Zeolite-containing cement composition

Information

  • Patent Grant
  • 6989057
  • Patent Number
    6,989,057
  • Date Filed
    Tuesday, December 10, 2002
    22 years ago
  • Date Issued
    Tuesday, January 24, 2006
    19 years ago
Abstract
A method and cement composition is provided for sealing a subterranean zone penetrated by a well bore, wherein the cement composition comprises zeolite, cementitious material, and water sufficient to form a slurry.
Description
BACKGROUND

The present embodiment relates generally to a method and cement composition for sealing a subterranean zone penetrated by a well bore.


In the drilling and completion of an oil or gas well, a cement composition is often introduced in the well bore for cementing pipe string or casing. In this process, known as “primary cementing,” the cement composition is pumped into the annular space between the walls of the well bore and the casing. The cement composition sets in the annular space, supporting and positioning the casing, and forming a substantially impermeable barrier, or cement sheath, which isolates the well bore from subterranean zones.


Changes in pressure or temperature in the well bore over the life of the well can produce stress on the cement composition. Also, activities undertaken in the well bore, such as pressure testing, well completion operations, hydraulic fracturing, and hydrocarbon production can impose stress. When the imposed stresses exceed the stress at which the cement fails, the cement sheath can no longer provide the above-described zonal isolation. Compromised zonal isolation is undesirable, and necessitates remedial operations to be undertaken.


Due to its incompressible nature, neat cement is undesirable for use where there is a chance of expansion or contraction in the well bore. In the past, components such as fumed silica have been added to lower the Young's modulus of cement compositions. However, fumed silica is often subject to shortages, and hence to undesirable variations in costs.


Therefore, a cement composition that can provide elasticity and compressibility, while retaining high compressive and tensile strengths, is desirable.







DESCRIPTION

A cement composition for sealing a subterranean zone penetrated by a well bore, according to the present embodiment comprises zeolite, cementitious material, and water sufficient to form a slurry.


A variety of cements can be used with the present embodiments, including cements comprised of calcium, aluminum, silicon, oxygen, and/or sulfur which set and harden by reaction with water. Such hydraulic cements include Portland cements, pozzolan cements, gypsum cements, aluminous cements, silica cements, and alkaline cements. Portland cements of the type defined and described in API Specification 10, 5th Edition, Jul. 1, 1990, of the American Petroleum Institute (the entire disclosure of which is hereby incorporated as if reproduced in its entirety) are preferred. API Portland cements include Classes A, B, C, G, and H, of which API Classes A and C are particularly preferred for the present embodiment. The desired amount of cement is understandably dependent on the cementing operation.


Zeolite is a porous alumino-silicate mineral that may be either a natural or manmade material. It is understood that for the purpose of this patent application, the term “zeolite” refers to and encompasses all natural or manmade forms. All zeolites are composed of a three-dimensional framework of SiO4 and AlO4 in a tetrahedron, which creates a very high surface area. Cations and water molecules are entrained into the framework. Thus, all zeolites may be represented by the formula:

Ma/n[(AlO2)a(SiO2)b]xH2O

where M is a cation such as Na, K, Mg, Ca, or Fe; and the ratio of b:a is in a range from greater than or equal to 1 and less than or equal to 5. Some common examples of zeolites include analcime (hydrated sodium aluminum silicate); chabazite (hydrated calcium aluminum silicate); harmotome (hydrated barium potassium aluminum silicate); heulandite (hydrated sodium calcium aluminum silicate); laumontite (hydrated calcium aluminum silicate); mesolite (hydrated sodium calcium aluminum silicate); natrolite (hydrated sodium aluminum silicate); phillipsite (hydrated potassium sodium calcium aluminum silicate); scolecite (hydrated calcium aluminum silicate); stellerite (hydrated calcium aluminum silicate); stilbite (hydrated sodium calcium aluminum silicate); and thomsonite (hydrated sodium calcium aluminum silicate).


