The described subject matter relates to electronic computing, and more particularly to a zero channel RAID architecture.
Conventional computing systems that implement RAID data protection include a disk controller card that includes disk controller circuitry and RAID circuitry. Such disk controller cards are typically implemented as cards that plug into corresponding slots on a motherboard.
Described herein are exemplary architectures and methods for implementing zero channel RAID in a computing device such as, e.g., a personal computer. The methods described herein may be embodied as logic instructions on a computer-readable medium. When executed on a processor, the logic instructions cause a general purpose computing device to be programmed as a special-purpose machine that implements the described methods. The processor, when configured by the logic instructions to execute the methods recited herein, constitutes structure for performing the described methods.
Exemplary Computing Device
The various components and functionality described herein are implemented with a number of individual computers.
Generally, various different general purpose or special purpose computing system configurations can be used. Examples of well known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
The functionality of the computers is embodied in many cases by computer-executable instructions, such as program modules, that are executed by the computers. Generally, program modules include routines, programs, objects, components, data structures, etc. that performs particular tasks or implement particular abstract data types. Tasks might also be performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote computer storage media.
The instructions and/or program modules are stored at different times in the various computer-readable media that are either part of the computer or that can be read by the computer. Programs are typically distributed, for example, on floppy disks, CD-ROMs, DVD, or some form of communication media such as a modulated signal. From there, they are installed or loaded into the secondary memory of a computer. At execution, they are loaded at least partially into the computer's primary electronic memory. The invention described herein includes these and other various types of computer-readable media when such media contain instructions programs, and/or modules for implementing the steps described below in conjunction with a microprocessor or other data processors. The invention also includes the computer itself when programmed according to the methods and techniques described below.
For purposes of illustration, programs and other executable program components such as the operating system are illustrated herein as discrete blocks, although it is recognized that such programs and components reside at various times in different storage components of the computer, and are executed by the data processor(s) of the computer.
With reference to
Computer 100 typically includes a variety of computer-readable media. Computer-readable media can be any available media that can be accessed by computer 100 and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer-readable media may comprise computer storage media and communication media. “Computer storage media” includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules, or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by computer 100. Communication media typically embodies computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more if its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of any of the above should also be included within the scope of computer readable media.
The system memory 106 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 110 and random access memory (RAM) 112. A basic input/output system 114 (BIOS), containing the basic routines that help to transfer information between elements within computer 100, such as during start-up, is typically stored in ROM 110. RAM 112 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 104. By way of example, and not limitation,
The computer 100 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only,
The drives and their associated computer storage media discussed above and illustrated in
The computer may operate in a networked environment using logical connections to one or more remote computers, such as a remote computing device 150. The remote computing device 150 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to computer 100. The logical connections depicted in
When used in a LAN networking environment, the computer 100 is connected to the LAN 152 through a network interface or adapter 156. When used in a WAN networking environment, the computer 100 typically includes a modem 158 or other means for establishing communications over the Internet 154. The modem 158, which may be internal or external, may be connected to the system bus 108 via the I/O interface 142, or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 100, or portions thereof, may be stored in the remote computing device 150. By way of example, and not limitation,
Motherboard 200 further includes a slot in the communication path between the processor 210 and the drive controller 240 for receiving one a card 230 that includes either a jumper or a card comprising control circuitry for implementing RAID data protection on drive 250. In an exemplary implementation the control circuitry may be implemented using a dedicated Input/Output Processor (IOP) that implements RAID data protection. In an alternate implementation the control circuitry may be implemented using a configurable Input/Output Controller (IOC) that implements RAID data protection. The particular level of RAID data protection implemented is not important.
In one aspect, providing a separate slot on motherboard 200 for receiving a card 230 comprising either a jumper or RAID circuitry permits RAID functionality to be implemented separately from disk control functions. Computer system manufacturers can selectively implement RAID systems in accordance with consumer requests. A system that implements a card 230 that comprises a jumper lacks RAID functionality. By contrast, a system implements a card 230 that comprises either an IOP or an IOC implements RAID functionality.
The function performed by the flow diagram of
Although the described arrangements and procedures have been described in language specific to structural features and/or methodological operations, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or operations described. Rather, the specific features and operations are disclosed as preferred forms of implementing the claimed present subject matter.