The present invention relates generally to reducing the use of the conventional combustion engine, which primarily functions on diesel or gas (petrol) fuel, as a power plant (engine or machine) on large applications such as largest container ships and large capacity electrical generator sets. To eliminate the use of fossil fuels in large combustion engines which is economically and environmentally causing havoc with zero pollution engines that is powered by gravity and buoyancy.
Among the conventionally known combustion engine-driven large container ships and tankers and large capacity generator sets, operated by the use of fossil fuel are ones which have a driven shaft connected to a combustion engine directly or through a gearbox to propel the huge load, More specifically as mentioned earlier each of these equipment use an enormous amount of fuel to power them as a result cumulatively produce large quantity of CO2. Consequently, in such an environment, global warming has a huge impact on the ecosystem.
There is a general need for alternative sources for large power plant (engine) which is inexpensive to operate and efficient in operation. Prior art power plants tend to be highly inefficient and lose a great deal of the energy generated before that energy can be utilized. With energy consumption hitting record levels, there is global need for clean sources of power plants (engine) that can generate electricity, power large container ship, replace coal and nuclear side of the electrical power generating plants furthermore with excess electricity hydrogen can be produced as fuel source to power our cars, airplanes, homes and industries directly or indirectly.
The electric power grid is increasingly complex and the matching of power generation supply with power usage is a critical element in maintaining stability in operation. This issue is becoming more complicated with the addition of alternative energy generation sources such as wind power and solar power which have inherent issues with consistency of power production not to mention the losses in conversion of frequency and DC to AC. There is a need for utility scale energy generation without the use of fossil fuel or nuclear. The present invention has a potential to do just that on large scale.
In order to accomplish the above-mentioned challenges, the present invention provides a new method, an engine that produces the high torque required by the power-plant, thus replacing the conventional combustion engine that powered the said power-plant, which comprises of: a gravitation powered power plant and an associated method, a combination of gravity force and the inherent buoyancy force conveyer type engine designed to mechanically operate in large tall water tanks to power high rise building, or as buoyancy farm on land or stream of water, large containerships with modifications to ships hall, floating electric plants in lakes, sea and ocean.
In the present invention the power plant (engine) is assembled with large chambers on set of conveyers. Each of the chambers displaces liquid, preferably water (in freezing climates antifreeze solution added to water) with aid of the mechanical conveyer system (engine) that is used to generate motion through buoyancy. Each of the said buoyant chambers cumulatively produces enormous amount of force to overcome the designed torque to propel the huge load. Additional electronic controls could be added to monitor and maintain the said power plant.
There are two method in the present invention to overcome a given turning load for generating to propel torque which employs a combination of water buoyancy force and gravity force to generate electricity or propel a large ship using the mentioned mechanical conveyer engine to displace water in the deep part of a large tall water tank or on lakes, sea and ocean as floating mechanical conveyer power plant (engine) to generate electricity thus buoyancy force is generated continuously 24/7 as multiple unit are combined as a buoyancy farm.
The representative structure of the said chamber type of a present mechanical invention on the conveyer system is to accomplish the above objective is as follows;
First method is each said cylinder chamber of a uniform size is mounted on a track system as parallel conveyers with dual industrial timing belts and gears with shafts mounted on a frame along with dual rail system running parallel to the said timing belts to secure all cylinder chambers to run uniformly and smoothly, the chamber are further tied to the said dual timing belts thus pulling the said timing belts. Each said cylinder chamber is capped at both ends maintaining a sealed cylinder as shown in
It is further understood viewing the drawings that each of the fully assembled large cylinders described above is attached to an upright conveyer type system. The top shaft of the conveyer and the bottom shaft are on a two sets of gears fixed to a frame. The industrial timing belts of the said conveyer system are fixed to each of the said mechanical cylinders spaced out evenly around the entire route of the said industrial timing belt. As the conveyer turns, the cylinder chambers are riding on a separate rail to maintain a smooth and steady movement as they are circulating along with the industrial timing belt that is pulled by the said cylinders. The said timing belt is pulled down with aid of the water filled cylinders by gravity force on one side at same time the water displaced cylinders on the other side of the conveyer been pulled opposite direction as buoyancy force thus cumulatively the said timing belt exert turning force on the gears. Identical copies of the said conveyer system explained above can be duplicated and combined thus coupled as one shaft to overcome the designed torque as a farm of buoyancy and gravity energy. As each conveyer system is combined, top or bottom shaft of the each and every conveyer is connected as a common shaft directly turning to propel a ship or a large generator.