Zeolites are widely used as cation exchangers, desiccants, solid acid catalysts, and absorbents. Applicants believe that in cement compositions, zeolites enhance the compressive strength and decrease porosity as a result of pozzolanic reaction, similar to that of conventional pozzolans such as fly ash, fumed silica, slag, and diatomaceous earth. As shown in the following examples, zeolites provide enhanced properties in a number of oil well cementing applications, creating lightweight slurries. For example, at low temperatures, the pozzolanic reaction produces increased early compressive strength development. Furthermore, the zeolite cement slurries of the present embodiments exhibit thixotropic properties which can be of benefit in such applications as gas migration control, lost circulation and squeeze cementing. Moreover, the zeolite cement slurries of the present embodiments impart fluid loss control qualities, thereby maintaining a consistent fluid volume within a cement slurry, preventing formation fracture (lost circulation) or flash set (dehydration).


In one embodiment of the invention, zeolite is present in an amount of about 1% to about 95% by weight of the cement, and more preferably in an amount of about 5% to about 75% by weight of the cement. In another embodiment, zeolite may be used as an extender for lightweight slurries. In this use, the zeolite is present in an amount of about 30% to about 90% by weight of the cement, and more preferably in an amount of about 50% to about 75% by weight of the cement. Without limiting the scope of the invention, it is understood that the above-described zeolite cement mixtures can be used as lightweight cements, normal weight cements, densified cements, and squeeze cements. Moreover, zeolite may be used as a suspending aid, thixotropic agent, particle packing agent, strength retrogression prevention agent, strength enhancer, foamed cement-stability agent, and a low temperature accelerator.


Water in the cement composition is present in an amount sufficient to make a slurry which is pumpable for introduction down hole. The water used to form a slurry in the present embodiment can be fresh water, unsaturated salt solution, including brines and seawater, and saturated salt solution. Generally, any type of water can be used, provided that it does not contain an excess of compounds, well known to those skilled in the art, that adversely affect properties of the cement composition. The water is present in an amount of about 22% to about 200% by weight of the cement, and more preferably in an amount of about 40% to about 100% by weight of the cement.


In an alternative embodiment, conventional accelerating additives such as sodium chloride, sodium sulfate, sodium aluminate, sodium carbonate, calcium sulfate, aluminum sulfate, potassium sulfate, and alums can be added to further increase early compressive strength development of the cement composition. The accelerating additives are present in an amount of about 0.5% to about 10% by weight of the cement, and more preferably in an amount of about 3% to about 7% by weight of the cement.


In an alternative embodiment, conventional dispersants may be added to control fluid loss, such as a sulfonated acetone formaldehyde condensate available from SKW Polymers GmbH, Trostberg, Germany. The dispersant is present in a range from about 0.01% to about 2%.


A variety of additives may be added to the cement composition to alter its physical properties. Such additives may include slurry density modifying materials (e.g., silica flour, sodium silicate, microfine sand, iron oxides and manganese oxides), dispersing agents, set retarding agents, set accelerating agents, fluid loss control agents, strength retrogression control agents, and viscosifying agents well known to those skilled in the art.


The following examples are illustrative of the methods and compositions discussed above.


EXAMPLE 1

Components in the amounts listed in TABLE 1 were added to form four batches of a normal density slurry. The batches were prepared according to API Specification RP 10B, 22nd Edition, 1997, of the American Petroleum Institute (the entire disclosure of which is hereby incorporated as if reproduced in its entirety).


The cement for all batches was Class A cement. The cement amounts are reported as percentages by weight of the composition (“%”). The water and zeolite amounts in this example are reported as percentages by weight of the cement (“%bwoc”). The density was conventionally measured, and reported in pounds per gallon (“lb/gal”).


Zeolite was obtained from C2C Zeolite Corporation, Calgary, Canada, and mined from Bowie, Ariz., USA.













