Zeolite SSZ-26

Abstract
A crystalline zeolite SSZ-26 is prepared using a hexamethyl [4.3.3.0] propellane-8,11-diammonium cation as a template. Also disclosed is a process for converting hydrocarbons with crystalline zeolite SSZ-26.
Description
Claims
  • 1. A process for converting hydrocarbons comprising contacting a hydrocarbonaceous feed at hydrocarbon converting conditions with a zeolite having a mole ratio of an oxide selected from silicon oxide, germanium oxide and mixtures thereof to an oxide selected from aluminum oxide, gallium oxide, iron oxide, and mixtures thereof greater than about 10:1, and having the X-ray diffraction lines of Table 1.
  • 2. The process of claim 1 which is a hydrocracking process comprising contacting the hydrocarbon feedstock under hydrocracking conditions with a zeolite having a mole ratio of an oxide selected from silicon oxide, germanium oxide and mixtures thereof to an oxide selected from aluminum oxide, gallium oxide, iron oxide, and mixtures thereof greater than about 10:1, and having the X-ray diffracting lines of Table 1.
  • 3. The process of claim 1 which is a dewaxing process comprising contacting the hydrocarbon feedstock under dewaxing condition with a zeolite having a mole ratio of an oxide selected from silicon oxide, germanium oxide and mixtures thereof to an oxide selected from aluminum oxide, gallium oxide, iron oxide, and mixtures thereof greater than about 10:1, and having the X-ray diffraction lines of Table 1.
  • 4. The process of claim 1 which is a process for preparing a high octane product having an increased aromatics content comprising:
  • (a) contacting a hydrocarbonaceous feed which comprises normal and slightly branched hydrocarbons having a boiling range above about 40.degree. C. and less than about 200.degree. C., under aromatic conversion conditions with a zeolite having a mole ratio of an oxide selected from silicon oxide, germanium oxide and mixtures thereof to an oxide selected from aluminum oxide, gallium oxide, iron oxide, and mixtures thereof greater than about 10:1, and having the X-ray diffraction lines of Table 1, wherein said zeolite is substantially free of acidity; and
  • (b) recovering a product with higher octane, and higher aromatic content.
  • 5. The process of claim 4 wherein the zeolite contains a Group VIII metal component.
  • 6. The process of claim 1 which is a catalytic cracking process comprising the step of contacting the hydrocarbon feedstock in a reaction zone under catalytic cracking conditions in the absence of added hydrogen with a catalyst comprising a zeolite having a mole ratio of an oxide selected from silicon oxide, germanium oxide and mixtures thereof to an oxide selected from aluminum oxide, gallium oxide, iron oxide, and mixtures thereof greater than about 10:1, and having the X-ray diffraction lines of Table 1.
  • 7. A process of claim 1 which is a catalytic cracking process comprising the step of contacting the hydrocarbon feedstock in a reaction zone under catalytic cracking conditions in the absence of added hydrogen with a catalyst composition comprising a component which is a zeolite having a mole ratio of an oxide selected from silicon oxide, germanium oxide and mixtures thereof to an oxide selected from aluminum oxide, gallium oxide, iron oxide, and mixtures thereof greater than about 10:1, and having the X-ray diffraction lines of Table 1 and a large pore size crystalline aluminosilicate cracking component.
  • 8. The process of claim 7 wherein the catalyst compositions comprises a physical mixture of the two components.
  • 9. The process of claim 7 wherein the two catalyst components are incorporated in an inorganic matrix.
  • 10. The process of claim 1 which is an isomerizing process for isomerizing C.sub.4 to C.sub.7 hydrocarbons, comprising contacting a catalyst, comprising at least one Group VIII metal and a zeolite having a mole ratio of an oxide selected from silicon oxide, germanium oxide and mixtures thereof to an oxide selected from aluminum oxide, gallium oxide, iron oxide, and mixtures thereof greater than about 10:1, and having the X-ray diffraction lines of Table 1, with a feed having normal and slightly branched C.sub.4 to C.sub.7 hydrocarbons under isomerization conditions.
  • 11. A process in accordance with claim 10 wherein the catalyst has been calcined in a steam/air mixture at an elevated temperature after impregnation of the Group VIII metal.
  • 12. A process in accordance with claim 10 wherein Group VIII metal is platinum.
  • 13. The process of claim 1 which is a process for alkylating an aromatic hydrocarbon which comprises contacting under alkylating conditions an aromatic hydrocarbon with a C.sub.2 to C.sub.4 olefin, with the aromatic hydrocarbon present in a quantity of at least a mole excess of the C.sub.2 to C.sub.4 olefin under at least partial liquid phase conditions and in the presence of a zeolite having a mole ratio of an oxide selected from silicon oxide, germanium oxide and mixtures thereof to an oxide selected from aluminum oxide, gallium oxide, iron oxide, and mixtures thereof greater than about 10:1, and having the X-ray diffraction lines of Table 1.
  • 14. The process of claim 13 wherein the aromatic hydrocarbon and olefin are present in a molar ratio of about 4:1 to 20:1, respectively.
  • 15. The process of claim 13 wherein the aromatic hydrocarbon is a member selected from the group consisting of benzene, toluene and xylene, or mixtures thereof.
  • 16. The process of claim 1 which is a process for transalkylating an aromatic hydrocarbon which comprises contacting under transalkylating condition an aromatic hydrocarbon with a polyalkyl aromatic hydrocarbon under at least partial liquid phase conditions and in the presence of a zeolite having a mole ratio of an oxide selected from silicon oxide, germanium oxide and mixtures thereof to an oxide selected from aluminum oxide, gallium oxide, iron oxide, and mixtures thereof greater than about 10:1, and having the X-ray diffraction lines of Table 1.
  • 17. The process of claim 16 wherein said aromatic hydrocarbon and said polyalkyl aromatic hydrocarbon are present in a molar ratio of about 1:1 to about 25:1, respectively.
  • 18. The process of claim 16 wherein the aromatic hydrocarbon is a member selected from the group consisting of benzene, toluene and xylene, or mixtures thereof.
  • 19. The process of claim 16 wherein the polyalkyl aromatic hydrocarbon is dialkylbenzene.
BACKGROUND OF THE INVENTION