The mechanical function of the said cylinder is caused by a set of gears fixed to the cylinder rotational baffle blade shaft. As the each cylinder is riding on the said conveyer they are passing a stationary gear single edge tracking gear cut segment fixed to the conveyer frame's top and the bottom section of the conveyer system. Each of the said mechanical cylinders, as they make their way pass either the top or the bottom said stationary track gear cut segment (single edge tracking gear cut segment mounted of the conveyer frame) the gears on each cylinder makes contact with the said stationary track gear cut segment thereby the cylinder's sweeping baffle blade on a shaft turns since the gears are fixed to the cylinder shaft making contact with the stationary track gear segment as each cylinder travels on the said conveyer as shown in
The main difference between the top stationary track gear segment (Internal single edge track segment gear) is the said track gear teeth is on the inside of the conveyer causing the gears on the said mechanical cylinder to turn counter clockwise causing the rotating baffle blade shaft on the cylinder to turn allowing water to enter the cylinder and expel the air into the air loop circuit as the said conveyer turns counter clockwise. The bottom stationary gear cut segment (External single edge track segment gear) has the gear teeth on the outer side of the said conveyer causing the gears of the said pair of gears on the said mechanical cylinder to turn clockwise causing the rotating baffle blade shaft on the cylinder to turn expelling water and taking in air from the said cylinder as the conveyer turns counter clockwise as in this case.
The following is detail travel journey of each and every said mechanical cylinder chamber by the engine's conveyer cycle thus producing the rotational gravitational force, cumulatively each cylinder produce enormous amount of buoyancy force to overcome the designed torque to propel the shaft. As the each cylinder filled with water makes it way moving downwards going counter-clock wise on the said conveyer, thus as the cylinder reaches the contact point at the lower stationary track gear segment and makes contact thus starts turning the gears on the cylinder, as gears on the cylinder turns the rotational baffle blade shaft sweeping all of the water out of the cylinder causing a displacement of the water, whereby filled with air, at this point the gears on the cylinders locks. This mechanical action causes a buoyancy force that forces the cylinder upwards thus all the cylinders above that mechanical cylinder that are going upwards cumulatively have an enormous force on the conveyer industrial timing belt since all are filled with air on buoyancy side of the said conveyer engine. As the said cylinder reaches the top of the conveyer above the water surface and makes contact with the top stationary gear cut segment the cylinder gears get unlock mechanism mounted on the conveyer frame the gear and shaft of the cylinder start turning taking in water into the said cylinder causing it to apply gravity force. This process is repeated continuously as each cylinder goes through the cycle thus applies a pulling force on the industrial timing belt of the conveyer engine to propel the said timing gear shaft to overcome the required torque of the a load.
In the second method as shown in
The following is detail travel journey of the said TPBCC by the engine's conveyer cycle thus producing the rotational torque on the sprocket gear of the conveyer module. The gravitational force on one side of the said conveyer and buoyancy force on the other side of the same conveyer at the same time, cumulatively each cylinder produce enormous amount of buoyancy force on the said buoyancy side of the conveyer to overcome the designed torque to propel said gear whereby the shaft to the load, since the weight of the each TPBCC cancels each other's out on both sides of the conveyer and their weight are equally balanced on both sides. As each of TPBCC makes their way on two sets of rail system mounted on the conveyer frame, one inner set of rail is mounted on the conveyer frame along the sprocket chain route is to guide and pull the sprocket chain by the each TPBCC that attached to sprocket chain conveyer. The outer rail is mounted on the frame of the said conveyer guides and maintains each TPBCC's expansion and contraction continuously, furthermore it has a branch rail on the outer rail to keep the TPBCCs collapsed to shut the said conveyer engine down gradually, the said branch rail is controlled from the top. The expansion and collapsing of the TPBCCs is repeated continuously as each TPBCC goes through the cycle thus applies force on the rotating sprocket gears of the conveyer engine thus propel the shaft. Each TPBCC make their way pass the lower sprocket gears on the conveyer system going back up. As each TPBCC begin to go up expanded by the outer rail system thereby guides each TPBCC to maintain expanded form generating a buoyancy force as water is displaced in each of the TPBCCs going up to the top of the said conveyer is turn around by the sprocket gear on the conveyer. As the TPBCCs make their way down the said outer rail collapses them thus reducing the drag on the conveyer engine causing a gravity fall of the TPBCC. Cumulatively buoyancy force of all the expended TPBCC has an enormous force on the sprocket chain of the conveyer system as a result the sprocket gear has very high torque on the shaft. This process is repeated continuously as each TPBCC goes through the cycle thus applies a pulling force on the sprocket chain of the conveyer engine to propel the sprocket gear shaft. In order to start the conveyer module a manual crank handle is installed on top (not shown) to crank the sprocket gear and the branch rail disengaged, to shut the conveyer module down a branch rail is provided to disengage the expansion of the TPBCC.
A preferred embodiment of the present invention is described below with reference to the accompanying drawings, in which:
Hereinafter, referring to the drawings, preferred embodiments of the invention are described in detail in an exemplifying manner. The size, materials, shapes and correlative positions of the structure parts as sets forth in the embodiments below can be modified properly according to the various conditions and terms, and if there is no special description, the scope of this invention is not intended to be limited only to those.