TABLE 1






Batch
Batch




Components
1
2
Batch 3
Batch 4



















Water (% bwoc)
46.7
56.9
46.7
56.9


Cement (%)
100
100
100
100


Zeolite (% bwoc)
0
10
0
10


Density (lb/gal)
15.6
15.0
15.6
15.0


Temperature (° F.)
40
40
60
60


Compressive strength @ 12 hours (psi)
190
322
555
726


Compressive strength @ 24 hours (psi)
300
753
1450
1507


Compressive strength @ 48 hours (psi)

1554
2500
2600





TABLE 1 shows that batches with zeolite (Batches 2 and 4) had higher compressive strengths than conventional cement slurries (Batches 1 and 3).






EXAMPLE 2

Components in the amounts listed in TABLE 2 were added to form four batches of a lightweight pozzolanic slurry. The batches were prepared according to API Specification RP 10B.


The cement for all batches was Class C cement. Zeolite was the same as in EXAMPLE 1. Fumed silica was obtained from either Fritz Industries, Mesquite, Tex., USA, or Elkem Group, Oslo, Norway.













TABLE 2






Batch
Batch




Components
1
2
Batch 3
Batch 4



















Water (%)
110
110
110
110


Cement (%)
100
100
100
100


Fumed silica (% bwoc)
22
0
22
0


Zeolite (% bwoc)
0
22
0
22


Density (lb/gal)
12.0
12.0
12.0
12.0


Temperature (° F.)
80
80
180
180


Compressive strength @ 12 hours (psi)
79
61
743
704


Compressive strength @ 24 hours (psi)
148
133
944
900


Compressive strength @ 48 hours (psi)
223
220
1000
921


Compressive strength @ 72 hours (psi)
295
295
1000
921


Thickening Time (hr:min)
5:20
4:03
5:43
4:15


Plastic Viscosity (cP)
41.4
49.9
16.9
18.3


Yield point (lb/100 ft2)
23.6
25.3
12.3
10.3





TABLE 2 shows that batches with zeolite (Batches 2 and 4) are an acceptable substitute for conventional fumed silica cement slurries (Batches 1 and 3).






EXAMPLE 3

Components in the amounts listed in TABLE 3 were added to form five batches of a lightweight microsphere slurry. The batches were prepared according to API Specification RP 10B.


The cement for all batches was Class C cement. Zeolite and fumed silica were the same as in EXAMPLE 2. Each batch also contained 50% bwoc cenospheres (hollow ceramic microspheres), such as are available from Q Corp., Chattanooga, Tenn., USA.









TABLE 3







TABLE 3 shows that batches with zeolite (Batches 2 and 5)


did not settle, leading the Applicants to propose that zeolite


acts as an anti-settling agent, as does conventional


fumed silica (Batch 4).












Components
Batch 1
Batch 2
Batch 3
Batch 4
Batch 5















Water (% bwoc)
98
98
98
98
98


Cement (%)
100
100
100
100
100


Fumed silica (% bwoc)
0
0
0
15
0


Zeolite (% bwoc)
0
15
0
0
15


Density (lb/gal)
11.5
11.5
11.5
11.5
11.5


Temperature (° F.)
120
120
200
200
200


Compressive strength @
1107
1110
1202
2225
2026


24 hours (psi)


Compressive strength @
1621
1734
1940
2669
2276


48 hours (psi)


Compressive strength @
1942
1942
1789
2726



72 hours (psi)


Comments
settling
no
settling
no
no




settling

settling
settling









EXAMPLE 4

Components in the amounts listed in TABLE 4 were added to form three types of an 11.7 lb/gal density slurry. The types were prepared according to API Specification RP 10B. The cement for all batches was Class C cement. Fumed silica was the same as in EXAMPLE 2.


Slurry type 1 was a conventional slurry containing prehydrated bentonite. Bentonite was obtained from Halliburton Energy Services, Inc., Houston, Tex. USA, and is sold under the trademark “AQUA GEL GOLD.”