This is a division of application Ser. No. 172,737, filed Mar. 23, 1988, now U.S. Pat. No. 4,910,006. Natural and synthetic zeolitic crystalline aluminosilicates are useful as catalysts and adsorbents. These aluminosilicates have distinct crystal structures which are demonstrated by X-ray diffraction. The crystal structure defines cavities and pores which are characteristic of the different species. The adsorptive and catalytic properties of each crystalline aluminosilicate are determined in part by the dimensions of its pores and cavities. Thus, the utility of a particular zeolite in a particular application depends at least partly on its crystal structure. Because of their unique molecular sieving characteristics, as well as their catalytic properties, crystalline aluminosilicates are especially useful in such applications as gas drying and separation and hydrocarbon conversion. Although many different crystalline aluminosilicates and silicates have been disclosed, there is a continuing need for new zeolites and silicates with desirable properties for gas separation and drying, hydrocarbon and chemical conversions, and other applications. Crystalline aluminosilicates are usually prepared from aqueous reaction mixtures containing alkali or alkaline earth metal oxides, silica, and alumina. "Nitrogenous zeolites" have been prepared from reaction mixtures containing an organic templating agent, usually a nitrogen-containing organic cation. By varying the synthesis conditions and the composition of the reaction mixture, different zeolites can be formed using the same templating agent. Use of N,N,N-trimethyl cyclopentylammonium iodide in the preparation of Zeolite SSZ-15 molecular sieve is disclosed in U.S. Pat. No. 4,610,854; use of 1-azoniaspiro [4.4] nonyl bromide and N,N,N-trimethyl neopentylammonium iodide in the preparation of a molecular sieve termed "Losod" is disclosed in Helv. Chim. Acta (1974), Vol. 57, page 1533 (W. Sieber and W. M. Meier); use of quinuclidinium compounds to prepare a zeolite termed "NU-3" is disclosed in European Patent Publication No. 40016; use of 1,4-di(1-azoniabicyclo [2.2.2.] octane) lower alkyl compounds in the preparation of Zeolite SSZ-16 molecular sieve is disclosed in U.S. Pat. No. 4,508,837; use of N,N,N-trialkyl-1-adamantamine in the preparation of zeolite SSZ-13 molecular sieve is disclosed in U.S. Pat. No. 4,544,538. We have prepared a family of crystalline aluminosilicate molecular sieves with unique properties, referred to herein as "Zeolite SSZ-26", or simply "SSZ-26", and have found a highly effective method for preparing SSZ-26. SSZ-26 has a mole ratio of an oxide selected from silicon oxide, germanium oxide, and mixtures thereof to an oxide selected from aluminum oxide, gallium oxide, iron oxide, and mixtures thereof in the range of 10 to 200, and having the X-ray diffraction lines of Table 1 below. The zeolite further has a composition, as synthesized and in the anhydrous state, in terms of mole ratios of oxides as follows: (0.1 to 2.0)Q.sub.2 O:(0.1 to 2.0)M.sub.2 O:W.sub.2 O.sub.3 :(10 to 200)YO.sub.2 wherein M is an alkali metal cation, W is selected from aluminum, gallium, iron, and mixtures thereof, Y is selected from silicon, germanium and mixtures thereof, and Q is a hexamethyl [4.3.3.0] propellane-8,11-diammonium cation. SSZ-26 zeolites can have a YO.sub.2 :W.sub.2 O.sub.3 mole ratio in the range of 10 to 200. As prepared, the silica:alumina mole ratio is typically in the range of 12:1 to about 100:1. Higher mole ratios can be obtained by treating the zeolite with chelating agents or acids to extract aluminum from the zeolite lattice. This includes reagents such as (NH.sub.4).sub.2 SiF.sub.6 or acidic ion exchange resins. The silica:alumina mole ratio can also be increased by using silicon and carbon halides and other similar compounds. Preferably, SSZ-26 is an aluminosilicate wherein W is aluminum and Y is silicon. Our invention also involves a method for preparing SSZ-26 zeolites, comprising preparing an aqueous mixture containing sources of a hexamethyl [4.3.3.0] propellane-8,11-diammonium cation, an oxide selected from aluminum oxide, gallium oxide, iron oxide, and mixtures thereof, and an oxide selected from silicon oxide, germanium oxide, and mixtures thereof, and having a composition, in terms of mole ratios of oxides, falling within the following ranges: YO.sub.2 /W.sub.2 O.sub.3, 10:1 to 200:1; and Q/YO.sub.2 02 0.05:1 to 0.50:1; wherein Y is selected from silicon, germanium, and mixtures thereof, W is selected from aluminum, gallium, iron, and mixtures thereof, and Q is a hexamethyl [4.3.3.0] propellane-8,11-diammonium cation; maintaining the mixture at a temperature of at least 100.degree. C. until the crystals of said zeolite are formed; and recovering said crystals.

US Referenced Citations (6)
Number Name Date Kind
4496786 Santilli et al. Jan 1985
4589976 Zones May 1986
4589977 Zones May 1986
4882039 Chen et al. Nov 1989
4898660 Wilson et al. Feb 1990
4902844 Zones Feb 1990
Divisions (1)
Number Date Country
Parent 172737 Mar 1988