enable the Z-fold, the step S403 ejects the recording medium 272 without the Z-fold. On the other hand, the document data 252 is processed with a magnification size corresponding to ½ the size of the selected recording medium as the document data 265 that is formed on the recording medium if the processed document and the selected recording medium have different orientations, in the step S402. In this latter case, if the step S403 judges that the recording medium 273 has a size that enables the Z-fold, the step S403 ejects the recording medium 273 with the Z-fold.
In the case of the bottom-fold, the document data of the document 250 is processed into the rotated document data 253, in the step S402. In addition, the document data 253 is processed with a magnification size corresponding to ½ the size of the selected recording medium as the document data 266 that is formed on the recording medium if the processed document and the selected recording medium have different orientations, in the step S402. In this case, if the step S403 judges that the recording medium 274 has a size that does not enable the Z-fold, the step S403 ejects the recording medium 274 without the Z-fold. On the other hand, the document data 253 is processed with a magnification size corresponding to the size of the selected recording medium as the document data 267 that is formed on the recording medium if the processed document and the selected recording medium have the same orientation, in the step S402. In this latter case, if the step S403 judges that the recording medium 275 has a size that enables the Z-fold, the step S403 ejects the recording medium 275 with the Z-fold.
The document data of the document 250 in the non-readable orientation is processed differently depending on whether or not the recording medium on which the document image is formed is to be subjected to the right-fold by the judgement made in the step S401. In the case of the right-fold, the document data of the document 251 is processed into the rotated document data 254, in the step S402. In addition, the document data 254 is processed with a magnification size corresponding to ½ the size of the selected recording medium as the document data 268 that is formed on the recording medium if the processed document and the selected recording medium have different orientations, in the step S402. In this case, if the step S403 judges that the recording medium 276 has a size that does not enable the Z-fold, the step S403 ejects the recording medium 276 without the Z-fold. On the other hand, the document data 254 is processed with a magnification size corresponding to the size of the selected recording medium as the document data 269 that is formed on the recording medium if the processed document and the selected recording medium have the same orientation, in the step S402. In this latter case, if the step S403 judges that the recording medium 277 has a size that enables the Z-fold, the step S403 ejects the recording medium 277 with the Z-fold.
In the case of the bottom-fold, the document data of the document 251 is processed as it is (that is, no image rotation is made) as the document data 255, in the step S402. In addition, the document data 255 is processed with a magnification size corresponding to the size of the selected recording medium as the document data 270 that is formed on the recording medium if the processed document and the selected recording medium have the same orientation, in the step S402. In this case, if the step S403 judges that the recording medium 278 has a size that does not enable the Z-fold, the step S403 ejects the recording medium 278 without the Z-fold. On the other hand, the document data 255 is processed with a magnification size corresponding to ½ the size of the selected recording medium as the document data 271 that is formed on the recording medium if the processed document and the selected recording medium have different orientations, in the step S402. In this latter case, if the step S403 judges that the recording medium 279 has a size that enables the Z-fold, the step S403 ejects the recording medium 279 with the Z-fold.
Next, a description will be given of the Z-fold process carried out with respect to mixed documents, that is, documents having mixed sizes, by referring to
In
If the judgement result in the step S703 is YES, a step S704 sets the image rotation angle of the target document to 0 (or 180) degrees based on the table shown in
The main scanning width of the A3-size differs from that of the A4-size, but the main scanning width of the A3-size is equal to the sub scanning width of the A4-size. Accordingly, the image of the first document 301 is not rotated when formed on a recording medium 303, and this recording medium 303 is ejected with the Z-fold. The image of the second document 302 is rotated by 90 degrees when formed on a recording medium 304, and this recording medium 304 is ejected without the Z-fold.
The main scanning width of the A3-size differs from that of the B4-size, and the main scanning width of the A3-size also differs from the sub scanning width of the B4-size. Hence, the image of the first document 305 is not rotated when formed on a recording medium 307, and this recording medium 307 is ejected with the Z-fold. The image of the second document 306 is not rotated when formed on a recording medium 308, and this recording medium 308 is ejected with the Z-fold.
The Z-fold function may be used in combination with a staple function and/or a punch function.
In
The stapling may normally be made at any of 4 positions on the recording medium, namely, the top left, the bottom left, the top right and the bottom right. It is also possible to staple the recording medium at two positions, namely, the top left and the bottom left (indicated as 2-LEFT) or, the top right and the bottom right (indicated as 2-RIGHT). In addition, the stapling may be made obliquely with respect to the recording medium, as indicated by “OBLIQUE TOP LEFT” which indicates the oblique stapling at the top left, and “OBLIQUE TOP RIGHT” which indicates the oblique stapling at the top right. The stapling may also be made at the left center (or right center) of the recording medium as shown in
In
The punching may normally be made at any of 3 positions on the recording medium, namely, the top, the right and the left. The punching may form one or a plurality of holes in the recording medium. In addition, the holes formed by the punching may have the same size or, have different sizes. Moreover, the size of the holes formed by the punching may differ depending on the position on the recording medium where the punching is made.
Of course, a computer-readable storage medium which stores a program for causing a computer to carry out the Z-fold method of the present invention, also falls within the scope of the present invention. The computer-readable storage medium itself may be made of any kind of computer-readable recording media such as magnetic recording media, magneto-optic recording media, optical recording media, and semiconductor memory devices.
Further, the present invention is not limited to these embodiments, but various variations and modifications may be made without departing from the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2004-027233 | Feb 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4705496 | Bay | Nov 1987 | A |
5768677 | Natsume | Jun 1998 | A |
5769404 | Kanou et al. | Jun 1998 | A |
5905935 | Wakamatsu et al. | May 1999 | A |
6027107 | Natsume et al. | Feb 2000 | A |
7386269 | Miyazaki | Jun 2008 | B2 |
20020051205 | Teranishi et al. | May 2002 | A1 |
20030184806 | Nara et al. | Oct 2003 | A1 |
20030227652 | Masaki | Dec 2003 | A1 |
20050031392 | Yamamoto et al. | Feb 2005 | A1 |
20060133844 | Konno | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
9-227021 | Sep 1997 | JP |
10-245151 | Sep 1998 | JP |
11-038712 | Feb 1999 | JP |
2001-188443 | Jul 2001 | JP |
2002232677 | Aug 2002 | JP |
2003-223087 | Aug 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20050187088 A1 | Aug 2005 | US |