Slurry type 2 was a conventional slurry containing a 5% bwoc accelerating additive (1% sodium meta silicate; 2% sodium sulfate; 2% calcium chloride), 1% bwoc prehydrated bentonite, and 19% bwoc fly ash. Fly ash was obtained from Ascor Technologies, Calgary, Alberta, Canada (samples obtained at Sheerness and Battle River).


Slurry type 3 was a slurry according to one embodiment of the present invention. Zeolite is given as a percentage by weight of the composition. Zeolite was obtained from C2C Zeolite Corporation, Calgary, Canada, and mined from Princeton, BC, Canada. The zeolite was further divided by particle size, i.e., its ability to pass through conventional mesh screens (sizes 1, 2, 3, etc.).












TABLE 4





Components
Type 1
Type 2
Type 3


















Water %
154
114
130


Cement %
100
60
60


Bentonite % bwoc
4
1
0


Fly ash % bwoc
0
19
0


Fumed silica % bwoc
0
15
0


Zeolite (mesh size 1) %
0
0
30


Zeolite (mesh size 2) %
0
0
10


Density (lb/gal)
11.7
11.7
11.7


Time to 50 psi at 68° F. (hr:min)
no set
 4:43
 9:21


Time to 50 psi at 86° F. (hr:min)
no set
 3:16



Time to 50 psi at 104° F. (hr:min)
21:31
 3:36
 4:13


Time to 50 psi at 122° F. (hr:min)
 8:12

 1:45


Time to 500 psi at 68° F. (hr:min)
N/A
52:14
52:30


Time to 500 psi at 86° F. (hr:min)
N/A
22:57
19:10


Time to 500 psi at 104° F. (hr:min)
N/A
16:05
16:45


Time to 500 psi at 122° F. (hr:min)
N/A

11:07





TABLE 4 shows that zeolite cement (Type 3) sets faster than conventional bentonite cement (Type 1) even at low temperatures, and delivers results similar to conventional fumed silica slurries (Type 2).






EXAMPLE 5

Components in the amounts listed in TABLE 5 were added to form five batches of an 11.7 lb/gal density slurry. The batches were prepared according to API Specification RP 10B.


The cement for all batches was Class C cement. Zeolite was the same as in EXAMPLE 4. The accelerating additive for Batch 2 was calcium sulfate, the accelerating additive for Batch 3 was sodium aluminate, and the accelerating additive for Batches 4 and 5 was sodium sulfate.









TABLE 5







TABLE 5 shows that zeolite cements set with all


accelerating additives, as illustrated by the increasing


compressive strengths.












Components
Batch 1
Batch 2
Batch 3
Batch 4
Batch 5















Water %
130
130
130
130
130


Cement %
60
60
60
60
60


Accelerating additive
0
3
3
3
6


% bwoc


Zeolite (mesh size 1) %
30
30
30
30
30


Zeolite (mesh size 2) %
10
10
10
10
10


Density (lb/gal)
11.7
11.7
11.7
11.7
11.7


Temperature ° F.
122
122
122
122
122


Compressive strength @
1
347
258
196
356


12 hours (psi)


Compressive strength @
104
355
531
360
745


24 hours (psi)


Compressive strength @
400
748
903
687
847


48 hours (psi)









EXAMPLE 6

Components in the amounts listed in TABLE 6 were added to form five batches of a 15.6 lb/gal slurry. The batches were prepared according to API Specification RP 10B.


The cement for all batches was Class A cement. Zeolite and fumed silica were the same as in EXAMPLE 2. The dispersant was a sulfonated acetone formaldehyde condensate available from SKW Polymers GmbH, Trostberg, Germany.


Fluid loss was tested under standard conditions according to Section 10 of API Specification RP 10B, 22nd Edition, 1997, of the American Petroleum Institute (the entire disclosure of which is hereby incorporated as if reproduced in its entirety).