Hereinafter, the first embodiment of the invention is described with reference to the drawings
A MCSM 13 of an oval path driven with dual track conveyer system mounted parallel in order to support long cylinders chambers 18 on the said MCSM 13 cylinders are uniform size mounted on the said track system as parallel conveyers with dual industrial timing belts 20 and gears 41. A single edge gear track segment 19 mounted to a frame of the MCSM 13, along with dual rail system not shown running parallel to industrial timing belt thus secure all cylinder chambers to run uniformly and smoothly on the said rail track, as the said cylinders make their way pass each said gear track single edge segment 19 to turn cylinder shaft 32 and the baffle blade 29 in each chamber, water is displaced or water is taken into the cylinders. The cylinders are further tied to the dual industrial timing belt 20, as the said cylinders 18 are pulling the said industrial timing belt 20 kept under tension thereby turning the timing belt gears 40.
As discussed above, the present invention relates to a conveyer module or an engine for generating to propel torque which employs a combination of buoyancy force and gravity force whereby generate electricity or propel a large ship. Referring to the drawings, as shown in
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
The following are the reference number to each part in the set of drawing from
1 Generator
2 Transmission
3 Main power shaft.
4 Transfer box.
5 Branch shaft connecting module pairs.
6 Independently detachable gravity/buoyancy engine (MCSM)
7 Expansion of modules along the branch shaft.
8 Expansion of branch rows of modules along main shaft.
9 Water pool.
10 Platform.
11 Brackets on steel structure spanning the pool.
12 Detachable gear assembly in oil bath to disengage from branch shaft without interruption to the power plant.
13 Module structure that can independently be hoisted vertically (MCSM).
14 Steel structure spanning over the pool.
15 Secondary module shaft.
16 Gear that engages the secondary module shaft to branch shaft set in oil bath.
17 Transfer belt and gear driving module shaft attached to (13) module structure.
18 Cylinder assembly.
19 Internal or External single edge track gear segment attached to structure (Linear or curved).
20 Main module belt with fixed attachment for cylinder assembly.
21 Flexible air hoses interconnecting cylinder assemblies in closed system.
22 Cylinder assembly sets can be varied in the modules.
23 Pool floor.
24 Anchors to receive modules structure (13).
25 Water level.
26 Primary module industrial timing gear and shaft.
27 Extruded cylinder.
28 End cap.
29 Rotational baffle a blade hinged around cylinder shaft (32)
30 Neoprene seals preventing and maintaining a separation of air and water while the baffle blade sweeps back and forth.
31 Gear attached to blade (29) controlled by gear track single edge segment (19)
32 Cylinder shaft.
33 Fitting to attach cylinder and cylinder shaft as a unit to the industrial timing belt (20)
34 Bolt to secure end caps to cylinder.
35 Fitting connection to flexible hose. (21)
36 Hinge type support system for cylinder shaft with seals to prevent seepage.
37 Air filled space in the cylinder.
38 Water filled space in the cylinder.
39 Cylinder in transition phase between water and air.
40 Main module timing belt gear.
41 Shaft supporting main module timing belt gears attached to module structure (13)
42 Slot allowing passage of air in the air loop circuit.
43 Spur gear and tow cable in the cylinder not shown
44 Pressurized accumulator with flexible hose (21) to supply compressed air to module closed air loop system to offset any unbalances in air pressure not shown.
45 Direction of travel cylinders in motion.
Hereinafter, the second set of embodiment of the present invention is described with reference to the drawings.
A conveyer module of a dual track system mounted in parallel
Travel journey of each TPBCC through the cycle of the said dual track conveyer module. As the collapsed TPBCC 10 makes its way down on the said conveyer system that are mounted on a inner rail system not shown that run parallel to the sprocket chain to ride the TPBCC smoothly with a link tied 4 to the sprocket chain 1 pulling the said sprocket chain 1, as the TPBCC 10 reaches the bottom of the frame 12 the said TPBCC 10 turns around and makes its way up on the said conveyer, an outer dual rail system 2 begins to expend the said TPBCC 3 due to floating type bearings 5 used on both side of the TPBCC fixed on the outer end to accommodate any axial wander riding on the said outer dual rail system 2 thus simultaneously gradually expanding the said TPBCC and displacing water. This displacement of water by the TPBCC generates buoyancy force going up, since the prior TPBCCs 3 on the said conveyer has already expanded and maintains the displaced water form with the aid of the outer rail 2 system causing an enormous buoyancy force cumulatively pulling on the sprocket chain 1. As each TPBCC 3 expands at the bottom of the conveyer module at the same time at the top of the conveyer module the TPBCC 10 collapses with aid of the outer rail system, this process is achieved by the said floating type bearings 5 used on both side of the TPBCC outer rail system 2, furthermore compressed air in a loop circuit system is simultaneously expelled by the collapsing TPBCC 10 thus a given quantity of air in the said loop that is pushed back and forth repeatedly without external assistance furthermore with aid of a pressurized air accumulator (not shown) in the air loop system to offset any unbalances in the timing of the said procedure and external pressure.