TABLE 6







TABLE 6 shows that batches with zeolite (Batches 2, 3, 5, 6, 8, and 9)


control fluid loss better than conventional cement. Also, the fluid loss


control improves with increasing concentration of the dispersant.
















Components
Batch 1
Batch 2
Batch 3
Batch 4
Batch 5
Batch 6
Batch 7
Batch 8
Batch 9



















Water %
46.6
47.8
49
46.0
47.8
49
45.8
47.8
49


Cement %
100
100
100
100
100
100
100
100
100


Zeolite % bwoc
0
5
10
0
5
10
0
5
10


Dispersant % bwoc
0
0
0
1
1
1
1.5
1.5
1.5


Density (lb/gal)
15.6
15.6
15.6
15.6
15.6
15.6
15.6
15.6
15.6


Fluid loss at 80° F.
612
515
417
261
190
139
164
136
89


(cc/30 min)


Fluid loss at 150° F.
590
482
417
328
110
91
287

69


(cc/30 min)









EXAMPLE 7

Components in the amounts listed in TABLE 7 were added to form five batches of a lightweight pozzolanic slurry. The batches were prepared according to API Specification RP 10B.


The cement for all batches was Class C cement. Zeolite and fumed silica were the same as in EXAMPLE 2. Under standard conditions set out in Section 15.6, Sedimentation Test, of API Specification RP 10B, 22nd Edition, 1997, of the American Petroleum Institute, the batches were placed in corresponding cylinders and allowed to set for 24 hours. Each cylinder was then divided into segments, and the density for each segment was determined by conventional means. It is understood that the absence of settling is indicated by minimal variation in density values among the sections of a given cylinder, as shown in TABLE 7.









TABLE 7







TABLE 7 shows that batches with zeolite


(Batches 2, 4, and 7) did not settle.














Components
Batch 1
Batch 2
Batch 3
Batch 4
Batch 5
Batch 6
Batch 7

















Water %
110
110
110
110
110
110
110


Cement %
56
56
56
56
56
56
56


Fumed silica % bwoc
22
0
22
0
0
22
0


Zeolite % bwoc
0
22
0
22
0
0
22


Initial density (lb/gal)
12.0
12.0
12.0
12.0
12.0
12.0
12.0


Temperature (° F.)
80
80
180
180
200
200
200


Settling Test
11.6
12.3
11.7
12.4
12.7
12.3
12.9


Top Segment (lb/gal)


2nd Segment (lb/gal)
12.0
12.4
11.7
12.5
13.3
12.3
12.8


3rd Segment (lb/gal)
12.0
12.4
11.7
12.4
13.1
12.1
12.9


4th Segment (lb/gal)
11.9
12.4
11.8
12.3





5th Segment (lb/gal)
11.9
12.4

12.3





Comments
settling
no
no
no
settling
no
no




settling
settling
settling

settling
settling









In a preferred method of sealing a subterranean zone penetrated by a well bore, a cement composition comprising zeolite, cementitious material, and water is prepared. The cement composition is placed into the subterranean zone, and allowed to set therein.


Although only a few exemplary embodiments of this invention have been described in detail above, those skilled in the art will readily appreciate that many other modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the following claims.

Claims
  • 1. A method of performing cementing operations in a subterranean zone penetrated by a well bore comprising: preparing a cement composition comprising zeolite, cementitious material, and water, wherein the zeolite is present in a range of from more than about 40% to about 95% by weight of the cementitious material in the composition, and wherein the zeolite is selected from the group consisting of analcime (hydrated sodium aluminum silicate); chabazite (hydrated calcium aluminum silicate); harmotome (hydrated barium potassium aluminum silicate); heulandite (hydrated sodium calcium aluminum silicate); laumontite (hydrated calcium aluminum silicate); mesolite (hydrated sodium calcium aluminum silicate); natrolite (hydrated sodium aluminum silicate); phillipsite (hydrated potassium sodium calcium aluminum silicate); scolecite (hydrated calcium aluminum silicate); stellerite (hydrated calcium aluminum silicate); stilbite (hydrated sodium calcium aluminum silicate); and thomsonite (hydrated sodium calcium aluminum silicate);placing the cement composition into the subterranean zone; andallowing the cement composition to set therein.
  • 2. The method of claim 1 wherein the zeolite is represented by the formula: Ma/n[(AlO2)a(SiO2)b]xH2Owhere M is a cation such as Na, K, Mg, Ca, or Fe; and the ratio of b:a is in a range from greater than or equal to 1 and less than or equal to 5.
  • 3. The method of claim 1 wherein the zeolite is present in a range of from more than about 40% to about 75% by weight of the cementitious material in the composition.
  • 4. The method of claim 1 wherein the zeolite is present in a range of from more than about 40% to about 90% by weight of the cementitious material in the composition.
  • 5. The method of claim 1 wherein the zeolite is present in a range of about 50% to about 75% by weight of the cementitious material in the composition.
  • 6. The method of claim 1 wherein the cementitious material is Portland cement, pozzolan cement, gypsum cement, aluminous cement, silica cement, or alkaline cement.
  • 7. The method of claim 1 wherein the water is present in a range of about 22% to about 200% by weight of the cementitious material.
  • 8. The method of claim 1 wherein the water is present in a range of about 40% to about 100% by weight of the cementitious material.
  • 9. The method of claim 1 wherein the cement composition further comprises an accelerating additive.
  • 10. The method of claim 9 wherein the accelerating additive is present in an amount of about 0.5% to about 10% by weight of the cementitious material.
  • 11. The method of claim 9 wherein the accelerating additive is present in an amount of about 3% to about 7% by weight of the cementitious material.
  • 12. The method of claim 9 wherein the accelerating additive is sodium chloride, sodium sulfate, sodium aluminate, sodium carbonate, calcium sulfate, aluminum sulfate, potassium sulfate, or alum.
  • 13. The method of claim 1 wherein the cement composition further comprises a dispersant.
  • 14. The method of claim 13 wherein the dispersant is a sulfonated acetone formaldehyde condensate.
  • 15. The method of claim 13 wherein the dispersant is present in an amount of about 0.0 1% to about 2% by weight of the cementitious material.
  • 16. The method of claim 1 wherein the cement composition further comprises cenospheres.
  • 17. The method of claim 16 wherein the cenospheres are present in an amount of about 30% to about 60% by weight of the cementitious material.
  • 18. A method of performing cementing operations comprising: preparing a cement composition comprising cementitious material, water, and zeolite;placing the cement composition in a subterranean zone; andallowing the cement composition to set therein,wherein the zeolite is present in the cement composition in more than one particle size,wherein the zeolite is present in the cement composition in an amount of at least about 40% by weight of the cementitious material, andwherein the zeolite is selected from the group consisting of analcime (hydrated sodium aluminum silicate); chabazite (hydrated calcium aluminum silicate); harmotome (hydrated barium potassium aluminum silicate); heulandite (hydrated sodium calcium aluminum silicate); laumontite (hydrated calcium aluminum silicate); mesolite (hydrated sodium calcium aluminum silicate); natrolite (hydrated sodium aluminum silicate); phillipsite (hydrated potassium sodium calcium aluminum silicate); scolecite (hydrated calcium aluminum silicate); stellerite (hydrated calcium aluminum silicate); stilbite (hydrated sodium calcium aluminum silicate); and thomsonite (hydrated sodium calcium aluminum silicate).
  • 19. The method of claim 18 wherein the zeolite is represented by the formula: Ma/n[(AlO2)a(SiO2)b]xH2O
  • 20. The method of claim 18 wherein the amount of zeolite present in the cement composition is in a range of from about 40% to about 95% by weight of the cementitious material in the composition.
  • 21. The method of claim 18 wherein the amount of zeolite present in the cement composition is in a range of from about 40% to about 75% by weight of the cementitious material in the composition.
  • 22. The method of claim 18 wherein the amount of zeolite present in the cement composition is in a range of about 50% to about 75% by weight of the cementitious material in the composition.
  • 23. The method of claim 18 wherein the cementitious material is Portland cement, pozzolan cement, gypsum cement, aluminous cement, silica cement, or alkaline cement.
  • 24. The method of claim 18 wherein the water is present in a range of about 22% to about 200% by weight of the cementitious material.
  • 25. The method of claim 18 wherein the water is present in a range of about 40% to about 100% by weight of the cementitious material.
  • 26. The method of claim 18 wherein the cement composition further comprises an accelerating additive.
  • 27. The method of claim 26 wherein the accelerating additive is present in an amount of about 0.5% to about 10% by weight of the cementitious material.
  • 28. The method of claim 26 wherein the accelerating additive is present in an amount of about 3% to about 7% by weight of the cementitious material.
  • 29. The method of claim 26 wherein the accelerating additive is sodium chloride, sodium sulfate, sodium aluminate, sodium carbonate, calcium sulfate, aluminum sulfate, potassium sulfate, or alum.
  • 30. The method of claim 18 wherein the cement composition further comprises a dispersant.
  • 31. The method of claim 30 wherein the dispersant is a sulfonated acetone formaldehyde condensate.
  • 32. The method of claim 30 wherein the dispersant is present in an amount of about 0.01% to about 2% by weight of the cementitious material.
  • 33. The method of claim 18 wherein the cement composition further comprises cenospheres.
  • 34. The method of claim 33 wherein the cenospheres are present in an amount of about 30% to about 60% by weight of the cementitious material.
  • 35. A method of performing cementing operations comprising: preparing a cement composition comprising cementitious material, water and zeolite, which zeolite is present in an amount of at least 15% by weight of the cementitious material in the composition and is at least one of analcime (hydrated sodium aluminum silicate); chabazite (hydrated calcium aluminum silicate); harmotome (hydrated barium potassium aluminum silicate); heulandite (hydrated sodium calcium aluminum silicate); laumontite (hydrated calcium aluminum silicate); mesolite (hydrated sodium calcium aluminum silicate); natrolite (hydrated sodium aluminum silicate); phillipsite (hydrated potassium sodium calcium aluminum silicate); scolecite (hydrated calcium aluminum silicate); stellerite (hydrated calcium aluminum silicate); stilbite (hydrated sodium calcium aluminum silicate); or thomsonite (hydrated sodium calcium aluminum silicate);placing the cement composition into a subterranean zone; andallowing the cement composition to set therein.
  • 36. The method of claim 35 wherein the zeolite is present in an amount of at least 30% by weight of the cementitious material in the composition.
  • 37. The method of claim 35 wherein the zeolite is present in an amount of at least 40% by weight of the cementitious material in the composition.
  • 38. The method of claim 35 wherein the zeolite is present in an amount of at least 50% by weight of the cementitious material in the composition.
  • 39. The method of claim 35 wherein the cementitious material is at least one of Portland cement, pozzolan cement, gypsum cement, aluminous cement, silica cement, and alkaline cement.
  • 40. The method of claim 35 wherein the cement composition further comprises an accelerating additive.
  • 41. The method of claim 40 wherein the accelerating additive is at least one of sodium chloride, sodium sulfate, sodium aluminate, sodium carbonate, calcium sulfate, aluminum sulfate, potassium sulfate, and alum.
  • 42. The method of claim 35 wherein the cement composition further comprises a dispersant.
  • 43. The method of claim 42 wherein the dispersant is a sulfonated acetone formaldehyde condensate.
  • 44. The method of claim 35 wherein the cement composition further comprises cenospheres.
  • 45. The method of claim 18 wherein the amount of zeolite present in the composition is at least 50% by weight of the cementitious material.
US Referenced Citations (66)
Number Name Date Kind
1943584 Cross Jan 1934 A
2349049 Means May 1944 A
2662827 Clark Dec 1953 A
3359225 Weisend Dec 1967 A
3694152 Sersale et al. Sep 1972 A
3887385 Quist et al. Jun 1975 A
4435216 Diehl et al. Mar 1984 A
4482379 Dibrell et al. Nov 1984 A
4818288 Aignesberger et al. Apr 1989 A
4888120 Mueller et al. Dec 1989 A
5346012 Heathman et al. Sep 1994 A
5383967 Chase Jan 1995 A
5435846 Tatematsu et al. Jul 1995 A
5494513 Fu et al. Feb 1996 A
5529624 Riegler Jun 1996 A
5626665 Barger et al. May 1997 A
5711383 Terry et al. Jan 1998 A
5788762 Barger et al. Aug 1998 A
5980446 Loomis et al. Nov 1999 A
6145591 Boncan et al. Nov 2000 A
6153562 Villar et al. Nov 2000 A
6170575 Reddy et al. Jan 2001 B1
6171386 Sabins Jan 2001 B1
6230804 Mueller et al. May 2001 B1
6235809 Arias et al. May 2001 B1
6245142 Reddy et al. Jun 2001 B1
6312515 Barlet-Gouedard et al. Nov 2001 B1
6379456 Heathman et al. Apr 2002 B1
6409819 Ko Jun 2002 B1
6457524 Roddy Oct 2002 B1
6475275 Nebesnak et al. Nov 2002 B1
6478869 Reddy et al. Nov 2002 B2
6494951 Reddy et al. Dec 2002 B1
6508305 Brannon et al. Jan 2003 B1
6565647 Day et al. May 2003 B1
6572698 Ko Jun 2003 B1
6610139 Reddy et al. Aug 2003 B2
6616753 Reddy et al. Sep 2003 B2
6626243 Boncan Sep 2003 B1
6626991 Drochon et al. Sep 2003 B1
6645289 Sobolev et al. Nov 2003 B2
6656265 Garnier et al. Dec 2003 B1
6656266 Barlet-Gouedard et al. Dec 2003 B1
6660080 Reddy et al. Dec 2003 B2
20010014651 Reddy et al. Aug 2001 A1
20020077390 Gonnon et al. Jun 2002 A1
20020091177 Gonnon et al. Jul 2002 A1
20020117090 Ku Aug 2002 A1
20020157575 DiLullo et al. Oct 2002 A1
20030153466 Allen et al. Aug 2003 A1
20030168215 Drochon et al. Sep 2003 A1
20030203996 Gonnon et al. Oct 2003 A1
20040007162 Morioka et al. Jan 2004 A1
20040007360 Leroy-Delage et al. Jan 2004 A1
20040035331 Volpert Feb 2004 A1
20040040475 Roij Mar 2004 A1
20040107877 Getzlaf et al. Jun 2004 A1
20040108113 Luke et al. Jun 2004 A1
20040112255 Bruno et al. Jun 2004 A1
20040112600 Luke et al. Jun 2004 A1
20040168803 Reddy et al. Sep 2004 A1
20040188091 Luke et al. Sep 2004 A1
20040188092 Santra et al. Sep 2004 A1
20040244977 Luke et al. Dec 2004 A1
20050000734 Getzlaf et al. Jan 2005 A1
20050133222 Arias et al. Jun 2005 A1
Foreign Referenced Citations (13)
Number Date Country
2153372 Jan 1996 CA
0621247 Jul 1999 EP
0 1260 491 Nov 2002 EP
1428805 Jun 2004 EP
763.998 Nov 1933 FR
1469954 Apr 1977 GB
52117316 Jan 1977 JP
07 003254 Jan 1995 JP
1011487 Apr 1998 JP
1373781 Feb 1988 SU
WO 9728097 Aug 1997 WO
WO 0050357 Aug 2000 WO
WO0170646 Sep 2001 WO
Related Publications (1)
Number Date Country
20040107877 A1 Jun 2004 US